
Doc No:X3J16/94-0179 WG21/N0566 R1
Date: 28 Feb 95
Project: Programming Language C++
Ref. Doc: X3J16/94-0179 WG21/N0566
Reply to: Michael J. Vilot

ObjectCraft, Inc.
7 Colby Ct., suite #4–321

Bedford NH USA 03110–6427
mjv@objects.mv.com

Language Support Exceptions

1. Introduction

This proposal was discussed at the last meeting, but did not generate sufficient interest to recommend it
to X3J16/WG21. However, several comments received during the CD registration ballot indicate a need
to reconsider it.

This proposal recommends changes to the specification for the exceptions bad_alloc, bad_cast,
bad_typeid, and bad_exception,1 described in Clause 18, Language support library.

2. Discussion

The essential change is to separate these three exceptions from the class hierarchy described in Clause
19, Diagnostics library. One of the main concerns, discussed on the c++std-lib reflector last year, is
the dependency on other portions of the C++ Standard Library, and the resulting overhead associated
with each exception instance. A secondary concern was the apparent need for string-related dynamic
memory allocation, even in low-memory (i.e. bad_alloc-provoking) situations.

CD Registration Ballot comments echoed these concerns:

Australia: “The exception class hierarchy should use virtual inheritance.” (R-13)2

France: “The general structure of the libraries shall be revised. In particular, it is necessary to
DECOUPLE libraries. In the current proposal, there are unacceptable cross and forward
references between libraries (and sections).” (R-26)

Germany: “As specified in the document the class exception may itself throw exceptions.
Thus exceptions can be thrown while using an exception, which might result in infinite loops
or unbounded recursions. This problem has to be resolved.” (R-40)

Netherlands: [The C++ Standard] “should contain the definition of the language itself and a
minimal set of libraries (effectively only the language support libraries …).” (R-44)

New Zealand: “have a library section which contains only the minimum needed for
conformance testing.” “Once again, it is necessary to ask ‘What about the implementation for
a 4-bit micro-controller?’” (R-53)

The first comment increases the complexity and overhead of exceptions derived from class
exception. The other four comments argue for less complexity and overhead, especially in the
language support exceptions.

This proposal addresses these concerns by eliminating the dependencies on both the string
component and the exception/runtime_error exception classes. It provides the simplest, least-
overhead exception instances. These exceptions can be treated as fixed-size, value-oriented classes that
do not even require virtual tables. The bad_alloc exception can be implemented for the special case
of low-memory conditions.

1 Formerly Xunexpected.
2 These reference numbers correspond to those used by Sam Harbison in Message c++std-admin-87.

X3J16/94-0179 WG21/N0566

2

3. Proposal

Affects Clause: 18.

Change the specifications of bad_alloc, bad_cast, bad_typeid and bad_exception to the
following:

18.4.2.1 Class bad_alloc [lib.bad.alloc]

namespace std {
 class bad_alloc {
 public:
 bad_alloc();
 ~bad_alloc();
 const char* const what() const;
 private:
 // unspecified
 };
}

The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report
a failure to allocate storage (5.3.4, 18.4.2.2).

18.4.2.1.1 bad_alloc constructor

bad_alloc();

Effects: Constructs an object of class bad_alloc.
Notes: Shall not require the use of dynamic storage allocation (3.7.3).3

18.4.2.1.2 bad_alloc::what

const char* const what() const;

Returns: An implementation-defined value.4
Notes: Shall not require the use of dynamic storage allocation (3.7.3).

18.5.2.1 Class bad_cast [lib.bad.cast]

namespace std {
 class bad_cast {
 public:
 bad_cast();
 ~bad_cast();
 const char* const what() const;
 private:
 // unspecified
 };
}

The class bad_cast defines the type of objects thrown as exceptions by the implementation to report
the execution of an invalid dynamic-cast expression (5.2.6).

3 A plausible implementation would be a statically allocated string literal (2.9.4).
4 The value could be a multi-byte encoding that can be converted to a wide-character string (21.2).

X3J16/94-0179 WG21/N0566

3

18.5.2.1.1 bad_cast constructor

bad_cast();

Effects: Constructs an object of class bad_cast.

18.5.2.1.2 bad_cast::what

const char* const what() const;

Returns: An implementation-defined value.5

18.5.2.2 Class bad_typeid [lib.bad.typeid]

namespace std {
 class bad_typeid {
 public:
 bad_typeid();
 ~bad_typeid();
 const char* const what() const;
 private:
 // unspecified
 };
}

The class bad_typeid defines the type of objects thrown as exceptions by the implementation to
report a null pointer in a type identification expression (5.2.7).

18.5.2.2.1 bad_typeid constructor

bad_typeid();

Effects: Constructs an object of class bad_typeid.

18.5.2.2.2 bad_typeid::what

const char* const what() const;

Returns: An implementation-defined value.6

18.6.2.2 Class bad_exception [lib.bad.exception]

namespace std {
 class bad_exception {
 public:
 bad_exception();
 ~bad_exception();
 const char* const what() const;
 private:
 // unspecified
 };
}

The class bad_exception defines the type of objects thrown as exceptions by the implementation to
report a violation of an exception-specification (15.5.2).

5 The value could be a multi-byte encoding that can be converted to a wide-character string (21.2).
6 The value could be a multi-byte encoding that can be converted to a wide-character string (21.2).

X3J16/94-0179 WG21/N0566

4

18.6.2.2.1 bad_exception constructor

bad_exception();

Effects: Constructs an object of class bad_exception.

18.6.2.2.2 bad_exception::what

const char* const what() const;

Returns: An implementation-defined value.7

4. Other Issues

One of the justifications for the exception-based hierarchy in Clause 19 was to allow a C++ program
to catch all exceptions:

int main()
{
 try {
 // do some work
 } catch (std::exception& err) {
 // ...
 cerr << err.what() << endl;
 return 1;
 }
 return 0;
}

The idea here is to avoid the difficulties of §15.3, ¶7 and §18.6.1. Together, these subclauses define the
behavior of a C++ program that fails to catch an exception.8

Unfortunately, this does not work. In general, there is no guarantee that all exceptions will be
derived from a common base class. Therefore, a conscientious C++ program will have to use a “catch-
all” handler:

int main()
{
 try {
 // do some work
 } catch (...) {
 cerr << “exception!” << endl;
 return 1;
 }
 return 0;
}

It’s unfortunate that the stack unwinding in §15.3 is left implementation-defined. If a call to
terminate() always unwound the stack, the program could catch all exceptions another way:

int main()
{
 set_terminate(my_function);
 // do some work
 return 0;
}

7 The value could be a multi-byte encoding that can be converted to a wide-character string (21.2).
8 §15.3 says an uncaught exception results in a call to terminate(). §18.6.1 says the default behavior of terminate()
is exit(). §15.3 also says that whether the stack is unwound (and automatic objects destroyed) is implementation-defined.

