
Compromise Proposal for class exception
Jerry Schwarz

Greg Colvin
Steve Clamage
Nathan Myers

x3j16-95-0065R1/ WG21 N0665R1

Yesterday, when the library WG discussed Greg Colvin’s latest proposal
(94-0215/N0602) for class exception we were closer to a consensus that
at any recent time. So last night we (Jerry Schwarz, Greg Colvin, Steve
Clamage and Nathan Myers) met to see if we could create a proposal that
we could all support. We reached agreement on the proposal presented
here. This paper provides the rationale for this decision, the various
points of view of the participants and precis of other issues we discussed.
None of us was completely satisfied with the result but we each felt that
our concerns were well enough addressed that we could support this
proposal. One factor that heavily influenced our discussion was that we
should accept the current WP as a guideline rather than starting over from
scratch. Specifically this meant that when we were divided over an issue,
but our concerns were not at the “over my dead body” level, we agreed to
be guided by the working paper.

The first concern was coupling of exception’s to string . This is a
concern that has been expressed repeatedly in discussions of the full
committee, and was addressed by Mike Vilot’s paper 94-0179/N0566 R1.
Although this is a general concern relating to classes derived from
exception, the most critical issue is with regard to the exception’s that
might be thrown by the language support functions. In the library WG
some discussion suggested that this coupling could be decreased by
changing the type of exception::what to take a reference argument.
Although this did seem to help, there were still some doubts about it’s
effectiveness. Instead we propose a change that guarantees the
decoupling. Namely change the return type of exception::what to const
char*.

The second concern was the desire for user code to easily construct,
throw and catch exceptions containing dynamically determined messages.

1

95-0065R1/N0665R1 -- Compromise Exception Proposal

We concluded that this concern could be addressed provided the classes
that users would derive from had a constructor that takes a string. Since
is already true in the working paper, no changes are needed to address this
concern. However, since retaining these in the language support exception
classes would conflict with the decoupling concern, we decided to propose
eliminating these constructors from bad_alloc, bad_cast, and bad_typeid
(also presumably from XUNEXPECTED when that class is defined). We also
propose moving these classes in the hierarchy to be directly derived from
exception. Because of the change to exception::what this achieves a
similar effect to Mike Vilot's proposal, but retains the advantage of the
current WP that all exceptions thrown by the library are derived from
exception.

Greg Colvin has a strong desire that the standard should guarantee that
certain operations constructing and copying exceptions could be performed
without themselves throwing exceptions. Some members of the
committee have expressed reservations that this cannot be implemented
in any class that contains a string. So we propose only that the classes
that don’t require a string have throw clauses added. Specifically we
propose that we explicitly declare the default constructor, the copy
constructor and the assignment operator in exception, bad_alloc,
bad_cast, and bad_typeid with a throw().

It should be noted that the copy constructor and assignment of exception
might be sliced. That is, the destination might end up with a default
message rather than the message it was constructed with. If an
implementation can arrange for the message to be copied within the
constraint that no exception should be thrown, it should be allowed to do
so.

Another concern was voiced by Nathan, who disliked the fact that
messages where limited to NTBS (as opposed to a more general character
type such as wchar_t). Although this proposal does not address this
concern, it is certainly no worse than the WP in this regard.

We also discussed the “mixin” approach to the exception hierarchy that

2

95-0065R1/N0665R1 -- Compromise Exception Proposal

has been advocated on the reflector by John Max Skaller. Although this
approach has certain appealing aspects there was no concrete proposal
before us. We discussed some possibilities but did not reach any firm
conclusion. In particular we discussed the desirability of making all
derivation in the exception hierarchy virtual. We concluded that this
seems reasonable, but there are some potential “gotcha’s” that worried us
and we are not prepared to propose anything in this area.

To summarize, the main changes proposed are:

virtual const char* exception::what()

Language support exception classes derived directly from exception

Prohibiting exception from being thrown for constructing or copying
exception (i.e. base class) or language support exception classes.

The specific proposal for changes to the WP

18.4.2.1 [lib.bad.alloc]

Change the class declaration to

class bad_alloc : public exception {
public:
 bad_alloc(const bad_alloc &) throw();
 bad_alloc& operator=(const bad_alloc&) throw ();

bad_alloc() throw() ;
virtual ~bad_alloc() throw();
virtual const char* what() const throw();

};

[The changes here were to derive directly from exception, add a
declaration of the copy constructor and assignment, add throw clauses and
to change the return type of what]

Add sections to describe the newly declared constructor and assignment.

3

95-0065R1/N0665R1 -- Compromise Exception Proposal

18.4.2.1.? [?]

bad_alloc(const bad_alloc&) throw();

Constructs a bad_alloc. The result of calling what on the newly constructed object is
implementation defined.

18.4.2.1.? [?]

bad_alloc& operator=(const bad_alloc&) throw();

The effect of this operation on the return value of this->what() is implementation defined.

18.4.2.1.? [?]

~bad_alloc() throw();

Destroys the object.

18.4.2.1.2 [lib.cons.bad.alloc]

Change the description to be

Effects: Constructs an object of class bad_alloc.

8.4.2.1.2 [lib.bad.alloc::what]

Change the declaration to

virtual const char* what() const ;

18.5.2.1 [lib.bad.cast, ...], 18.5.2.2 [lib.bad.typeid,...], 18.6.2.1.

These sections are changed to be copies of 18.4.2 except that a) there is a
global substitutions of bad_cast, bad_typeid and XUNEXPECTED for
bad_alloc and b) the sentences describing the purpose of the classes are

4

95-0065R1/N0665R1 -- Compromise Exception Proposal

retained. Specifically in 18.5.2.1: “The class bad_cast defines”
and in 18.5.2.2: “The class bad_typeid defines the type ...”

19.1.1 [lib.exception]

The class is modified to

class exception {
public:

exception() throw() ;
 exception(const exception&) throw
 exception& operator=(const exception&) throw() ;

virtual ~exception() ;
virtual const char* what() const;

};

throw() has been added, an explicit assignment has been added, the return
type of what has been changed, the default constructor has been moved
from protected to public, the exposition only members have been removed.]

19.1.1.1 [lib.exception.cons]

Delete the constructor exception(const string& what_arg).

19.1.1.2 [lib.exception.des]

Effects: Destroys an object of class exception. Does not throw any
exceptions.

I don’t think we can use a throw clause here because of the way
destructors interact with derived classes. That is, I think a throw()
clause would imply that classes derived from exception don’t throw
exceptions and we have explicitly decided not to impose that requirement.

19.1.1.3 [lib.exception::what]

virtual const char* what() const ;

5

95-0065R1/N0665R1 -- Compromise Exception Proposal

Returns: an implementation define NTBS.

6

95-0065R1/N0665R1 -- Compromise Exception Proposal

19.1.1.? [###]

exception& operator=(const exception&) ;

Returns: *this. The result of calling what after an assignment are
implementation defined.

19.1.2 [lib.logic.error]

The declaration becomes

class logic_error : public exception {
public:

logic_error(const string& what_arg);
virtual ~logic_error();
virtual const char* what() ;

};

The declaration of what that was exposition only in the current WP is
explicit in the proposal.

19.1.2.# [###]

const char* what() ;

Returns what_arg.data() where what_arg is the argument used to construct the object.

19.1.3, 19.1.4, 19.1.5, 19.1.6, 19.1.7, 19.1.8, 19.1.9,. 27.4.3.1

Similar changes are made to logic_error, domain_error, invalid_argument,
length_error , out_of_range, runt ime_error, overf low_error and
ios::failure respectively. Namely the what member is declared
explicitly and a definition is provided. No change is made to the
inheritance hierarchy. No change is proposed to the inheritance hierarchy
of these classes.

Although this is a lot of editorial work the functionality of these classes

7

95-0065R1/N0665R1 -- Compromise Exception Proposal

remains the same as in the current WP. You construct them with a string
(they have no default constructor) and access their message with what.

8

