
Doc. No.: X3J16/95-0098
WG21/N00698

Date: 22 May 1995
Project: C++ Standard Library
Reply to: Nathan Myers

myersn@roguewave.com

Clause 22 (Localization Library) Issues (V.1)

Revision History
Version 1 - 22 May 1995

Introduction
This document is a summary of issues identified for the Clause 22, identifying resolutions as
they are voted on and recommendationsfor unsolved problems in the Draft.

[Maintainer's note: I apologize for the lack of detail in this list. I had a complete list written and
lost it to a disk failure, so this is reconstructed from all-too-human memory.]

Work Group: Library: Localization Clause 22
Issue Number: 22-001
Title: locale usage syntax loc.template use<>() too clumsy
Sections: 22.1.1.3
Status: active
Description:

The resolution, in Austin, of syntax for calling explicitly qualified member
template functions is too clumsy for the primaryinterface to locales, if any
alternative is possible. With no change, calls look like:

loc.template use<Facet>().member()

Discussion:
The language offers another alternative: a non-member friend template function.
Using it, the call above looks like:

use_facet<Facet>(loc).member()

more closely resembling a cast.
Proposed Resolution:

In place of the members std::locale::use<>() and std::locale::has<>() ,
provide global templates, with the same semantics. These must be friends of
locale .

template <class Facet> const Facet& use(const locale&);
template <class Facet> bool has(const locale&)
throw();

Also, change all examples that mention the old form to the new form.
Requestor: Nathan Myers
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-002

Clause 22 (Localization Library) Issues List - 95-0098=N06898

2

Title: locale member constant all overconstrained.
Sections: 22.1.1.1.1
Status: active
Description:

During editorial work the member "all " was changed to require that
(collate | ctype | monetary | numeric | time
|messages)==all

be true.
Discussion:

This overconstrains implementors by preventing them from adding categories
of their own.

Proposed Resolution:
Specify instead that:

(collate | ctype | monetary | numeric | time | messages |
all) == all

is true, as originally documented.
Requestor: Nathan Myers
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-003
Title: Effect of operator|() and operator()& on categories is unspecified.
Sections: 22.1.1.1.1
Status: active
Description:

In the same section as above, on applying bitwise operators to categories:

Further, the result of applying operators & and | to any two valid values is itself
valid.

It's valid, but what does it mean?
Discussion:

Clearly we want set union and intersection behavior.
Proposed Resolution:

Add to the above:
", and results in the setwise union or intersection, respectively, of the argument
categories."

Requestor: P.J.Plauger
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-004
Title: Description of byname facets too vague
Sections: 22.1.1.1.2
Status: active
Description:

Paragraph 4, where byname<> classes are described, leaves some issues
unresolved.

Discussion:
Proposed Resolution:

Add to paragraph 4:

Clause 22 (Localization Library) Issues List - 95-0098=N06898

3

"If the const char* argument to a byname facet constructor does not identify
a valid locale name, the constructor throws an exception of type
std::runtime_error ."

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-005
Title: Locale operators shouldn't throw exceptions
Sections: 22.1.1.2
Status: active
Description:

The class locale is intended to be stored in user data structures and copied
freely. For safe system design it is necessary to be assured that such operations
will not throw any exceptions, because that would corrupt those data
structures.

Discussion:
Adding empty throw specifications to the declarations provides this guarantee
and also allows more efficient operation on some architectures.

Proposed Resolution:
Declare the following locale members as:

locale() throw();
locale(const locale& other) throw();
~locale() throw(); // non-virtual
const locale& operator=(const locale& other) throw();
template <class Facet> bool has() throw() const;

and document that they do not throw any exceptions.
Note: If the recommendation for issue 22-001 is accepted, the last declaration
above would become, instead:

template <class Facet>
riend bool has(const locale&) throw();

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-006
Title: locale constructors should say they throw runtime_error
Sections: 22.1.1.2
Status: active
Description:

The descriptions of the constructors:
explicit locale(const char* std_name);
locale(const locale& other, const char* std_name,
category);

don't say what happens if the implementation cannot provide a locale of the
requested name.

Discussion:
These constructors can also throw bad_alloc if the various parts of the locale
can't be created, so a throw specification seems inappropriate.

Proposed Resolution:
Add text to the descriptions:

Clause 22 (Localization Library) Issues List - 95-0098=N06898

4

If the std_name argument is not a valid locale name, throws
runtime_error . May also throw other exceptions, if resources necessary to
construct the locale are unavailable.

The same should be said about byname<> facet constructors.
Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-007
Title: locale template use() throw behavior needs clarification
Sections: 22.1.1.3 [lib.locale.members]
Status: active
Description:

The template:
template <class Facet> const Facet& locale::use() const;

(or depending on resolution of issue 22-001
template <class Facet> friend const Facet& use(const
locale&);

) is described as throwing bad_cast if the locale does not implement the
specified facet. Other exceptions are possible, as use() does things "behind the
scenes" that consume resources.

Proposed Resolution:
Document that use() may throw other unspecified exceptions as well.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-008
Title: locale member op() needs more template parameters
Sections: 22.1.1.4
Status: active
Description:

The locale member template operator:
template <class charT>
 bool operator()(const basic_string<charT>& s1,

 const basic_string<charT>& s2) const;

does not accommodate the full generality of strings users may need to compare.
Discussion:

basic_string<> has undergone evolution, and we need to track it.
Proposed Resolution:

Replace the above declaration with:
template <class charT, class Traits, class Alloc>
 bool operator()(const basic_string<charT,Traits,Alloc>&
s1,

 const basic_string<charT,Traits,Alloc>&
s2)

const;

Requestor: Takanori Adachi
Owner:

Clause 22 (Localization Library) Issues List - 95-0098=N06898

5

Work Group: Library: Localization Clause 22
Issue Number: 22-009
Title: Global locale effect on C Lib functions unspecified
Sections: 22.1.1.5
Status: active
Description:

The global locale locale() , as set by locale::global(...) , is described as
affecting the C library functions, but the Draft doesn't say what facets and
members are used.

Discussion:
The mapping is quite straightforward, in most cases, but should be spelled out.
In particular, it is not obvious how some of the lconv members returned by the
C function localeconv may be derived from numpunct<> and moneypunct<>
members. (I have solved this, but need to write it up.)

Proposed Resolution:
The details proposed will be in a separate paper. [I planned to write this paper
for the mailing, but the aforementioned disk crash intervened.]

Requestor: P. J. Plauger
Owner: Nathan Myers

Work Group: Library: Localization Clause 22
Issue Number: 22-010
Title: Convenience functions is???(c, const locale&) are slow
Sections: 22.1.2.1
Status: active
Description:

The C functions corresponding to these functions are usually implemented as
macros; these functions cannot be as fast.

Discussion:
The functions are provided only as a convenience for converting old code.

Proposed Resolution:
Add a footnote indicating that if the test is to be applied in a loop there are
faster ways to do the same thing.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-011
Title: ctype_base member ctype_mask name is too long
Sections: 22.2.1
Status: active
Description:

The type ctype_base::ctype_mask is named badly.
Discussion:

In use it is always qualified with ctype_base , so the "ctype_" prefix is
unnecessary. (This name has a messy history.)

Proposed Resolution:
Change the name to ctype_base::mask , and the corresponding function
parameter types to match.

Clause 22 (Localization Library) Issues List - 95-0098=N06898

6

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-012
Title: ctype<>::is(...) result inconsistent with other members
Sections: 22.2.1.1.2 and 22.2.1.3.2
Status: active
Description:

The ctype<> and ctype<char> members

const charT* [do_]is(const charT* low, const charT* high,
 ctype_mask* vec) const;

are documented to return low , unlike the other members of ctype<> . This
inconsistency was accidental.

Discussion:
Returning high is consistent not only with other members but with Container
members and Algorithms.

Proposed Resolution:
Change the descriptions in both places to indicate it returns high .

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-013
Title: ctype<char> derivation interface overconstrained.
Sections: 22.2.1.3
Status: active
Description:

From the Draft, box 19:
Members table , classic_table , and delete_it should be clearly
described in terms of their (lack of) constraints on the details of the
implementation. In particular, it must be made clear whether these members
must appear with these particular names, who can get to them, and so on.

Discussion:
As Plauger points out, ctype<char> 's derivation interface is "grossly
overconstrained".

Proposed Resolution:
Eliminate mention of member delete_it describe destructor semantics in
terms of the argument value to the constructor. Replace members table and
classic_table with:

protected:
 static const ctype_mask* classic_table();
 const ctype_mask* table() const;

Requestor:
Owner:

Work Group: Library: Localization Clause 22

Clause 22 (Localization Library) Issues List - 95-0098=N06898

7

Issue Number: 22-014
Title: ctype_byname<char> specialization not described.
Sections: 22.2.1.3
Status: active
Description:

In the front matter (22.1) the specialization ctype_byname<char> is mentioned,
but it has no section.

Discussion:
This matters because ctype_byname<> is used polymorphically, and so must be
described as inheriting from ctype<char> for the facet to work correctly.

Proposed Resolution:
Add a section specifying that ctype_byname<char> is derived publicly from
ctype<char> .

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-015
Title: codecvt<> usage could be better described
Sections: 22.2.1.4 [lib.locale.codecvt]
Status: active
Description:

Several people, including Plauger, have asked for clarification of the role of the
stateT template parameter to codecvt<>.

Discussion:
codecvt<> is an open-ended set of conversion facilities. Implementors are only
required to provide instantiations of codecvt<char,wchar_t,mbstate_t> and
codecvt<wchar_t,char,mbstate_t> , most probably by specialization. These
are used by filebuf to serialize wide characters, and by the C functions to
convert between multibyte and wchar_t encodings. By specializing with other
types in place of mbstate_ t, users can specify conversions for codesets
unknown to the implementor. mbstate_t is an opaque type from C, Amendment
1; implementors can put anything in it as needed for translation.

Proposed Resolution:
Add to paragraph 3:

Instantiations on mbstate_t perform conversion between any encodings
known to the library implementor. Other encodings can be converted by
specializing on a user-defined stateT type. The stateT object can contain
any state that is useful to communicate to or from the specialized convert()
member. The base class implementations convert the implementation-defined
native execution codeset.

And add a footnote: the type mbstate_t is an opaque type inherited from the C Library.

Requestor: Plauger and others
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-016
Title: Numeric parsing & formatting description is poorly organized
Sections: 22 (many)

Clause 22 (Localization Library) Issues List - 95-0098=N06898

8

Status: active
Description:

As several people have pointed out, the descriptions of parsing and formatting
semantics for iostreams, and facet members put* and get*, are scattered in both
Clauses 22 and 27. Further, they reference C Library semantics in ways that are
incompatible with the C++ Library environment.

Discussion:
Since iostreams delegates all its formatting and parsing to locale, the
descriptions of such semantics might best be in Clause 22. Also, the more
general semantics of locale facilities raises some questions about parsing: e.g.
what is the effect if a digit group separator is specified to be a digit value, or
equal to the decimal separator?
(Plauger)

Proposed Resolution:
We should encourage editoral aggressiveness in consolidating the descriptions
of parsing and formatting, and in collecting issues that arise.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-017
Title: facet members put*() have no way to detect output
errors.
Sections: 22
Status: active
Description:

Facet members take a single OutputIterator and assign characters through it.
This interface offers no indication of failure, and no way to limit the number of
characters produced.

Discussion:
Part of the semantics of the put*() members is to set flags in the basic_ios<>
argument if an error occurs. To do this they must be able to detect errors.

Proposed Resolution:
As I see it now we have two choices:

1. Specify that put*() members do not detect output errors. Iostream functions
must check the state of the streambuf after return from the put function and set
error state themselves.

2. Add to each put and do_put member another OutputIterator argument,
end , and require the put members to compare each successive iterator position
to end , and report an error if they match. ostreambuf_iterator must then be
specified so that comparison of a "null iterator" with a blocked iterator yields
true.

I don't know yet which alternative to prefer.
Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-018

Clause 22 (Localization Library) Issues List - 95-0098=N06898

9

Title:
Sections: 22
Status: active
Description:

From Box 24:
Is support for syntax like "0xFF" required for iostreams support? If so, we need
to add language describing it.

Discussion:
AT&T iostreams did not support it on input, and generated it on output if
showbase was set. Other implementations more closely matched C printf/scanf
conventions. This may be an iostreams issue.

Proposed Resolution:
Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-019
Title: numpunct<>::do_grouping not like C
Sections: 22.2.3.1.2
Status: active
Description:

The result of numpunct<>::do_grouping() is a vector with semantics
somewhat similar to those of the C Library lconv::grouping char* member.
It has been suggested they should be identical.

Discussion:
C++ vector<>s are not null-terminated like C strings. The specified semantics is
appropriate for vector<>.

Proposed Resolution:
No change. I'd like to state clearly that the C++ Library is not intended as
wallpaper over the C Library facilities; and that any similarity between features
provided is a result of our intention to provide no less functionality than the C
Library, and not because it is meant to be implemented using C Library
facilities.

Requestor: P.J. Plauger
Owner: Nathan Myers

Work Group: Library: Localization Clause 22
Issue Number: 22-020
Title: collate virtuals description need editing
Sections: 22.2.4.1.2
Status: active
Description:

1. The names of the virtuals are documented as "hash" and "transform", not
"do_hash" and "do_transform" as in the class definition. This is purely editorial.
2. The definition of do_hash() is too vague to be normative.
3. The definition of do_transform can be misinterpreted to refer to the global
std::compare rather than the member.
4. Base class semantics is not defined.

Discussion:
For (2):

Clause 22 (Localization Library) Issues List - 95-0098=N06898

10

The probability that the result equals that for another string which does not
compare equal should be very small, approaching
(2.0/numeric_limits<long>::max()) or less for longer strings.

I don't know any way to describe a hash function more normatively without
overconstraining implementors. Let's just consider it non-normative. (I believe
"should" signals that already.)

Proposed Resolution:
Fix the member names. Specify do_tranform and do_hash in terms of
do_compare so that no confusion is possible. Describe the base class semantics
of do_compare as performing a lexicographic ordering.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-021
Title: time_get<> members need clarification
Sections: 22.2.5.1.2
Status: active
Description:

The descriptions of time_get<> members do_date_order , do_get_date , and
do_get_time mention a format character 'X' or 'x', but don't say in what
context.

Discussion:
time_get<> is described as parsing the formats produced by time_put<>.

Proposed Resolution:
Specify that the 'X' or 'x' format character is as interpreted by
time_put<>::do_put .

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-022
Title: time_get<>::get_* error semantics incomplete
Sections: 22.2.5.1.2
Status: active
Description:

The descriptions of time_get<>::do_get_date and do_get_time don't say
how many characters are consumed if a recognizable date format is not
available.

Discussion:
It was intended that these functions not be as rigorously defined as the
monetary and numeric parsers, to allow implementors more latitude in
recognizing the many variations in notation. However, we should not allow
these functions to consume an infinite number of characters just because of an
error.

Proposed Resolution:
Specify, in the event of a bad input format, one of:

1. the functions consume no control characters that are not found in the output
format.

Clause 22 (Localization Library) Issues List - 95-0098=N06898

11

2. the functions consume no end-of-line characters, as defined by
ctype<>::widen('\n') .

Note that get_monthname and get_weekday are already completely specified.
Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-023
Title: time_put<>::put(... const char* ...) multibyte mistake
Sections: 22.2.5.3.1
Status: active
Description:

From the Draft:
The first form interprets the characters between pattern and pat_end
identically as strftime() , (though not treating the null character as a
terminator).

This, unfortunately and unintentionally, implies that put identifies multibyte
characters in the argument string and treats them as units according to the
current global locale.

Discussion:
A key design criterion in internationalizing the C++ Library was to keep
multibyte character representations off in the margins of a system; wherever
characters are treated in memory, large character sets are represented using
wchar_t or user character types.

time_put<>::put would be the only exception to that rule, which introduces a
variety of issues we have been careful not to need to address.

Proposed Resolution:
Replace the above text:

The first form interprets characters immediately following a '%' in the sequence
between pattern and pat_end as format specifiers, in according to the
mapping used by the <ctime> function strftime() . Characters are
converted using ctype<>::narrow() to identify format specifiers. [Note: this
implies that if narrow() has no mapping for the character '%', no format
specifiers are identified.]

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-024
Title: money_get<> needs static const member intl
Sections: 22.2.6.1
Status: active
Description:

money_put<> and moneypunct<> both have a public member:
static const boolean intl = Intl;

to mirror their template argument. This was inadvertently omitted from
money_get<>.

Clause 22 (Localization Library) Issues List - 95-0098=N06898

12

Discussion:
All the library components mirror their template parameters, or should. This
allows access to the parameter in the case another template is instantiated on the
component type; the argument is otherwise unavailable.

Proposed Resolution:
Add the member to money_get<>.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-025
Title: Facet members string and ios are confusing
Sections: 22 (many)
Status: active
Description:

Many of the facets declare public typedefs
typedef basic_string<charT> string;
typedef basic_ios<charT> ios;

for convenience in declaring member arguments and return types. In some
cases, "string" and "basic_string<char>" are both used in a declaration. This is
confusing, because the global "string" is identical with "basic_string<char>".

Discussion:
Other typedefs used look like "char_type". We should be consistent.

Proposed Resolution:
Change the member typedefs in facets from "string" and "ios" to "string_type"
and "ios_type", and change the member function declarations to match.

Requestor: John Dlugosz <jdlugosz@objectspace.com>
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-026
Title: money_get<> and money_put<> need control for currency symbol
Sections: 22.2.6.1.2
Status: active
Description:

It is very common to format monetary values both with and without a currency
symbol in the same application. Therefore a runtime control is needed on
whether it is required, particularly for formats in which it appears after the
value.

Discussion:
The ios flag showbase is otherwise unused for monetary formats.

Proposed Resolution:
For money_get<>::get():

If showbase is off, the currency symbol is optional; if it appears after all other
required elements, it is not consumed. [See issue 27.] If showbase is on, the
currency symbol is required, and always consumed. Example: if showbase is
off, then in "(100 L)" (when the sign is "()") the "L" is consumed; in "-100 L"
(when the sign is "-") it is not.

For money_put<>::put():
The currency symbol is emitted only if showbase is on.

[The draft already says this.]

Clause 22 (Localization Library) Issues List - 95-0098=N06898

13

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-027
Title: do_positive_sign and do_negative_sign are not right yet
Sections: 22.2.6.3.2
Status: active
Description:

The description of do_negative_sign():

Returns:
 The string to use to indicate a negative monetary value.
Notes:
 If it is a one-character string containing '(', it is paired with a matching ')'.

is both vague and limiting. We should be able to do much better.
Discussion:

The intention was to support notations in which negative values are represented
in parentheses: ($100.00). We could use a special value in the format, and give
users no choice of bracketing; but I think we can do better.

Proposed Resolution:
Begin by merging the descriptions of members do_positive_sign and
do_negative_sign -- no special case for negative. Then: if it returns a string
containing more than one character, the first appears in the position specified by
the format and the remaining characters appear after all other format elements.
When parsing, if the first character of a sign is recognized, any subsequent
characters are required. (E.g. "($100.00" would not be a valid monetary value.
Also, in "(100 L)" the "L" is consumed even if showbase is false.

Requestor:
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-028
Title: messages catalog identifier underspecified
Sections: 22.2.7.1
Status: active
Description:

From the Draft:
We should clarify the meaning of
THE_POSIX_CATALOG_IDENTIFIER_TYPE above.

Discussion:
Each execution environment that provides message catalogs has its own
identifiers for them.

Proposed Resolution:
State that the message catalog member typedef is implementation-defined. The
requirements on it are that it needs a default value, catalog() , and copy
operators, that do not throw exceptions. User programs cannot safely copy a
catalog value after it has been closed. (Thus, it may be a pointer.)

Requestor:
Owner:

Clause 22 (Localization Library) Issues List - 95-0098=N06898

14

Work Group: Library: Localization Clause 22
Issue Number: 22-029
Title: codecvt<>::convert boundary condition imprecise
Sections: 22.2.1.4.2
Status: active

Description:
The description of codecvt<>::convert has a note:

Does not write into *to_limit .

As Plauger points out, this doesn't say what it does instead -- is it allowed to
skip over *to_limit and keep writing?

Discussion:
Obviously not.

Proposed Resolution:
Remove the offending sentence. Add after the first sentence in the preceding
paragraph:

"It produces no more than (to - to_limit) characters."
Requestor: P.J. Plauger
Owner:

Work Group: Library: Localization Clause 22
Issue Number: 22-030
Title: Do facet gets/puts throw on error?
Sections: 22 (many)
Status: active

Description:
When a facet member get or put identifies an error, it is documented as setting a
bit in its "ios_type" argument's iostate. In iostream, when this happens an
exception is thrown if the corresponding bit is set in the exception state. Does
an exception get thrown under the same circumstances in locale functions? The
Draft is inconsistent.

Discussion:
If the locale doesn't throw, iostreams must check the error state itself and throw;
if locale throws, iostream probably needs to catch and rethrow.

Proposed Resolution:
A choice:

1. Locale members throw if the exception bit says so.
2. Locale members don't throw, the only set iostate.

I don't know which is better, but I lean toward 1.
Requestor:
Owner:
