
 Doc. No.: X3J16/95-0097
 WG21/N0697
 Date: May 28, 1995
 Project: Programming Language C++
 Reply To: J. Lawrence Podmolik
 Andersen Consulting
 jlp@chi.andersen.com

 Clause 23 (Containers Library) Issues List
 Revision 3

Revision History

Revision 1 - January 31, 1995. Distributed in pre-Austin mailing.

Revision 2 - March 2, 1995. To be distributed at the Austin meeting.

Revision 3 - May 28, 1995. Distributed in pre-Monterey mailing.

 Notes: some discussion was condensed or elided for closed
 issues to keep the list to a reasonable size. Also, some
 compound issues were split into several separate issues
 and some problems with issue numbering were corrected.

Introduction

This document is a summary of the issues identified in Clause 23. For
each issue the status, a short description, and pointers to relevant
reflector messages and papers are given. This evolving document will
serve as a basis of discussion and historical for Containers issues and
as a foundation of proposals for resolving specific issues.

Issues

Work Group: Library
Issue Number: 23-001
Title: propose to add convenience functions to stl containers
Sections: 23.1.5 through 23.1.8 and 23.2.1 through 23.2.4
Status: closed

Description:

 There are some common needs that are not currently provided as a
 class members of the stl container classes. These additional methods
 can be provided by individual programmers as needed, but in our
 experience are so commonly wanted that they deserve to be included
 as class members

Proposed Resolution:

 Add the following method to all containers

 size_type Container<T>::clear() {return erase(begin(),end());}

 Note: the returned size_type matches another proposal that all
 methods which change the size of a container by "some" amount return
 that amount.

 Add the following methods to containers that provide the
 equivalent void pop_something():

 sections 23.1.7 through 23.1.8 (list, deque)
 T pop_front_value()
 {T ret = front(); pop_front(); return ret; }

 section 23.1.5 through 23.1.8 (vectors, list deque)
 T pop_back_value()
 {T ret = back(); pop_back(); return ret; }

 sections 23.1.9 and 23.1.11 (stack and priority_queue)
 T pop_value()
 {T ret = top(); pop(); return ret; }

 section 23.1.10 (queue)
 T pop_value()
 {T ret = front(); pop(); return ret; }

 Note: The method names are a suggestion only. It is the returned T
 that is wanted.

Discussion:

 << deleted -- see Revision 2 for details >>

Resolution:

 This issue was discussed in the LWG at the Austin meeting. It
 was noted that there are two distinct issues: adding clear()
 and adding push/pop functions. For clarity, this issue is
 being closed and split into two new, separate issues:

 23-017 adding clear()
 23-018 adding pop() functions

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-002
Title: should some STL members return an iterator?
 Also: minor clarification of member insert()
Sections: 23.1.5 through 23.1.8 and 23.2.1 through 23.2.4
Status: closed

Description:

 There are some methods in all the STL containers that currently
 return void. These methods can be used "in a more natural way" for
 certain coding techniques if they return an iterator.

 Also: The current description of the method
 iterator insert(iterator location, const T&)
 does not specify which iterator is returned.

Proposed Resolution:

 If a container method might change the size of the container by
 exactly one, then it should return an iterator that points to the
 item inserted, or "just past" the item removed. (This covers both
 the needed clarification and the proposed change)

 The method listed below should return an iterator providing the
 location of the change called for by the method. These changes
 should be made in parallel on all the containers mentioned in the WP
 sections listed above.
 iterator Container<T>::erase(iterator);

 The push and pop methods should return an iterator because doing so
 keeps the conceptual model consistent. Also note that for containers
 with only a forward iterator, the proposed version of push_back()
 returns information that could be expensive to recover.
 (Sections 2.3.1.5 through 2.3.1.8)
 iterator Container<T>::push_front(const T&) {... return begin();}
 iterator Container<T>::push_back(const T&)
 {... no way to do cheaply unless bidirectional ... return --end()}
 iterator Container<T>::pop_front() { ... return begin(); }
 iterator Container<T>::pop_back() { ... return end(); }

 the following method should return an iterator because doing so
 keeps the conceptual model consistent.
 iterator list<T>::splice(iterator position,
 list<T>& donor, iterator donor_location)

 Note that Container<T>::insert(iterator,const T&) already returns an
 iterator for all classes in the STL.

Discussion:

 << deleted -- see Revision 2 for details >>

Resolution:

 This issue was discussed by the LWG at the Austin meeting.
 The general proposal to add iterator return values to
 various container member functions did not generate enough
 support to be brought before the full committee. Therefore,
 this issue was closed.

 However, it was noted that the description of insert() must
 specify which iterator value is returned. The intent it to
 return an iterator to the element just inserted.

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-003
Title: problems of nomenclature in STL classes
Sections: 23.1.5 through 23.1.8 and 23.2.1 through 23.2.4
Status: closed

Description:

 -- list<type,allocator> has the only method that takes a predicate
 object: remove_if(Predicate). This method's name should be
 changed to "remove."

 -- The STL container classes provide methods to "erase" or "remove"
 data; but the names of those methods are not consistent with
 their semantics across classes.

 -- Section 17.2.2.4.2 refers to "associative containers" These are

 not all associative (in the sense of an association between a key
 and a value). They are containers which internally mediate the
 location of their contained data rather than allowing the user to
 place the data. This request for renaming may be editorial.

Proposed Resolution:

 -- No container class member name contain a trailing "_if," since
 overloading based on the signature of the method is sufficient.

 This will change the WP only for class list
 23.1.7 class declaration; change remove_if to remove
 23.1.7.2 paragraph 8 remains unchanged

 -- Also propose that the following conceptual model be used in
 naming methods which take data out of the container:

 If all the data that in some sense "matches" a key or a predicate
 object is removed, then the name of the method is "remove" parallel
 to list<T>::remove()) of section 23.1.7.2 paragraph 8. By another
 proposal, these methods would also return a size_type instead of
 void.

 If data is erased at an iterator or in the range between two
 iterators, the method is named "erase" parallel to the erase()
 defined in 17.2.2.4.1 table 22. By another proposal, these methods
 would return either a size_type (range) or an iterator "just past"
 the point of erasure (single iterator).

 In summary: methods named erase "just erase right here" but methods
 named remove "search out and destroy."

 This will change the WP in sections:
 17.2.2.4.2 table 25 associative containers change the first
 a.erase(k) to a.remove(k). Note the returned size_type which
 is already in conformance with the other proposal.
 23.2.1, 23.2.2, 23.2.3, 23.2.4:
 rename erase(const key_type&) to remove...

 -- Also propose that section 17.2.2.4.2 be changed to refer to
 classes which are "not externally sequenced" or which are
 "internally sequenced" . This would suggest a parallel change in
 section 17.2.2.4.1 from "sequence" to "externally sequenced". We
 can live with any name which seems suitable to the editor or
 committee; and which does categorize the kind of container without
 linguistic traps.

Discussion:

 << deleted -- see Revision 2 for details >>

Resolution:

 This issue was discussed by the LWG at the Austin meeting.
 None of these changes garnered sufficient support among the LWG
 to be brought before the full committee for a formal vote. So
 this issue was closed.

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-004
Title: should STL classes have fixed comparator semantics?
Section: 17.2.2.4 (table 22), 23.1.5 through 23.2.4
Status: active

Description:

 Table 22 specifies that the semantics of
 operator==(const Container<T> a, const Container<T> b)
 is "a.size() == b.size() && equal(a.begin(), a.end(), b.end())"

 This use of the algorithm equal() forces containers to hold data in
 the same order if they are to be ==. While this is often reasonable,
 it is not always the meaning that is wanted, particularly for data
 that is being used as an unordered (logical, not stl) set.

 Table 22 also specifies that the semantics of
 operator< (const Container<T>, const Container<T>)
 is "lexicographical_compare(a.begin(),a.end(),b.begin(),b.end())"

 As with operator==, this requirement for lexicographic ordering
 among containers, while often useful is not invariably what is
 wanted, particularly when the container is being used as an
 unordered (logical) set.

Proposed Resolution:

 Provide suitable specialized meanings for the various operators by
 providing a traits class for each container. The standard should
 require (in sections 23.1.5 through 23.2.4) that these traits
 classes be specialized as follows:
 list, vector, deque: lexical comparison semantics
 (multi)set, (multi)map: set inclusion semantics

 In section 17.2.2.4 there should be a discussion like this:

 Any container which meets the STL specification must have an
 associated specialization of the container_traits class which
 provides a typedef
 binary_function<const container<T>&, const container<T>&, int) comparitor;
 which may be used to provide the 6 comparison operators on that
 container. A complete description of the container must include a
 description of the comparison semantics provided for that container.
 Table 22 of section 17.2.2.4 would change in boxes defining
 operational semantics of operator==() and operator<() to say
 something like
 "either lexically comparison or set-inclusion comparison,
 depending on the container"

 There needs to be a discussion/definition of
 template <class container, class T> lexical_comparitor;
 and
 template <class container, class T> set_comparitor

 I'm not sure where these go. Chapter 25? lexical_comparitor makes
 use of lexicographical_compare (25.3.8), set_comparitor might make
 use of includes (25.3.5.1) but might not, depending on the container.

 Here is container_traits:

 template <class container, class T> struct container_traits {
 typedef binary_function<const container<T>&, const container<T>&, int>
 comparitor;

 };

 Here is a required (partial) specialization:
 template <list, class T> struct container_traits {
 typedef lexical_comparitor<list,T> comparitor;
 };

Discussion:

 << deleted -- see Revision 2 for details >>

Resolution:

 NOTE: Discussion of this issue was tabled by the LWG in Austing
 pending a discussion of the STL hash table proposal. The hash
 table proposal was not accepted, but the LWG did not have time
 to return to this issue.

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-005
Title: should some STL members return a size_type?
Sections: 23.1.5 through 23.1.8 and 23.2.1 through 23.2.4
Status: closed

Description:
 There are some methods in the STL containers that currently return
 void. These methods can be used "in a more natural way" if they
 return a count of the number of items removed or added. Note similar
 proposal requesting that some methods return iterators.

Proposed Resolution:
 If a container method might change the size of the container by
 an unknown amount, it should return the amount of the change.

 The methods listed below should return a size_type indicating the
 number of items added to or removed from the container. These
 changes should be made in parallel on all the containers mentioned
 in the WP sections listed.

 section 23.1.5 through 23.1.8 and section 23.2.1 through 23.2.4
 size_type Container<T>::erase(iterator start, iterator boundary);

 section 23.1.5 through 23.1.8
 template <class InputIterator>
 size_type Container<T>::insert(iterator location
 InputIterator first, InputIterator boundary);

 section 23.2.1 through 23.2.4
 template <class InputIterator>
 size_type Container<T>::insert(
 inputIterator first, InputIterator boundary);

 section 23.1.5 through 23.1.8
 size_type Container::insert(iterator location, size_type, const T&);

 section 23.2.1 through 23.2.4
 size_type Container::insert(size_type, const T&);

 The methods listed below should return a size_type indicating the

 number of items added to or removed from the container. These
 changes apply only to the class: list<T>

 section 23.1.7 and 23.1.7.2 para 10
 size_type list<T>::merge(list<T>&);

 section 23.1.7 and 23.1.7.2 para 5
 size_type list<T>::splice(iterator position, list<T>&);

 section 23.1.7 and 23.1.7.2 para 7
 size_type list<T>::splice(iterator position,
 iterator start, iterator boundary);

 section 23.1.7 and 23.1.7.2 para 9
 size_type list<T>::unique();

 section 23.1.7 and 23.1.7.2 para 9
 template <class BinaryPredicate>
 size_type list<T>::unique(BinaryPredicate);

 section 23.1.7 and 23.1.7.2 para 8
 size_type list<T>::remove(const T&);

 section 23.1.7 and 23.1.7.2 para 8
 template <class Predicate>
 size_type list<T>::remove_if(Predicate);
 Note: this method's name is the subject of another proposal

Discussion:

 << deleted -- see Revision 2 for details >>

Resolution:

 This issue was discussed by the LWG at the Austin meeting.
 Changing these return types did not result in a consensus
 among the LWG. So this issue was closed.

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-006
Title: naming inconsistencies in bits<T>
Sections: 23.1.1 [lib.template.bits]
Status: closed

Description:

 vector<bool> uses "flip()" to toggle a bit, bits<N> uses
 "toggle()". I asked this question almost 3 years ago, and
 people didn't care much either way. The international folks
 then present mildly favored "toggle". Not wanting to waste time
 on such trivia, and trusting that Alex has as much right to
 speak for international users as anyone, I suggest that we use
 "flip" in place of "toggle" in bits<N> (it occurs in two
 places).

 Likewise, let's rename "length()" to "size()" (if not done
 already), to be in-sync with the rest of STL.

 I have for some time suggested that we rename bits<N> to

 bitset<N>, making it less awkward to talk about ("bits" is not
 a singular noun). This is not a priority, but I would surely
 like to hear some feedback at least once in a row.

 I have also suggested that "to_ushort()" is redundant, since we
 have to_ulong().

Resolution:

 Discussed in the LWG at Austin. All four of these changes
 were discussed, accepted and incorporated into the WP.

Requestor: Chuck Allison <72640.1507@compuserve.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-007
Title: adding vector<bool>::flip that toggles all bits
Sections: 23.1.1 [lib.template.bits]
Status: closed

Description:

 vector<bool> uses flip() only as something one can do with a
 "reference", a surrogate for single-bit access. Is there
 anything wrong with adding a vector<bool>::flip to toggle all
 bits, like bits<N> does?

Resolution:

 Discussed and approved in the LWG at Austin. Adding the member
 function

 void vector<bool>::flip()

 was proposed and accepted into the WP.

Requestor: Chuck Allison <72640.1507@compuserve.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-008
Title: add a nested reference class to bits<T>
Sections: 23.1.1 [lib.template.bits]
Status: closed

Description:

 I propose that we add a nested reference class to bits<N>,
 similar to vector<bool>, to allow for bits<N>::operator[]. To
 be precise, add:

 template<size_t N>
 class bits
 {
 public:

 class reference
 {
 public:
 reference& operator=(bool); // for b[i] = x;
 reference& operator=(const reference&);
 // for b[i] = b[j];
 bool operator~() const; // for ~b[i]
 operator bool(); // for x = b[i];
 reference& flip(); // for b[i].flip();
 };

 reference operator[](size_t); // for b[i]

 // the rest as-is in bits...
 };

 Note no public constructor for reference. I have implemented
 this successfully in Borland C++. Note also that there is
 still no reason for introducing an iterator class for bits<N>.

Resolution:

 Discussed in the LWG at Austin. The proposed change passed a
 LWG straw vote unanimously and was voted into the WP by the
 full committee.

 One new issue arose: that the nested reference classes in
 vector<bool> and bits (now "bitset") should have explicit
 private destructors. See issue 23-016.

Requestor: Chuck Allison <72640.1507@compuserve.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-009
Title: adding a "default value" argument to map/multimap
 constructors
Sections: 23.2.3 [lib.map], 23.2.4 [lib.multimap]
Status: closed

Description:

 As currently defined, when operator[] is applied to a map or
 a multimap and a new entry is inserted into the map as a result,
 the new value is initialized using the default constructor T().
 This is not always desirable - sometimes it is useful to
 specify another default value.

 The USL library solved this problem by providing an alternate
 constructor wherein the user could specify the value to be used
 when new ("empty") entries were automatically inserted into the
 map.

 Such an option could be added to map and multimap in the current
 WP. The analogous map/multimap constructors might look
 something like this:

 map(const T& = T(), const Compare& comp = Compare());

 multimap(const T& = T(), const Compare& comp = Compare());

Resolution:

 Discussed in the LWG at Austin. There was some discussion
 about reversing the order of the T() and Compare() arguments,
 but a LWG straw vote revealed the proposed change as a whole
 lacked sufficient support to bring before the full committee.
 The issue was closed.

Requestor: Larry Podmolik <jlp@chi.andersen.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-010
Title: Should the WP specify requirements for container
 template class T's?
Sections: 23 [lib.containers]
Status: active
Description:

 The current WP does not place explicit requirements (that I
 could find) on class T (the value_type) for container classes.

 It appears that for (most? many? all?) containers, T must
 either have an accessible default constructor, copy
 constructor, operator=, and destructor, or the compiler must be
 able to generate them.

 Where present, similar requirements probably apply to class Key
 and other template arguments throughout the library clauses.

 Implementors need to know the requirements so that they can
 avoid use of class member functions not required to be present
 (or compiler generatable) and accessible.

Proposed Resolution:

 The WP should specify requirements for template class T
 and class Key arguments for containers.

Resolution:

 Discussed in the LWG at Austin. Beman Dawes said he would try
 to write a proposal for the next meeting that would address the
 general issue of requirements for template arguments.

 So: the issue remains open pending further analysis.

Requestor: Beman Dawes <beman@dawes.win.net>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-011
Title: Bits inserters/extractors need updating
Sections: 23.1.1.26 [lib.ext.bt], 23.1.1.27 [lib.ins.bt]
Status: active

Description:

 The bits library's insertion/extraction operators need to be
 updated for the new iostreams

Proposed Resolution:

 Change the operator interfaces from

 istream& operator>>(istream& is,bits<N>& x);
 ostream& operator<<(ostream& os,const bits<N>& x);

 to:

 basic_istream<charT,ios_traits<charT> >&
 operator>>(basic_istream<charT, ios_traits<charT> >& is,
 bits<N>& x);

 basic_ostream<charT,ios_traits<charT> >&
 operator<<(basic_ostream<charT, ios_traits<charT> >& os,
 const bits<N>& x);

Resolution:

 Discussed in the LWG at Austin. P.J. Plauger noted that
 making these kinds of changes required a thorough review
 of all the library sections to determine where these types
 of changes were required, and should not be done in an ad hoc
 fashion. There was also some uncertainty about syntax issues
 and the compiler's ability to deduce all the correct types
 in the general case.

 So: the issue remains open pending further analysis or a more
 detailed proposal.

Requestor: Judy Ward <ward@roguewave.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-012
Title: Templatize bits members that interact with basic_string
Sections: 23.2.1.1 [lib.cons.bits], 23.2.1.13 [lib.bits::to.string]
Status: active

Description:

 The members of bits that take arguments of basic_string must
 be updated to be template members

Proposed Resolution:

 Replace the following two bits signatures:

 bits(const string& str, size_t pos = 0, size_t n = NPOS);

 string to_string() const;

 with:

 template <class charT>
 bits(const basic_string<charT,string_char_traits<charT> >& str,
 size_t pos = 0, size_t n = NPOS);

 template <class charT>
 basic_string<charT,string_char_traits<charT> > to_string() const;

Resolution

 Discussed in the LWG at Austin. Nathan Myers said that the
 string_char_traits<> should not be specified in the function
 declaration, but rather should be an additional template
 parameter that default to the arguments shown in the current
 signatures. Also, the references to size_t and NPOS need
 to be corrected.

 So: the issue remains open pending further analysis.

Requestor: Judy Ward <ward@roguewave.com>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-013
Title: Return values from library class member functions
Sections: 23 [lib.containers]
Status: closed

Description:

 Why do many member functions have void return values rather
 than returning *this? The STL does not seem to follow this
 standard idiom, which is unfortunate as statements like

 sequence.sort().reverse();

 seem to make perfect sense. Has this been looked at / noticed?

Resolution:

 Discussed in the LWG at Austin, but failed to generate
 sufficient support. Straw vote to close this issue passed
 unanimously.

Requestor: Kevlin A P Henney <kevlin@wslint.demon.co.uk>
Owner:
Emails: (none)
Papers: (none)

Work Group: Library
Issue Number: 23-015
Title: reference counted strings and begin()/end()
Sections: 21.1.1.2 [lib.basic.string]
Status: active

Description:

 In Valley Forge, we accepted a version of basic_string<T>
 that was modified to be compatible with STL. One of the

 issues that arose was ensuring that a reference counted
 version of basic_string could be efficiently implemented.

 One suggested implementation prevented structural sharing
 of strings whenever a non-const iterator was allowed to
 escape from the string. This can make innocent-looking
 code like the following inefficient:

 string s;
 string::const_iterator iter = s.begin();
 ...

 The non-const version of begin() gets invoked, so we would
 have to prohibit all future sharing of s, even though we
 don't intent to modify it. To force the return of a
 const iterator involves a messy looking const_cast to a
 reference type.

 So: should we create distinct names for the functions that
 return const iterators?

Resolution:

 Discussed in the LWG at Austin but no consensus was reached.

 So: the issue remains open pending further analysis.

Requestor: Larry Podmolik <jlp@chi.andersen.com>
Owner:
Emails: c++std-lib-2981, c++std-lib-2985
Papers: (none)

Work Group: Library
Issue Number: 23-016
Title: adding explicit private constructors to
 vector<bool>::reference and bitset<N>::reference
Sections: 23.2.1 [lib.template.bitset], 23.2.6 [lib.vector.bool]
Status: active

Description:

 (This issue arose while discussing issue 23-008 in Austin.)

 The nested reference classes in vector<bool> and bitset
 currently do not specify any constructors. During LWG
 discussions in Austin, we agreed that both these nested
 classes should have private constructors so that objects
 of the reference types could not be created in user code.

Proposed Resolution:

 Modify the declarations of vector<bool>::reference and
 bitset<N>::reference to add a private constructor. Also
 add a friend declaration for the corresponding (enclosing)
 container class to allow the containers to create
 instances of the reference types.

Resolution:

Requestor: Larry Podmolik <jlp@chi.andersen.com>
Owner:
Emails: (none)

Papers: (none)

Work Group: Library
Issue Number: 23-017
Title: add clear() to all containers
Sections: 23.2.2 [lib.deque], 23.2.3 [lib.list],
 23.2.5 [lib.vector], 23.2.6 [lib.vector.bool],
 23.3.1 through 23.3.4
Status: active

Description:

 Add a convenience function clear() to all containers in
 Clause 23 that currently have an erase() member function.

Proposed Resolution:

 Add the following member function to all of the containers in
 Clause 23 that current define erase (deque, list, vector,
 vector<bool>, set, multiset, map and multimap):

 void clear();

 whose semantics are

 void clear() {return erase(begin(),end());}

Discussion:

 This is taken directly from an earlier issue (23-001), except
 that the return type is now void (instead of size_type), since
 the proposal to change these return types (see 23-005) was not
 accepted.

Resolution:

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-018
Title: add additional pop() functions to containers
Sections: 23.2.2 [lib.deque], 23.2.3 [lib.list],
 23.2.4.1 [lib.queue], 23.2.4.2 [lib.priority.queue],
 23.2.4.3 [lib.stack], 23.2.5 [lib.vector],
 23.2.6 [lib.vector.bool]
Status: active

Description:

 Add additional pop() members that return the popped value
 as well as modifying the container.

Proposed Resolution:

 Add the following methods to containers that provide the
 equivalent void pop_something():

 --> To 23.2.2 [lib.deque] and 23.2.3 [lib.list]:

 T pop_front_value()
 {T ret = front(); pop_front(); return ret; }

 --> To 23.2.2 [lib.deque], 23.2.3 [lib.list],
 23.2.5 [lib.vector] and 23.2.6 [lib.vector.bool]:

 T pop_back_value()
 {T ret = back(); pop_back(); return ret; }

 --> To 23.2.4.2 [lib.priority.queue] and 23.2.4.3 [lib.stack]:

 T pop_value()
 {T ret = top(); pop(); return ret; }

 --> To 23.2.4.1 [lib.queue]:

 T pop_value()
 {T ret = front(); pop(); return ret; }

Discussion:

 This is one part of an earlier issue (23-001).

Resolution:

Requestor: Frank Griswold: griswolf@roguewave.com
Owner:

Work Group: Library
Issue Number: 23-019
Title: make Allocator argument in containers const refs
Sections: 23.2.2 [lib.deque], 23.2.3 [lib.list],
 23.2.5 [lib.vector], 23.2.6 [lib.vector.bool],
 23.3.1 through 23.3.4
Status: active

Description:

 Default Allocator arguments for containers must be const
 references (vs. the non-const references currently in the
 WP).

Proposed Resolution:

 Change all defaulted Allocator arguments in the Clause 23
 containers from
 Allocator& = Allocator()
 to
 const Allocator& = Allocator()

Discussion:

 The WP currently says that the value returned by a constructor
 type call is an rvalue. A non-const reference argument must
 be initialized by an lvalue.

 Note: the same change applies to basic_string<T> in Clause 21.

Resolution:

Requestor: Judy Ward <ward@roguewave.com>
Owner:

Emails: c++std-lib-3730, c++std-lib-3731, c++std-lib-3732,
 c++std-lib-3733
Papers: (none)

Work Group: Library
Issue Number: 23-020
Title: Stack and Queue interface is limited and unnatural
Sections: 23.2.4
Status: active

Description:

 The current definitions of stack and queue look like:

 template <class Container> class stack { ... };
 template <class Container> class queue { ... };

 To use one requires code like

 stack< deque<T> > myStack;

 This differs sharply from "real" collections:

 vector<T> myVector;

 and leads to confusion. Furthermore, it requires the user to
 specify more than is necessary, by not providing a useful
 default choice of container.

 Worse, it prevents use of collections that use a runtime-
 variable allocator, so such objects could not be placed in
 object databases.

Proposed Resolution:

 1. Simply change each declaration above to read:

 template <class T, class Container = deque<T>,
 Allocator = allocator>
 class stack { ... };

 template <class T, class Container = deque<T>,
 Allocator = allocator>
 class queue { ... };

 and provide each with a constructor:

 explicit stack(const Allocator& = Allocator());
 explicit queue(const Allocator& = Allocator());

 2. If we accept (1), we should also vote on a change to
 priority_queue as follows:

 template <class T, class Comp = less<T>,
 class Container = vector<T>, Allocator = allocator>
 class priority_queue { ... };

 and provide a constructor:

 explicit priority_queue(const Comp& = Comp(),
 const Allocator& = Allocator());

 The description of the constructor simply says that they pass
 along the Allocator argument to the member collection.

Discussion:

 These changes allow usage from the very natural:

 stack<T> myStack;

 to the fully general:

 stack<T,vector<T,ODBAllocator>,ODBAllocator> myStack(myODB);

 In the last line above, a stack has been declared based on a
 vector, using a memory model appropriate to placement in an
 object database.

 The increase in generality comes at very small cost in
 complexity, and with a great improvement in consistency with
 the rest of the library.

 NOTE: Plauger notes the following in c++std-lib-3741 (paraphrased):

 A container fixates on an allocator when you construct
 it -- it's type is even a template parameter. There is
 no mechanism that lets you ``pass along'' an Allocator
 argument to an already constructed container, even if
 you have some assurance that the types of the
 allocators are the same.

Resolution:

Requestor: Nathan Myers <myersn@roguewave.com>
Owner:
Emails: c++std-lib-3735, c++std-lib-3737, c++std-lib-3738,
 c++std-lib-3741, c++std-lib-3743
Papers: (none)
