
ANSI X3J16/94-0168, ISO WG21/N0555

Exception Safe Smart Pointers

Gregory Colvin
Information Management Research

gregor@netcom.com

In C++ it is difficult to ensure that objects with dynamic storage duration are destroyed in a timely
fashion. In the face of exceptions this perennial problem becomes even more difficult. The only proven
and complete solution is garbage collection, which we have chosen not to specify in this standard. This
proposal specifies two smart pointer templates as incomplete, but perhaps still useful, alternatives.

The template auto_ptr

John Skaller, Steve Rumbsy, Mark Terribile, and others have suggested similar templates whose purpose
is to declare an auto object that simply holds onto a pointer obtained via new and deletes the pointer when
it goes out of scope.

Interface

template<class X> class auto_ptr {
   auto_ptr(auto_ptr&);
   void operator=(auto_ptr&);
public:
   auto_ptr(X* p=0);
   ~auto_ptr();
   operator X*() const;
   X* operator->() const;
   X* release();
   X* reset(X* p);
};

Semantics

Expression Precondition Value Postcondition
auto_ptr<X> a(p) p points to an object of class X obtained

via a new expression.
(X*)a == p

~a a is an auto_ptr<X>. delete (X*)a
a->m a is an auto_ptr<X>,

m is a member of X.
((X*)a)->m

a.release() a is an auto_ptr<X>. (X*)a (X*)a == 0
a.reset(p) a is an auto_ptr<X>,

 p points to an object of class X allocated
by a new X  expression.

(X*)a (X*)a == p

Discussion

The main insecurities of this class are the ease with which its preconditions may be violated, and the
danger of using a pointer held by an auto_ptr after it is deleted. The copy constructor and assignment
operator must be private to prevent premature deletions of a held pointer. Note that X* above should
probably be X*const, except that in practice non-modifiable pointers are rarely so declared.

This class does not handle automatic destruction of arrays. The dynarray template can be used instead.

1



ANSI X3J16/94-0168, ISO WG21/N0555

The template counted_ptr

A reference counted smart pointer can provide a limited form of garbage collection.

Interface

template<class X> class counted_ptr {
public:
   counted_ptr(X* p=0);
   counted_ptr(const counted_ptr& r);
   template<class T> counted_ptr(counted_ptr<T>& r) ;
   ~counted_ptr();
   counted_ptr& operator=(const counted_ptr& r);
   operator X*() const;
   X* operator->() const;
   template<class T> operator counted_ptr<T>() const;
   template<class T> counted_ptr<T>dyn_cast() const;
};

Semantics

Expression Precondition Value Postcondition
counted_ptr<X> c(p) p points to an object of

class X allocated by a
new X expression.

(X*)c == p

counted_ptr<X> c(d) d is an counted_ptr<T>
where T is X or a class
derived from X.

(X*)c == (X*)d

~c c is a counted_ptr<X>. delete (X*)c if and only if there
exists no other counted_ptr d such
that (X*)c == (X*)d.dyn_cast<X>().

c = d c is a counted_ptr<X>,
d is an counted_ptr<T>,
where T is X or a class
derived from X.

reference to
c

(X*)c == (X*)d

c->m c is an counted_ptr<X>,
m is a member of X.

((X*)c)->m

d.dyn_cast<X>() d is a counted_ptr<Y>. counted_ptr<X>(dynamic_cast<X>((Y*)d))

Discussion

As with auto_ptr, the main insecurity of this template is the ease with which its preconditions may be
violated. The temptation to leak pointers is mitigated by the working copy constructor and assignment
operator, but the danger remains. Note also that cycles of counted_ptr will not be deleted. Given the
known performance problems of reference counting an incremental mark and sweep collector might be a
better implementation of this template. However, this specification places two large hurdles in the way of
such an implementation: first, any operator new can be used to initialize a counted_ptr, so that the
collector would have no opportunity to set up object headers and type maps; second, the postcondition for
~counted_ptr() forbids collection of cycles and requires immediate deletion. To allow for alternative
implementations we would need to specify an appropriate placement new (e.g. new (counted_allocator
<T>()) ) and a weaker finalization semantics.

This template does not provide for reference counting arrays. I suspect that a counted iterator would be
needed, something like the one being discussed with regards to making basic_string an STL container. I
also suspect that the existing container specification would need changing to support such iterators.

2


