Accredited Standard Committee! Doc. No: X3]16/92-0056
X3, INFORMATION PROCESSING SYSTEMS WG21/N0133
Date: June 1, 1992
Project: Programming Language C++
Ref Doc: X3J16/91-0067
Reply To: Bill Gibbons
Taligent Inc.
10725 N. De Anza Blvd.
Cupertino, CA 95014
bgibbons@taligent.com

Proposal for Compile Time Constants in Class Scope
Bill Gibbons and David Goldsmith

This document is a revision of X3]16/91-0067 with
additional examples, including problems caused by the
absence of this feature; and additional details about
semantics and implementation. The document number
has been changed to accommodate WG21 numbering.

The Problem

The class scoping features of C++ are very helpful in maintaining large projects, because they allow you to
keep most names out of the global namespace. Compile time constants are important for parametrizing
constant values which might change, such as array bounds.

However, compile time constants are currently not allowed in class scope:

class Foo (
static const int maxSize = 500; // illegal
char localBuffer(maxSize]; // illegal
}i

It’s possible to declare a static const data member and initialize it elsewhere. This is a compile time con-
stant, but it cannot be used within the class declaration (because the initialization appears after the class
declaration). The only alternative is to declare such a constant in global scope.

There is a workaround: a similar effect can be had by declaring an appropriate enumeration in class scope:

class Foo { ‘é;i;(r~:§ wuulebfyzf/
emum (maxSize = 500}; ,{,‘,éf ,
}: / a\c

This works, but is highly inelegant. The constant is not an integral type; €ither. What’s more, enumerations
are not guaranteed to be able to hold the largest integral types they may not be able to hold the same range
of values as a long.?

1. Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First St. NW, Suite 500, Washington, DC 20001

2. §7.2, Enumeration Declarations: "The value of an enumerator must
be an int or a value that can be promoted to an int by integral promotions (§4.1).”

Document X3]16/92-0056, WG21/N0133 Page 1

class Foo {
enum (maxSize = 1000000}; // may not be legal
}i

This makes it impossible to write such declarations in a portable fashion.

Use of an enumerator to represent what is conceptually an unsigned integral type can lead to some

surprises. There are places in the language where the promotion of an enumerator to int is not sufficient.
For example:

void set_delay(unsigned int); // delay time
void set_delay(char); // unit code ('h‘', 'm', or ‘s‘')

class Timer {

enum {initial delay = 10 }; // initial delay in seconds
Timer() (

get_delay(initial delay):; // fails: two standard converaions
set_delay('s‘);
}:
}:

This fails because the set_delay functions are written assuming all delay times will be unsigned, yet there
is no way to put an initialized unsigned constant into the class. The enumerator promotes to int, and the
standard conversions from int to unsigned int and int to char are equally valid.

Another example:
template<unsigned count> class Flags (... };: // cheap "set" class

class Sparse U (

enum { size = 100 }; // size of sparse array
T ulsize+l)]; // includes sentinel
Flags<size> exists; // whether elament exista <+ DOES NOT WCRK »»

}:

The class template instantiation Plags<size> does not work because size is an enumerator and template
arguments must match exactly.

Of course, the examples could have been written as set_delay((unsigned) initial_delay) and

Flags<(unsigned)size>, but this means that the enumeration hack has implications not just at the
declaration site but also at each use of the enumerator. If the declaration and use are not adjacent this may
be a maintenance probiem.

Proposal

We propose that class-scope initialization of static const integral data members be made legal. The file
scope definition of the static member would still be required, but the initialization could be placed either in
the class or in the file scope definition. For example:

Page 2 Document X3]16/92-0056, WG21/N0133

class Poo { // New form
static const int maxPath = 500; // legal

char name (maxPath]; // legal
void £() (char file([maxPath]; } // legal
void g();
}:
const int Foo::maxPath; // required; must not have initializer

void Poo::g() (char file(maxPath]; } // legal

clags Bar { // Existing form (still valid)
gtatic const int maxPath;
char name (maxPath]; // illegal
void £() (char file[maxPath]; } // illegal
void g();
}:
const int Bar::maxPath = 500; // required; must have initializer

void Bar::g() (char file[maxPath]; } // legal

Why require the file scope definition? Because some implementations will not be able to create a unique in-
stance of the static member unless there is a unique file scope definition. This problem does not occur with

(non-class-member) compile time constants today; if they are declared at file scope, they have internal link-

age by default.

Formally, we propose the following addition to the draft (suitably edited) in § 9.4/5: “A const static data
member with an integral type must be initialized either in the class declaration (using a constant expression
for the initializer) or in the file scope definition of the member. The file scope definition is required even
when the member is initialized in the class declaration.”

Grammar Changes

The existing definition of member-declarator would have to change to accommodate the initializer. The sim-
plest change would be:

old: member-declarator:
declarator pure-specifier .,
identifier,, : constant-expression

pure-specifier:
new: member-declarator:

init-declarator
identifier,, : constant-expression

3. §7.1.6, Type Specifiers: “Unless explicitly declared extern, a const object does not have external linkage and
must be initialized.”

Document X3J16/92-0056, WG21/N0133 Page 3

This makes initializers for member functions legal in the grammar, but we already have initializers for non-
member functions in the grammar (but not the language).

Initializer S .

Since class declarations are typically put in header files and included many times, the initialization
expression will be compiled in different translation units. The names used in the initializer might have
different declarations in different translation units, so the constant would not have the same value.

This problem already occurs with default arguments in member function declarations. The solution is the
same, the One Definition Rule: the names in the initializer must bind to the “same” declarations in each
translation unit. For example:

First T lation Uni S {T lation Uni
const int x = 5; const int x = §;
--=- from include file ---- ---=- fram include file ----
class T { claas T {
void foo(int value = x); void foo(int value = x);
static const int y = x; static const int y = Xx;

}: }:

Both the default argument and the const member initializer violate the One Definition Rule.

Static members can be initialized today, and must act as compile time constants after they are initialized.

The additional implementation work to allow the initializer to appear in the class instead of in the file scope
definition is minimal.

Under the new name lookup rules for classes, the initializer would appear to be in the same category as
inline function bodies, constructor initializer lists, and default arguments. These constructs can have
forward references (never actually called that) to members declared later in the class, including types.

But initialized const members could be used to build types in member declarations, so their values must be
known immediately. The initializers should not be grouped with inline function bodies, constructor
,)’ initializer lists and default arguments; rather, the semantics of name lookup in initializers should be the
S 2 same as in member declarations.

y'ﬁ Class-scope initialized constants have been implemented in G++ and in a compiler being developed at
Tahgent There were no surprises in the Taligent implementation; it went quite well.

&J Mo ,W,///Z; medier AL

k"

The file scope definition could be eliminated if static const members initialized in the class had “internal .
linkage” (suggested by John Armstrong). Then each compilation unit would have its own copy of the con-
stant; usually it would not be allocated space, since the main purpose is to get the value at compile time.

Page 4 Document X3J16/92-0056, WG21/N0133

Variation; All Static Data Members

The proposal could be extended to apply to all static data members. For integral const members initialized
with a constant expression, the value of the member would be available immediately just as with non-
members. For other members, the change would just affect the location of the initializer: in the class or in
the file-scope definition.

Putting the initializer in the class would make it much easier for a reader of the class to find the initializer.
The file-scope definition would be required only to allocate space; there would never be a need to locate the
definition when trying to understand the class.

To implement this variation, a compiler would need to save the initializer expression just as default
argument expressions are saved today. The expression would be used when the file-scope definition was
seen, just as default arguments are used when an appropriate call is seen. The impact on compiler

complexity is probably minimal. —

Although it is useful and easy to implement, we do not recommend this variation be adopted 4t this time.

Variation: All Data Members %%/

There are some advantages to allowing initializers even for non-static members. The initializers would be
used as default member initializers by the constructors. This lets the author of the class write the member
initializer with the member declaration, instead of in the constructor definition which might be located in a
different file. (This use was suggested by Martin O'Riordan.)

Again, this is a matter of convenience and readability rather than functionality. But removing restrictions
on initializers makes the language more consistent.

Implementing this variation would require copying the non-static initializers from the member declarations
to the constructor initializer lists. Since these lists cannot be processed until the end of the class (due to the
new name lookup rules), there should be no additional interactions.

Although it is useful and easy to implement, we do not recommend this variation be adoptéd at this time. >
Summary N ke ? orlor o el ol

Adding class-scope initialized const members to the language would remedy a deficiency in the use of
name scoping, and is consistent with the semantics of static members and compile time constants as de-

fined today. The new construct would simplify class library implementation. The semantics and imple-
mentation are both simple and obvious.

The workaround using enumerations is counterintuitive and confusing, especially to a novice; and it
requires changes both at the point of declaration and the point of use. If we look at the combination of the
language and the idioms and folklore needed to use it, this change might actually reduce the overall com-
plexity.

Document X3J16/92-0056, WG21/N0133 Page 5

