
WG21/N0403 CV-Qualifiers and Reference Types X3J16/94-0016

- 1 -

CV-Qualifiers and Reference Types

Doc No: X3J16/94-0016
WG21/N0403

Date: January 21, 1994
Project: Programming Language C++

Reply-To: Neal M Gafter
gafter@mri.com

1 Introduction
int a;
int &volatile x = a;
int &const y = a;

(1) The paper X3J16/93-0135 = WG21/N0342 (section 7) proposes to ban thevolatile  qualifier on refer-
ence types, arguing that it would be difficult to make sense of the resulting semantics. Further discussion in
San Jose revealed a similar sentiment forconst -qualified reference types. I argue that both should be
allowed (as per the current WP).

2 volatile -qualified references

2.1 The definition ofvolatile

(1) My best argument for allowing thevolatile  qualifier on reference types is the following definition, from
the WP (3.6.3 CV-qualifiers)

There are twocv-qualifiers, const  andvolatile . When applied to an object,const
means the program may not change the object, andvolatile  has an implementation-
defined meaning.

(2) Why should we restrict the contexts in which implementations may choose to provide semantics forvola-
tile ?

2.2 Whenvolatile -qualified references might make sense

(1) Consider the following example:

union {
void *p;
int &volatile r;

}

(2) Thevolatile  qualifier is used here to give this implementation a hint that it shouldn’t cache the address
of the referenced object. Why not allow an implementation to support this?

2.3 Orthogonality

(1) Shouldn’tconst  andvolatile  be either both allowed or both banned?



WG21/N0403 CV-Qualifiers and Reference Types X3J16/94-0016

- 2 -

3 const -qualified references

3.1 Innocent introduction of const -qualified references

(1) The following example shows that templates can sometimes causeconst -qualified references to be intro-
duced. Disallowingconst -qualified references in the language forces the template class to be rewritten just
to support the use of reference types.

template<class T> class C {
const T a;

};
typedef int &intr;
C<intr> x;

(2) Notice that“C<intr>::a”  is of type“int & const” , so this whole program would be ill-formed if
const -qualified references were disallowed. Where did the poor user go wrong?

(3) Nowhere, I claim.

3.2 Possible extension

(1) Why should a user want toconst -qualify a reference? After all, the reference can only be initialized once
anyway; specifyingconst  is therefore redundant.

(2) Allowing const -qualified references certainly harms nothing. But it proves meaningful if we (or some
implementation) extends the language to support re-binding references:

int x, y;
int &r = x; // bind r to x
r := y; // rebind r to y
int & const s = x; // bind s to x
s := y; // error: can’t rebind a const reference

(3) I’m certainly not proposing this extension. But the idea of this extension shows that allowingconst -quali-
fied references makes the language more orthogonal, while costing nothing.


