
Doc No: X3J16/95-0104
WG21/N0704

Date: May 29, 1995
Project: Programming Language C++
Reply-To: Jim Welch

jww@watcom.on.ca

Implied Accessibility

and

Clarified Semantics for Catch Handlers

James W. Welch
WATCOM International

jww@watcom.on.ca

Abstract

This paper proposes additional accessibility requirements to be added to
the working paper. The first two
proposals are not considered to be controversial and may be editorial in
nature. The third proposal, while
substantive, is not considered to be controversial. The fourth proposal is
substantive and may be
controversial to some people. It adds accessibility requirements for
object passed to catch handlers,
specifies the order of destruction for such objects, and clarifies the
effect to changes to these objects.

Proposal(1): Clause 5.3.4 [expr.new]

Add a new paragraph (paragraph 23) at the end of the section:
“The deallocation function to be used to free memory shall be accessible˝and not ambiguous.”

Discussion: I consider this addition to be editorial.

Proposal(2): Clause 13.3 [over.match]

Add a new sentence to the end of paragraph 4:
“When overload resolution succeeds, the best viable function must be˝accessible in the context in

which it is used.”

Discussion: There exist many cases where accessibility must be checked and˝no explicit statement of such
is given. The proposal attempts to place one such statement in a central˝location. If it is determined that
this is too severe a restriction to place at this point, then the˝equivalent text must be inserted many times
into the Working Draft. I consider this proposal to be editorial.

Proposal(3): Clause 15.1 [except.throw]

Add a new sentence to the end of paragraph 4:
“When the thrown object is a class object, the copy constructor used to initialize the temporary

copy must be accessible. Similarly, the destructor for that object, if˝required, must be accessible. The copy
constructor and destructor must be accessible even when the use of a˝temporary object can be eliminated.”

Discussion: The first two sentences are redundant and are implied by the˝existing text. The sentences are
included to add clarity. The third sentence adds consistency by requiring˝uniform accessibility rules
independent of a particular implementation. I believe the addition of the˝third sentence is substantive.

Proposal(4): Clause 15.3 [except.handle]
Add two new paragraphs to the end of the section:

“When the catch handler specifies a class object, a copy constructor is˝used to initialize a
temporary object which is bound to the optionally specified name in the˝exception-declaration for the
catch handler. The object cannot be an abstract class (10.9) since these˝objects cannot be instantiated.
That object is destructed when the handler is exited, after the destruction˝of any automatic objects
initialized within the handler. The copy constructor and destructor must˝be accessible in the context of
the catch handler and need not be accessible in the context of a˝throw-expression which is a match for the
type of the catch handler. If the use of a temporary object can be˝eliminated without changing the meaning
of the program except for execution of constructors and destructors˝associated with the use of the
temporary object, then the optional name can be bound directly to the˝temporary (or original) object
specified in a throw-expression causing the catch handler to be executed.˝ The copy constructor and
destructor associated with the object must be accessible even when the˝temporary object is eliminated.

When the catch handler specifies a non-constant object, any changes to that˝object which are
effected while the handler has not exited, are changes to the temporary˝copy for the handler and will not
affect the temporary (or original) object that was initialized by˝execution of the throw-expression. When
the catch handler specifies a reference to a non-constant object, any˝changes to the referenced object are
changes to the temporary (or original) object initialized when the throw˝expression was executed and will
have effect should that object be rethrown.”

Discussion: The current draft does not specify any requirements regarding˝accessibility of copy
constructors or destructors associated with the objects passed to catch˝handlers. The draft does not
provide any rules for what happens when such handlers modify the objects˝passed to them. I believe the
proposed requirements are consistent with existing practice and with user˝expectations; at least they
should provide a starting point for the establishment of such rules. This˝third proposal is substantive in
my opinion.

Conclusions

I believe this paper cleans up the remaining areas in the draft where˝accessibility requirements were
understood but not yet stated. If I have overlooked any spots, I would be˝agreeable to revising this paper
to cover them also. I am, of course, not invested in the specific wording˝in any cases above and expect
those more qualified in drafting will be able to restate the proposals in˝an improved manner.

