
#X3J16/95-0035,#WG21/N0635

Relaxing the Rules for Namespace::Member

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This note is a response to suggestions to allow N::m to refer to an M that isn’t declared in
N, but is accessible in N because of a using-directive. This notes suggests what I consider
the minimal relaxation of the current rules that allows the desired notational convenience
without adding new syntax or removing existing benefits. As an added benefit, the speci-
fication of the standard library would be simplified. Finally, I briefly discuss an alterna-
tive proposal based on the N::* syntax.

1 The Problem

I have repeatedly been asked to make this work:

namespace A {
int f();

}

using namespace A;

void g()
{

::f(); // call A::f
}

and this

namespace A {
int f();

}

namespace B {
using namespace A;

}

void g()
{

B::f(); // call A::f
}

Under the current rules, this doesn’t work because B::f means ‘‘look for an f declared in B’’ and f isn’t
declared in B.

Consider:



- 2 -

void f(char);

namespace A {
int f(double);

}

using namespace A;

void g()
{

f(1); // error: ambiguous
::f(1);
A::f(1); // clearly not ::f(int)

}

Under the current rules, ::f unambiguously names f(char). Having explicit qualification available for
qualification is a valuable property that I don’t want to lose.

Similarly:

namespace A {
int f(char);

}

namespace B {
using namespace A;
void f(double);

}

void g()
{

using namespace B;
f(1); // error: ambiguous
B::f(1);
A::f(1); // clearly not B::f(int)

}

under the current rules, B::f unambiguously names B::f(double).

2 A Relaxation

However, it appears that we can have both! Consider this suggestion:
(1) As before, N::f(){...} defines an f explicitly declared in N only; using-directives have no

effect on definitions.
(2) If an f is declared in N, N::f refers to that f; using-directives are ignored.
(3) If no f has been declared in N, N::f identifies an f found through a using directive in N exactly as

if f had been used within N.
(4) If the lookup specified in (3) leads to an ambiguity N::f is an ambiguity error.

I will elaborate below, but this ought to convey the central idea.
One could argue that this interpretation is closer to the way B::f always worked for a base class B.
A benefit would be a simplification of the library headers because



- 3 -

namespace std {
int printf(const char* ... );
// ...

}

using namespace std;

int main()
{

::printf("Hello pedantic world\n");
}

would now work. It this relaxation is accepted, I would expect the standard .h headers to be changed to
use using-directives (as originally intended) rather than using-declarations. This would save hundreds of
lines of declarations.

Also, if someone takes

static void f(char);
void f(int);

void g()
{

::f(’a’); // calls f(char)
}

and naively translates it to

namespace { void f(char); }
void f(int);

void g()
{

::f(’a’); // current rules: class f(int)
// relaxed rules: calls f(char)

}

then there would be a change of meaning under the current rules, but not under my suggested new rules.
Some people have worried about the change of meaning implied by the current rules.

People have responded to this proposal with remarks like ‘‘obvius,’’ ‘‘that was what I always meant,’’
and ‘‘I thought that was what it did.’’ I consider that an indicator that the relaxation will not lead to added
teaching problems, but might reduce such problems.

3 Implementation

An obvious implementation appears to be to apply the existing lookup mechanism for a name used within N
when the current resolution of N::f fails to find an f. Unfortunately, I haven’t had a chance to try that
technique, but it seems as straightforward as they come.

4 Details

Allowing N::m to refer to an m not explicitly declared in N raises some questions about ambiguity. The
general answer to those is that ‘‘if m is not explicitly declared in N, m is looked up as if it had been used
within N.’’ This resolves the problem by reducing it to a previously solved one.

Consider



- 4 -

namespace A { int x; }
namespace B { int x; }
namespace C { using namespace A; using namespace B; }

void f()
{

C::x++; // error, ambiguous: A::x or B::x?
}

and

namespace D { using namespace A; int x; }
namespace E { using namespace D; }

void g()
{

E::x++; // error, ambiguous: D::x or A::x?
}

The reason is that is no x declared in E, so we need to see if any x is visible from E. We find both D::x
and A::x so we have an ambiguity error.

In accordance with the rule that a using-directive makes names available in the context in which they
were declared rather than by introducing local aliases, there are no hiding effects based on the order in
which using-directives are encountered.

As usual, overloading can occur, and explicit qualification can be used for explicit resolution. For
example:

namespace A { int f(int); }
namespace B { int f(char); }
namespace C { using namespace A; using namespace B; }

void g()
{

C::f(1); // A::f(int)
using namespace C;
f(1); // A::f(int)
B::f(1); // B::f(char)

}

namespace D { using namespace A; int f(double); }
namespace E { using namespace D; }

void h()
{

E::f(1); // A::f(int)
using namespace E;
f(1); // A::f(int)
B::f(1); // B::f(char)
D::f(1); // D::f(double)

}

5 Suggested WP Text

We really ought to have WP text ready before Austin, but I have run out of time. Any volunteers? Please
email me before starting (in case we have several volunteers).



- 5 -

6 Using N::*

Several people (me included) have stumbled upon the idea of having an operation meaning ‘‘insert using-
declarations for every member of namespace N’’ and all seem to have invented the notation using N::*
for that operation. Tom Penello wrote a proposal along these lines: #?????.

Despite being one of the first (dozen?) to think of this, I dislike the idea and repeated consideration has
strengthened my dislike.

First of all, the notation is (objectively) wrong, and nobody has suggested a better one. In C++, * means
multiply, pointer, or dereference, and X::* is a notation for ‘‘pointer to member.’’ The fact that * means
‘‘match any pattern’’ in popular regular expression languages seems a poor excuse to overload a C++ term
yet again.

The using-directive was designed to avoid errors due to name clashes due to unused names or multiple
uses. For example:

namespace N {
int x;

}

using namespace N;
using namespace N;

doesn’t cause a name clash because no name from N is injected into the global scope. Further,

namespace M {
int x;

}

using namespace N;
using namespace M;

doesn’t cause a clash because no x is used. However,

using N::x;
using M::x;

does cause a clash, as would

using N::*;
using M::*;

provided using X::* is defined in the intuitive way as a shorthand for a using-declaration for every
member of X.

Even

using N::*;
using N::*;

would cause a clash.
In fact, this is an example of a deliberate philosophical difference between using-declarations and

using-directives. A using-declaration declares a local alias that behaves exactly like other local declara-
tions as far as overloading, name clashes, etc. goes, whereas a using-directive makes names accessible from
the context in which they were declared.

In particular, consider:



- 6 -

namespace M {
void f(bool);

}

namespace N {

void f(int);

void g()
{

using namespace M;
f(1); // calls N::f

}
}

Nothing in namespace M can hijack the call f(1). Replacing, the using-directive by using M::*; would
give presedence to names from M and make hijacking an everyday occurrence.

7 Acknowledgements

Many people contributed. In particular, I borrowed some of the examples in the ‘‘details’’ section from one
of John Skaller’s reflector messages.


