
ANSI X3J16/94-0167, ISO WG21/N0554

Exception Safe Memory Management

Gregory Colvin
Information Management Research

gregor@netcom.com

Traditionally, C++ memory management did not throw exceptions. While the default operator new
functions could not allocate memory they called the function installed by set_new_handler() if any, or else
returned 0. By default there was no new-handler.

In a break with existing practice, we have changed the semantics of the default operator new functions by
specifying a default new-handler which throws an alloc exception. If no new-handler is installed (that is if
set_new_handler(0) is called) the results are undefined, although we note that this might reasonably
restore the traditional behavior. This change breaks existing code, leaves undefined what used to be a well
defined behavior, and makes it difficult to write new code which is exception safe. Where we used to write

void *p= new T;
if (p == 0)

handle_out_of_memory();

we must now, in defense against both a possibly missing new-handler and a possible exception, write
try {
 void *p= new T;
 if (p == 0)
 handle_out_of_memory();
} catch (alloc) {
 handle_out_of_memory();
}

To further complicate matters, the relationship of the STL allocator template to the operator new
functions, and whether STL allocators are required to throw exceptions, is currently unspecified.

The following proposal is based liberally on ideas taken from Fergus Henderson, Nathan Meyers, Richard
Minner, John Skaller, and others. I have attempted to specify a memory management facility which
provides both the new and the old semantics, can be replaced easily and customized flexibly by advanced
users, and can be used simply and safely by any user. Under this proposal the user who simply invokes
new expecting a possible alloc exception need change nothing, the user who wishes to retain the
traditional semantics can invoke new(nothrow()), and the user who wishes to globally replace the default
allocation and deallocation functions can still do so.

Interface

void (*set_new_handler(void (*handler)()))();
bool new_handler();

void* allocate(size_t) throw();
void deallocate(void*) throw();

void* operator new(size_t) throw(alloc);
void* operator new[](size_t) throw(alloc);

void operator delete(void*) throw();
void operator delete[](void*) throw();

class nothrow {};
void* operator new(size_t,const nothrow&) throw();
void* operator new[](size_t,const nothrow&) throw();

template<class X> void* operator new(size_t,const X&) throw(X);
template<class X> void* operator new[](size_t,const X&) throw(X);

1

ANSI X3J16/94-0167, ISO WG21/N0554

Semantics

The function
void (*set_new_handler(void (*handler)()))();

sets the current new-handler to handler, returning the previous new-handler. By default there is no new-
handler, so the call set_new_handler(0) restores the default state of the new-handler. The function

bool new_handler();

calls the current new-handler if any and returns true, or else returns false. It is a convenience for writing
allocation functions, which would otherwise have to call set_new_handler() once to get the current
handler, then call it again to restore the current handler.

The default memory allocation function is
void* allocate(size_t) throw();

which returns a pointer to the requested memory, if possible. While memory is unavailable it calls the
current new-handler if any, or else returns 0, just like the traditional operator new.

The default memory invalidation function is
void deallocate(void*) throw();

which takes as a parameter either 0 or a value returned by allocate().

The default operator new functions obtain memory by calling allocate(), and the default operator delete
functions invalidate memory by calling deallocate(). The default STL allocator also obtains and
invalidates memory using allocate() and deallocate(), and throws alloc if memory cannot be obtained.
Thus a user can still replace all default memory management by replacing just two functions.

The default functions
void* operator new(size_t n) throw(alloc);
void* operator new[](size_t n) throw(alloc);

throw an alloc exception when allocate(n) returns 0. Note that as a transition aid an implementation may
define an extension to cause these functions to return 0 to report memory exhaustion, as is traditional.

The default functions
void operator delete(void* p) throw();
void operator delete[](void* p) throw();

call deallocate(p) to invalidate memory obtained from allocate() by the corresponding operator new.

A empty class is provided to serve as a parameter to two default functions
class nothrow {};
void* operator new(size_t n,const nothrow&) throw();
void* operator new[](size_t n,const nothrow&) throw();

which return 0 when allocate(n) returns 0. Thus calls like new(nothrow()) T() and new(nothrow()) T[n]
can be used to obtain memory without risking an exception throw, as is traditional.

The function templates
template<class X> void* operator new(size_t n,const X& x) throw(X);
template<class X> void* operator new[](size_t n,const X& x) throw(X);

obtain memory by calling allocate(n) and throw the exception x if it returns 0. The class X must be
derived from exception. One use for these templates is to throw an exception whose message reports the
actual location where new was invoked, as opposed to just a location within new.

Late Breaking Alternative

If Nathan Meyer's proposal (X3J16/94-0161, WG21/N0548) is accepted then I would propose that class
nothrow be an allocator, and that the nothrow placement new functions and the exception function
templates be subsumed by the allocator placement new functions:

void* operator new(size_t,allocator&);
void* operator new[](size_t,allocator&);

2

