
Exception Prevention

Gregory Colvin
Information Management Research

gregor@netcom.com

In San Diego we removed from our Library a facility for preventing exceptions from being thrown by the
Library or the Language. I review herein three alternative means of providing this facility and
recommend that we adopt the do_throw template of 94-0166=N0553.

Alternative 1: The template do_throw

At Valley Forge I proposed the following interface.

Interface

void (*set_throw_handler(void(*)(const exception&)))(const exception&);
template<class X> void do_throw(const X &x) throw(X);

Semantics

The function
void (*set_throw_handler(void(*pf)(const exception&)))(const exception&);

installs the function pointer pf as the current throw-handler and returns the previous throw-handler if any,
or else 0.

The template functions
template<class X> void do_throw(const X &x) throw(X);

pass a reference to the exception referred to by x to the current throw-handler, if any, and then execute the
expression throw x.

 All Library exceptions and the Language exceptions bad_cast and bad_typeid are thrown by do_throw().

Alternative 2: A templatized set_throw_handler

An alternative which requires language support would be a "magic" function template. I suggested this
alternative at Valley Forge.

Interface

template<class X> void (*set_throw_handler(void(*)(const X&)))(const X&);

Semantics

The language would establish a throw-handler for every type of object thrown and call it, if set, in every
throw-expression before transferring control to a handler, with a reference to the object being passed to
the handler.

1

Alternative 3: A templatized operator throw

Another alternative which requires language support would be a "magic" operator template. Although
discussed in San Diego, and since then on the reflectors, this alternative has not been proposed formally.

Interface

template<class X> void operator throw (const X&);

Semantics

This template specifies a family of potentially replaceable functions. The default version of each such
function transfers control to a handler, passing the object referred to by its argument.

Discussion and Recommended Action

The do_throw template requires no language support to allow users to intercept exceptions thrown by the
Standard Library, and only minimal support (the insertion of a function call) for the Language exceptions
bad_typeid and bad_cast. The user must make a function call to intercept exceptions, which means that
exceptions thrown during static initialization of the Standard Library are impossible to intercept. (Note
that users cannot catch such exceptions, as they will cause terminate() to be called before any user code
can be executed). Also, exceptions not thrown by do_throw cannot be intercepted, which fact may
discourage the use of raw throw-expressions.

The set-throw-handler template requires substantial language support: the language processor must
magically provide a throw-handler for every type of object thrown. I am unsure of the implementation
difficulty, but suspect that it could range from trivial to very difficult. The trivial approach is to generate a
definition of each required throw-handler in each translation unit requiring it and sort out the multiple
definitions "at link time". The set-throw-handler template cannot handle exceptions thrown by the Library
during static initialization, but it does allow all other throw-expressions to be intercepted.

The operator throw template also requires substantial language support: the language processor must
magically replace the default operator "at link time". This might turn out to be a trivial reuse of
mechanisms required for template specialization, but I doubt it. Since the replacement is static, all throw-
expressions can be intercepted.

Which solution to choose depends in part on what problem we need to solve.

The simplest problem is to allow users who are not prepared to handle exceptions to use C++ and its
Standard Library. The do_throw template is adequate to solve this problem, so long as users are prepared
to install a throw-handler and avoid all use of raw throw-expressions.

A harder problem is to allow users to intercept exceptions arising from any throw-expression. A
templatized set-throw-handler is just adequate to solve this problem, unless we insist on intercepting
exceptions thrown during static initialization of the Library.

An even harder problem is to allow users to exceptions arising from any throw-expression whatsoever. A
templatized operator throw is adequate for this purpose.

Given the late date, and the likely implementation difficulties of more radical alternatives, I recommend
we adopt the do_throw template.

2

