
Doc No: X3J16/95-0100
WG21/N0700

Date: May 30, 1995
Project: Programming Language C++
Reply to: Beman Dawes

beman@dawes.win.net

Requirements for STL Template Arguments

The working paper specifies in 17.3.3.6 [lib.res.on.functions] that types used as template arguments to
instantiate library components must meet the appropriate requirements. Section 17.2.1.2
[lib.structure.requirements] says that "Requirements are stated in terms of well-defined expressions..."

This is the approach taken by Alex Stepanov and Meng Lee in specifying requirements for template
arguments for STL allocators [lib.allocator.requirements], containers [lib.container.requirements, etc.]
and iterators [lib.iterator.requirements, etc.].

The purpose of this proposal is to specify requirements for various other library template arguments for
which the working paper does not currently specify requirements. This will resolve a LWG open issue.

The first part of the proposal specifies several requirements on types "in terms of well-defined
expressions." Each requirement is given a name for ease of reference. A requirement name does not
identify a specific type but rather identifies all types (built-in or programmer defined) which meet the
specified requirements.

As always, any names introduced in this proposal serve as placeholders for final names to be chosen by
the LWG.

The second part of the proposal specifies which requirements apply to various library template arguments.

Some readers may find it easier to skim read Part 2 to get a feel for usage before reading the detailed
requirements in Part 1.

See lib-3714 through lib-3718 for examples of questions this proposal attempts to resolve.

Proposal Part 1 - Requirements Specification

The form and content of these requirements were chosen to be very similar to the STL iterator and
container requirements currently in the WP.

(Comment: In lib-3754 John Max Skaller questions the definitions of some of the terms used in these
requirements, such as "equivalent" and "equivalence relationship". For purposes of this proposal such
terms are understood to have the same meaning as they do in the Iterators and Containers chapters of the
WP.)

95-0100 Requirements for STL Template Arguments N0700

2

CopyConstructible Requirements

T is the type, t is a value of T, u is a value of const T.

Expression Return Type Assertions/etc. Complexity
T(t) post: t is equivalent to T(t) constant
T(u) post: u is equivalent to T(u) constant
t.~T(); constant
&t T* post: denotes the address of t constant
&u const T* post: denotes the address of u constant

The default constructor is not required. Certain container class member function signatures specify the
default constructor as a default argument. T() must be a well-defined expression if one of those
signatures is called using the default argument.

Assignable Requirements

Assignable types must also meet requirements for CopyConstructible types.

T is the type, t is a value of T, u is a value of (possibly const) T.

Expression Return Type Assertions/etc. Complexity
t = u T& post: t is equivalent to u constant

(Comment: The point in separating CopyConstructible and Assignable is that CopyConstructibles can be
const, but Assignables can’t be const.)

EqualityComparable Requirements

T is the type, a and b are values of T.

Expression Return Type Assertions/etc. Complexity
a == b convertible to

bool
== is an equivalence relationship constant

LessThanComparable Requirements

T is the type, a and b are values of type T.

Expression Return Type Assertions/etc. Complexity
a < b convertible to

bool
< is a total ordering relationship constant

(Comment: In lib-3754 John Max Skaller indicates his belief that this requirement needs modification,
both in this proposal and where it is already used for STL components in the WP. He suggests:

"Let S be the set of all expressions of the form *I where i is in the range specified in the input of
the algorithm, THEN for each pair of expressions *i1 and *i2 in S, *i1 < *i2 is well defined,
functional, and convertible to bool, and is a total order on S."

95-0100 Requirements for STL Template Arguments N0700

3

This proposal does not include that wording. I see it as incomplete (in the case of many algorithms which
take a value argument and/or multiple range arguments) and already implied by the simpler wording
currently in the WP. If someone wants to make another proposal clarifying the wording, that’s fine, but
that is not part of this proposal.)

Comparable Requirements

 EqualityComparable and LessThanComparable.

Proposal Part 2 - Requirements for various template arguments

These requirements are additions to any template argument requirements already specified in the working
paper.

Requirements on template arguments:

Template Argument Requirements Reference
operator!= T EqualityComparable lib.operators
operator> T LessThanComparable lib.operators
operator<= T LessThanComparable lib.operators
operator>= T LessThanComparable lib.operators
pair T1, T2 CopyConstructible lib.pairs
plus T t + t returns T lib.arithmetic.operations
minus T t - t returns T lib.arithmetic.operations
times T t * t returns T lib.arithmetic.operations
divides T t / t returns T lib.arithmetic.operations
modulus T t % t returns T lib.arithmetic.operations
negate T - t returns T lib.arithmetic.operations
equal_to T t == t return convertible to bool lib.comparisons
not_equal_to T t != t return convertible to bool lib.comparisons
greater T t > t return convertible to bool lib.comparisons
less T t < t return convertible to bool lib.comparisons
greater_equal T t >= t return convertible to bool lib.comparisons
less_equal T t <= t return convertible to bool lib.comparisons
logical_and T t && t return convertible to bool lib.logical.operations
logical_or T t || t return convertible to bool lib.logical.operations
logical_no T !t return convertible to bool lib.logical.operations
deque T Assignable lib.deque
list T Assignable lib.list
vector T Assignable lib.vector
map Key Assignable lib.map
map T Assignable lib.map
multimap Key Assignable lib.multimap
multimap T Assignable lib.multimap
set Key Assignable lib.set
multiset Key Assignable lib.multiset
find T EqualityComparable lib.alg.find
count T EqualityComparable lib.alg.count

95-0100 Requirements for STL Template Arguments N0700

4

search T EqualityComparable lib.alg.search
swap T Assignable lib.alg.swap
replace T EqualityComparable, Assignable lib.alg.replace
replace_if T EqualityComparable, Assignable lib.alg.replace
replace_copy T EqualityComparable, Assignable lib.alg.replace
replace_
 copy_if

T EqualityComparable, Assignable lib.alg.replace

fill T EqualityComparable, Assignable lib.alg.fill
fill_n T EqualityComparable, Assignable lib.alg.fill
remove T EqualityComparable lib.alg.remove
remove_ copy T EqualityComparable lib.alg.remove
lower_bound T LessThanComparable lib.lower.bound
upper_bound T LessThanComparable lib.upper.bound
equal_range T LessThanComparable lib.equal.range
binary_search T LessThanComparable lib.binary.search
min T LessThanComparable,

CopyConstructible
lib.min

max T LessThanComparable,
CopyConstructible

lib.max

count Size operator++() lib.alg.count
count_if Size operator++() lib.alg.count
search Size convertible to integral type lib.alg.search
fill_n Size convertible to integral type lib.alg.fill
generate_n Size convertible to integral type lib.alg.generate
all uses Predicate As specified in reference lib.algorithms
all uses Binary-

Predicate
As specified in reference lib.algorithms

all uses Allocator As specified in reference lib.allocator.
requirements

all uses Input-
Iterator

As specified in reference lib.input.iterators

all uses Output-
Iterator

As specified in reference lib.output.iterators

all uses Forward-
Iterator

As specified in reference lib.forward.iterators

all uses Bidirect-
ional-
Iterator

As specified in reference lib.bidirectional.
iterators

all uses Random-
Access-
Iterator

As specified in reference lib.random.access.
iterators

all uses Container As specified in reference lib.container.
requirements

all uses Compare As specified in reference ??????
all uses Function As specified in reference lib.function.objects

 (Comment: For many STL algorithms T is not required by this proposal to be Assignable. This may
overconstrain implementations in that it may disallow some optimizations such as value caching.

(Comment: There are still some template arguments with unspecified requirements, but I have run out of
time and energy)

