
Doc. No.: X3J16/95-0099
WG21/N0699

Date: 22 May 1995
Project: C++ Standard Library
Reply to: Nathan Myers

myersn@roguewave.com

Clause 20 (Utilities Library) Issues (V.1)

Revision History:
Version 1 - 22 May 1995

Introduction

This document is a summary of issues identified for the Clause 20, identifying resolutions as
they are voted on, and offering recommendations for unsolved problems in the Draft where
possible.

Work Group: Library: Utilities Clause 20
Issue Number: 20-001
Title: Allocator needs operator==()
Sections: 20.1, 20.4.1
Status: active

Description:
Allocator is a value class, passed to container and string constructors and
copied into them for use in managing any secondary storage they use. When
assigning one object to another (particularly e.g. string) that use reference-
counting to share storage, it is necessary to be able to determine that the same
space is used; e.g. the strings are in the same database.

The Allocator requirements as specified to not allow this.

Discussion:
Now that Allocator is a full object, it needs the usual "nice" qualities: copy
operators and comparison for equality.

Proposed Resolution:
Add to Table 18-2:

Expression Return
Type

assert/Pre/Post

a1 == a2 bool Returns true iff the two allocators are
interchangeable, such that storage allocated from
each can be deallocated via the other

a1 != a2 bool same as !(a1 == a2)
a1 = a2 X& post: a1 == a2
X a1(a2); post: a1 == a2

Define a global operator (in std::):

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

2

inline bool operator==(const allocator&, const allocator&)
{ return true; }

for the default allocator in 22.4.1.
Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-002
Title: allocator::types<> has no public members
Sections: 20.4.1
Status: active
Description:

The member class template allocator::types<> has no public members. I
think this is editorial, because the enabling proposal specified all public
members.

Discussion:
I believe this was just a typo.

Proposed Resolution:
Either add "public: " to the definition, or change it to a struct, at the editor's
discretion. (I prefer a struct.)

Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-003
Title: Allocator requirements incomplete
Sections: 20.1 and 20.4.1
Status: active

Description:
Many of the requirements on Allocator, in general, are mentioned only in the
section describing the default allocator. In particular, every Allocator type
needs a member class template types<> which provides public type members,
and member functions appropriate to them.

Discussion:
The proposed resolution below merely completes the incorporation of Allocator
requirements already accepted.

Proposed Resolution:
1. Replace the first three rows in Table 18-2 as follows:

Expression Return Type
typename X::types<T>::pointer convertible to T* and void*
typename X::types<T>::const_pointer convertible to const T* and to const

void*
typename X::types<T>::reference convertible to T&
typename
X::types<T>::const_reference

convertible to const T&

typename X::types<T>::value_type Identical to T

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

3

.and the "allocate" and "deallocate" rows, where X is an Allocator type, x and y
have type X&, y has type const X&, p, q, r, and s are values of type
X::types<T>::pointer, const_pointer, reference, and const_reference,
respectively, for any type T, and u has type X::types<U>::pointer for any type
U.

Expression: Return Type:
x.template address<T>(r) X::types<T>::pointer
x.template address<T>(s) X::types<T>::const_pointer
x.template allocate<T,U>(n,u) X::types<T>::pointer
x.template deallocate<T>(p) (not used)

Expression: Return Type:
new(x) T new((void*)x.template allocate<T,void>(1, 0)) T
new(x) T[n] new((void*)x.template allocate<T,void>(n, 0)) T[n]

(n>0)

(Adopt the same "assertions/conditions" text from the existing table.)
Also, add:

a. a precondition on the parameter to deallocate<>: its argument must have
been obtained by calling some y.allocate where (x == y). b. a note that the
result of allocate() is a Random Access Iterator.

2. Move paragraph 2 from 20.4.1 up to section 20.1, after table 20-2.
Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-004
Title: allocator parameter "hint" needs hints on usage
Sections: 20.1
Status: active
Description:

The Draft contains no text to explain how the "hint" parameter to the Allocator
member template allocate<>() is used.

Discussion:
This parameter was added at the request of OODB vendors who have found
that the availability of such a hint can lead to orders of magnitude better
performance.

Proposed Resolution:
Add a paragraph in 20.1 after Table 20-2:

The second parameter to the call x.template allocate<> in the table is a hint.
For best performance, it should be a pointer to an object typically used about
the same time as the object being allocated, but it could be a null pointer if
necessary. In a member function, "this" is usually a good choice to use.

Requestor:
Owner:

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

4

Work Group: Library: Utilities Clause 20
Issue Number: 20-005
Title: Default allocator member allocate<T>() doesn't "new T".
Sections: 20.4.1.1
Status: active

Description:
From the Draft:

template<class T, class U>
typename types<T>::pointer
allocate(size_type n, typename

types<U>::const_pointer hint);

Notes:
Uses ::operator new(size_t) (_lib.new.delete_).

Returns:
new T, if n == 1. Returns new T[n], if n > 1.

+------- BEGIN BOX 2 -------+
ISSUE: Is this right? How does deallocate() know which form of delete to use?

The member allocate doesn't call constructors, so it can't use "new T" or "new
T[n]". It has to call "operator new(...)" directly.

Discussion:
I worry that we are missing an opportunity to permit substantial optimizations
by specifying that allocate() and deallocate() explicitly call operators
new() and delete() . The sizes and types of the objects involved are lost in the
translation.

Proposed Resolution:
I see two choices:

1. Replace the description above with:

Returns:
operator new(n * sizeof(T))

Throws:
bad_alloc if the amount of memory requested is not available.

This is simplest, but leaves no opportunity for optimization.

2. Replace the descriptions of both default allocator members allocate and
deallocate to indicate that they manage memory obtained in an unspecified
manner, in the same sense as global operators new() and delete() .
Furthermore, identify these function templates as "replaceable" in the same
sense as are global operators new() and delete() .

Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-006
Title: allocator::max_size() not documented
Sections: 20.4.1.1
Status: active
Description:

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

5

In the Allocator requirements, max_size() is specified to return the largest
positive value of difference_type . For the default allocator, this is
ptrdiff_t .

Proposed Resolution:
Document allocator::max_size() as:

Returns: numeric_limits<ptrdiff_t>::max(), where ptrdiff_t is as found in the
header <cstddef>.

Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-007
Title: C functions asctime() and strftime() use global locale
Sections: 20.5
Status: active
Description:

The Draft describes the functions asctime() and strftime() as identical to the
C Library functions of the same name. However, they depend on the global
locale, which is not the same in the C++ Library. We need text here to describe
how they use the global locale.

Discussion:
The mapping is quite straightforward: they use
use_facet< time_put<char> >(locale()).put(...)

as many times as necessary to format their results.

Proposed Resolution:
[TBS]
Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-008
Title: construct() and destroy() functions should be members
Sections: 20.4, 20.4.3, 20.1, 20.4.1
Status: active
Description:

The Draft provides several functions of dubious value:
template <class T> T* allocate(ptrdiff_t n, T*);
template <class T> void deallocate(T* buffer);
template <class T1, class T2> void construct(T1* p, const T2&
value);
template <class T> void destroy(T* pointer);

These were useful in building the HP STL library, which did not use standard
Allocators; however, anyone building a standard Container object could not use
them, but would instead use the Allocator interface.

Discussion:

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

6

The functions above do not aid communication between modules or provide
substantial functionality, or even serve users as a good example; hence, they do
not meet the normal criteria for inclusion in the Library.

However, functions like them proved convenient in building the STL. Rather
than remove them entirely, I proposed last time adding them to the standard
Allocator interface, and was asked to return with a full proposal.

Proposed Resolution:
1. Eliminate the functions mentioned above from 20.4 and 20.4.3.

2. Add to Table 20-2:

and t has type const T& ...

Expression: Result Type: Assert/Pre/Post:
x.template construct<T,U>(p,u) (not used) Effect: new((void*)p) T(u)
x.template destroy<T>(p) (not used) Effect: ((T*)p)->~T()

3. Add to the default allocator, in section 20.4.1, member function templates:
template <class T1, class T2>
 void construct(T1* p, const T2& val);
 template <class T>
 void destroy(T* p);

both defined as in the table.

4. Add notes to front matter in Clauses 21 (Strings) and 23 (Containers) that
specify that all storage components described retain between calls to their
member functions comes from a copy of the allocator passed to their respective
constructors.

Requestor:
Owner:

Work Group: Library: Utilities Clause 20
Issue Number: 20-00
Title: Allocator member init_page_size() no longer appropriate.
Sections: 20
Status: active

Description:
In the HP STL implementation, before allocator, collections did their own bulk
storage management. Now that we have allocator objects that can be tuned
(and, if necessary, specialized) for the purpose, this function is not so useful,
and indeed encourages a harmful practice.

This member was omitted from the latest Draft, but not (to my knowledge) by
any enabling motion. We should make it official.

Discussion:
Encouraging collections to perform bulk storage management is incompatible
with best performance in object databases. Furthermore, such code obscures the
logic of containers, and tends to be identical or nearly so in each container,
resulting in wasteful duplication. Such code was intended to reduce the
number of calls to the (expensive) global operator new(), but such optimization
would better be performed in the allocator.

Clause 18 (Utilities Library) Issues List - 95-0099=N06899

7

Proposed Resolution:
A choice:

1. No changes; simply ratify the omission in the existing draft.

2. Reinstate init_page_size() .
Requestor:
Owner:
