WG14 N9O7

Proposals for Extensions for the programming language C
to support embedded processors

Willem Wakker
ACE Consulting bv
Version 1.2, March 2000

Contents
R [011 (0 Yo [1 o3 1[0 o NNV TSRO 2

1.1 Why are extensions of the C language to support embedded processors necessary?.......... z
1.2 ADOUL thiS dOCUMENTo e e e e s s 3.

1.3 Preciseness/level of the SPeCifiCatioNueeiiiiiiii s 3

1.4 Discussion of various approaches to language extenSioNccceeueiviiiiiiiiiiinnnee e e 4

P b = To I o 0T] B0 8/ 1T 5

2.1 Fixed point types and values: an intuitive approach ... 5

2.2 Fixed point datatypes, based on LID (ISO/IEC 11404)uuuuiiiiiiiieeeeeeeieeeeeeeeeiiiii s 9

2.3 SALUMALION ...ttt s e e e e e e e e et e et et ettt bbb nn s —— 10

2.4 Usual arithmetic CONVErSioNS, tYPEe CASES.ccviiiii it 11
2.4.1 Mixing fixed point types with different precisSion...............oooeviiiiiiiiii s 11
2.4.2 Mixing fixed point and INtEQEI tYPES.....cooe e i 12
2.4.3 Mixing fixed point and floating POINt tYPESuuueiiiiiiie e 12
2.4.4 Rounding modes, rounding CONTIOL..........ooiiiiiiiiiiiiiie e 12

2.5 The semantics of shift and other operators on fixed point values...........ccccccovvviiiiiiiinnnnn. 12

2.6 The fixed PoINt COMPIEX TYPC.. .ot e e e e e e e e e e eeeeeeannnes 12

2.7 Fixed POINt CONSTANTS......ouiiiiiiiiiiee ettt e e e e e e e e e e e e e ee e e e e s 12....

2.8 Format conversion Of fixed POINt tYPES.......uuuuuuiiiiiii e eeeeeeeees 12

3. MemMOrY QUANTIEIS ...t e e e e e e e e e e meeenennnns 12
A, CIrCUIAr DUTEIS ... e e e e e e e et e b e e e e e eeennnas 13

5. Summary of issues, raised in thiS dOCUMENTuuuuiiiiiiiiieie e 13

1. Introduction

1.1 Why are extensions of the C language to support embedded processors necessary?

In the fast growing market of embedded systems there is an increasing need to write
application programs in a high-level language such as C. Basically there are two reasons for
this trend: programs for embedded systems get more complex (and hence are difficult to
maintain in assembly language) and the different types of embedded systems processors have
a decreasing lifespan (which implies more frequent re-adapting of the applications to the new
instruction set). The code re-usability achieved by C-level programming is considered to be a
major step forward in addressing these issues.

Various technical areas have been identified where functionality offered by processors (such
as DSPs) that are used in embedded systems cannot easily be exploited by applications
written in C. Examples are fixed-point operations, usage of different memory spaces, low
level 1/0O operations and others. The current proposal addresses only a few of these technical
areas.

Embedded processors are often used to analyse analogue signals and process these signals by
applying filtering algorithms to the data received. Typical applications can be found in all
wireless devices. The common datatype used in filtering algorithms is the fixed point
datatype, and in order to achieve the necessary speed, the embedded processors are often
equipped with special hardware to support that datatype. Standard C does not provide
support the fixed point arithmetic operations, currently leaving programmers with no option
but to hand-craft most of their algorithms in assembler. To overcome this problem, it is
proposed to add a fixed point datatype to the language, definable in a range of precision and
saturation options. In this manner, fixed point data is supported as easily as integer and
floating point data throughout the compiler, including the critical optimisers leading to highly
efficient code.

Typical for the mentioned filtering algorithms is the usage of polynomials whereby data from
one source (inputvalues) is multiplied by coefficients coming from another source (memory).
Ensuring the simultaneous flow of data and coefficient data to the multiplier/accumulator of
processors designed for FIR filtering, for example, is critical to their operation. In order to
allow the programmer to declare the memory space from which a specific data object must be
fetched, this proposal suggests to support the multiple memory spaces of dual Harvard
architectures DSP processors. As a result, optimising compilers can utilise the ability of these
processors to read data from two separate memories in a single cycle to maximise execution
speed.

Another feature of many DSP algorithms, including FIR filters and FFTs, is that they
frequently use the same block of data over and over again, working from the start of the block
to the end and then looping back to the beginning. Although the optimum way of achieving
this is to create a circular buffer, such buffers are not easily defined in standard C programs.
This proposal therefore includes a language extension that allows the size and memory space

2

of circular buffers to be defined so that they can be easily generated during program
compilation.

1.2 About this document

This document is written to provide a basis for discussion in WG14 on the development of
the NP on C extensions for embedded processor support. It is intended to provide the
background and rationale for choices made, as well as for the possibilities rejected. It should
also serve as the basis for the future Rationale document that is to be produced under the
same NP. Although (obviously) proposals will be presented to augment the C language, the
actual definitions of new syntax and semantics will be specified in the Technical Report to be
produced as main topic of the NP.

The main part of this (version of this) document will be the discussion of the background of
fixed-point datatypes, and the ways in which these datatypes can be incorporated in the C
typesystem. Both the C aspects (type specifiers, type conversions, constant definitions and
the relationship with the standard C datatypes) as well as typical fixed-point arithmetic related
issues will be addressed. Where possible, issues that arise from the fixed point arithmetic
(like saturation) will be formulated in a general way so that they can be applied to non fixed-
point arithmetic as well. Although embedded processors typically work with binary (radix=2)
fixed-point datatypes, the inclusion of decimal (radix=10) fixed-point datatypes or the
inclusion of a generalized fixed-point datatype (like the Scaled datatype as defined in the
Language-independent datatypes standard) will be considered. Prior art (for instance as
described in WG14 N854) will be considered while developing the specifications.

Other technical areas to be addressed (depending on input received) are different memory
spaces and the handling of circular buffers.

1.3 Preciseness/level of the specification

The following is a list of design criteria to be used in developing this specification:

- the specification should be low-level enough (be specific about bits, sizes, spaces etc) to
allow compilers to fully utilize the hardware capabilities of the embedded processors that
support in hardware the described functionality;

- the specification should be high-level enough (be specific about arithmetic properties,
rounding modes, relationship with other language elements) to allow programmers to
write portable algorithms;

- the specification should be concise enough to allow many compilers implementers to
implement the specifications, and yet be useful for the programmers of the specific
algorithms;

- it should be possible for an implementation to make use of the underlying hardware
wherever possible and implement the non-supported features differently (emulation
libraries? using floating point hardware?) without hampering the portability of the
program.

1.4 Discussion of various approaches to language extension

Various approaches to include/support the described new functionality (but specifically fixed
point arithmetic) are possible: the definition of new language elements (as done in this
proposal), definition of a set of intrinsic library routines, or a C++ class approach. Each
approach has pro's and con's. It is however true for all approaches that, if it is the intention to
make optimal use of the hardware support of the underlying processor, extensive additions to
an existing compiler should be prepared to achieve this goal. In other words: also for
specifications (like intrinsics and class libraries) that can be seen as building on existing
standards and for which it is not really necessary to change an existing compiler, if optimal
code is required then the compiler should 'know' about the underlying machine instruction set.
As a consequence, the chosen method is largely independent of the amount of work that needs
to be done in adapting a compiler to support all required features.

The pro's and con's can be summarized as follows:

Pro Con

Language extensions - natural (though extensive) nothing can be done without an
addition to the type system | adapted compiler

Intrinsics, integer - easy to include as a stand{ - everything is an integer datatype,
datatypes used in alone add-on package and it is left to the user to select the
stead of fixed point right parameters with the right
datatypes intrinsic functions: error prone

- fixed point constants obscured as
integer constants

C++ class approach - intuitive language - for embedded environments spac
extension; burden on the is of the utmost importance (a
class writer rather than on theslightly larger memory means a few
compiler writer extra cents per unit, this for large

- easy to experiment with, | volume production implies huge
easy for modeling purposes| increase in costs). Even when the
compiler is optimised for the target
instructions, the other runtime
overhead (in size) makes C++ less
suitable

- in comparison with C, C++ is a less
easy to use language for
programmers that were used to
program only in assembly code

[¢)

It is the intention to define the extensions in such a way that the resulting document can be
used both in a C context and in a C++ context. This implies that care should be taken to
define the extensions in the 'intersection' of the C standard and C++ standard, thereby
avoiding to make use of those C features that are not defined in the C++ standard. However,
if it is natural or convenient to make use of a new C feature, somewhere (possibly in an

Annex) it should be defined what the consequences are if that feature is not available.

2. Fixed point types

2.1 Fixed point types and values: an intuitive approach

The set of representable floating point values (which is a subset of the real values) is
characterized by a sign, a precision and the position of the radix point. For those values that
are commonly denoted dlating pointvalues, the characterizing parameters are defined
within a format (such as the IEEE formats or the VAX floating point formats), usually
supported by hardware instructions, that defines the size of the container, the size (and
position within the container) of the exponent, and the size (and position within the container)
of the sign. The remaining part of the container then contains the mantissa. [The formats
discussed in this section are assumed to be binary floating point formats, with sizes expressed
in bits. A generalization to other radixes (like radix-10) is possible, but not done here.] The
value of the exponent then defines the position of the radix point.

Common hardware support for floating point operations implements a limited number of
floating point formats, usually characterized by the size of the container (32-bits, 64-bits etc);
within the container the number of bits allocated for the exponent (and thus for the mantissa)
is fixed. For programming languages this leads to a small number of distinct floating point
datatypes (for C these aftat, double, and long double, each with its own set of
representable values.

For fixed point types, the story is slightly more complicated: a fixed point value is
characterized by its precision (the number of databits in the fixed point value) and an optional
signbit, while the position of the radix point is defined implicitly (i.e., outside the format
representation): it is not possible to deduct the position of the radix point within a fixed point
datavalue (and hence the value of that fixed point datavalue!) by simply looking at the
representation of that datavalue. It is however clear that, for proper interpretation of the
values, the hardware (or software) implementing the operations on the fixed point values
should know where the radix point is positioned. From a theoretical point of view this leads
(for each number of databits in a fixed point datatype) to an infinite number of different fixed
point datatypes (the radix point can be located anywhere before, in or after the bits
comprising the value).

There is no (known) hardware available that can implement all possible fixed point datatypes,
and, unfortunately, each hardware manufacturer has made its own selection, depending on the
field of application of the processor implementing the fixed point datatype. Unless a
complete dynamic or a parameterized typesystem is used (not part of the current C standard,
hence not proposed here), for programming language support of fixed point datatypes a
number of choices need to be made to limit the number of allowable (and/or supported or to
be supported) fixed point datatypes. In order to give some guidance for those choices, some
aspects of fixed point datavalues and their uses are investigated here.

For the sake of this discussion, a fixed point datavalue is assumed to consist of a number of
databits, one of which is the signbit. On some systems, the signbit can be used as an extra
databit, thereby creating an unsigned fixed point datatype with a larger (positive) maximum
value.

Note that the size of (the number of bits used for) a fixed point datavalue does not necessarily

equal the size of the container in which the fixed point datavalue is contained (or through
which the fixed point datavalue is addressed): there may be gaps here!

As stated before, it is necessary, when using a fixed point datavalue, to know the place of the

radix point. There are several possibilities.

- The radix point is located immediately to the right of the rightmost (least significant) bit
of the databits. This is a form of the ordinary integer datatype, and does not (for this
discussion) form part of the fixed point datatypes.

- The radix point is located further to the right of the rightmost (least significant) bit of the
databits. This is a form of an integer datatype (for large, but not very precise integer
values) that is normally not supported by (fixed point) hardware. In this section, these
fixed point datatypes will not be taken into account.

- The radix point is located to the left of (but not adjacent to) the leftmost (most significant)
bit of the databits. It is not clear whether this category should be taken into account: when
the radix point is only a few bits away, it could be more 'natural’ to use a datatype with
more bits; in any case this datatype can easily (??) be simulated by using appropriate
normalize (shift left/right) operations. There is no known fixed point hardware that
supports this datatype.

- The radix point is located immediately to the left of the leftmost (most significant) bit of
the databits. This datatype has values (for signed datatypes) in the interval [-1,+1), or (for
unsigned datatypes) in the interval [0,1). This is a very common, hardware supported,
fixed point datatype. In the rest of this section, this fixed point datatype will be called the
type-Afixed point datatype. Note that for each number of databits, there are one (signed)
or two (signed and unsigned) possible type-A fixed point datatypes.

- The radix point is located somewhere between the leftmost and the rightmost bit of the
databits. The datavalues for this fixed point datatyygee(Bfixed point datatypes) have
an integral part and a fractional part. Some of these fixed point datatypes are regularly
supported by hardware. For each number of databits N, there are (N-2) (signed) or
(2*N-3) (signed and unsigned) possible type-B fixed point datatypes.

Note: it is not strictly necessary that the signbit of a signed fixed point datavalue
corresponds to the most significant bit of the of the unsigned fixed point datavalue with
the same number of databits.

Apart from the position of the radix point, there are three more aspects that influence the
amount of possible fixed point datatypes: the presence of a signbit, the number of databits
comprising the fixed point datavalues and the size of the container in which the fixed point

datavalues are stored.

In the embedded processor world, support for unsigned fixed point datatypes is rare; normally
only signed fixed point datatypes are supported. However, to disallow unsigned fixed point

arithmetic from programming languages (in general, and from C in particular) based on this

observation, seems overly restrictive.

The conceptontaineris used to identify the address and the size (expressed in bytes) of a
fixed point datavalue. Since fixed point hardware support is sometimes built for a special
purpose, requiring a certain precision, it is not necessarily the case that the number of databits
in a fixed point datavalue can be expressed as a multiple of the number of bits per byte. In
other words: it can very well be the case that on an 8-bit byte machine, a 10-bit unsigned

6

fixed point datatype is supported.
Some assumptions:

the size of the container in bits is a multiple of the number of bits per byte for the
machine, and the address of the container is a regular byte address;

the number of databits in a fixed point datavalue is not greater than the number of bits in
its container;

the (machine) address of a fixed point datavalue is the (machine) address of (exactly) one
of the bytes that form the container;

if the size of the container in bits is greater than the number of bits needed for the fixed
point datavalue, the remaining bits (calfgtidingbit$ cannot be used for other purposes

(it is not proposed to introduce packed fixed point datatypes; tricks like creating a union
of a fixed point datatype and a structure containing bitfields are discarded); [Question:
should implementations (if any) be supported that have say a 4-bit fixed point type
(always left aligned in an 8-bit container) and a 12-bit fixed point type (always right
aligned in a 16-bit container). In such an implementation two distinct fixed point
datavalues could have the same address.]

if there are paddingbits involved, it is assumed that still the (machine) address of (one of
the bytes of) the container fully identifies the (machine) address of the fixed point
datavalue; in other words: the alignment of the fixed point datavalue within the container
is implicitly known (from its fixed point datatype designation);

at programming level (i.e., in the programming language) all fixed point datatypes with
the same valuespace (the same number of databits, same signedness, same position of the
radix point) are the same; there is no distinction between these datatypes with respect to
different alignment/padding strategies.

There are two further design criteria that should be considered when defining the nature of the
fixed point datatypes:

it should be possible to generate optimal fixed point code for various processors,
supporting different sized fixed point datatypes (examples could include an 8-bit fixed
point datatype, but also a 6-bit fixed point datatype in an 8-bit container, or a 12-bit fixed
point datatype in a 16-bit container);

it should be possible to write fixed point algorithms that are independent of the actual
fixed point hardware support. This implies that a programmer (or a running program)
should have access to all parameters that define the behaviour of the underlying hardware
(in other words: even if these parameters are implementation defined).

With the above observations in mind, the following recommendations can be made.

1.

Introduce signed and unsigned fixed point datatypes, and use the exzigtiegl and
unsigned keywords (in the 'normal’ C-fashion) to distinguish these types. Omission of
either keywords implies a signed fixed point datatype.

Introduce a new keyword arigpe-specifieffixed (similar to the existing keyworaht),

and define the following fivestandard signed fixed point typeshar fixed, short fixed,

fixed, long fixed andlong long fixed The supported (or required) underlying fixed point
datatypes are mapped on the above in an implementation-defined manner, but in a non-
decreasing order with respect to the number of databits in the corresponding fixed point
datavalue. Note that there is not necessarily a correspondence between a fixed point
datatype designator and the type of its container: when an 18-bit and a 30-bit fixed point

7

datatype are supported, the 18-bit will probably haveshwt fixed type and the 30-bit
type will probably have théxed type, while the containers of these types will be the
same.

An open question is: should a distinction be made between type-A (no integral part, only
fractional part) and type-B (integral part and fractional part) fixed point datatypes by
introducing one or more additional keywords.

Arguments to have extra keywords are:

- the type-A and type-B fixed point datatypes are (probably) used for different purposes,
hence it might be useful to be able to make a distinction between them at programming
level;

- thechar fixed datatype looks awkward, and should possibly not be allowed; similarly, it
is not likely that the number of databits in a fixed point datatype will ever be in the range
of otherlong long datatypes, so also the correspondimigg long fixed datatype might
not be recommended. This leaves us with only three 'regular' fixed point datatypes, which
might not be enough. The introduction of a separate class of fixed point datatypes may
solve this problem.

Arguments against extra keywords are:

- why make a distinction between two conceptually identical datatypes? However note that
this has been done before ingbort - int - long andfloat - double;

- the introduction of yet another keyword.

Assuming that it is decided to go for one or more additional keywords, here are some points

to consider.

- From a conceptual point of view, both type-A and type-B fixed point datatypes form part
of the fixed datatype, as introduced above. Therefore, an obvious choice would be to
introduce two more keywords to qualifixed to get to something likeypeA fixed and
typeB fixed. Better choices of words would Heact fixed (for type-A fixed point
datatypes) ancccum fixed (for type-B fixed point datatypesiccum indicates where
type-B fixed point datatypes are usually used for: to accumulate (type-A) fixed point
datavalues).

- If this is considered to be too verbose, then it can be argued that, sirfcactiixed
datatype is the most common orfesed could be considered to be a meaningful
abbreviation offract fixed, and thenaccum fixed could be abbreviated taccum
Whether the full form and the abbreviated form are allowed is something to be discussed.

Further recommendations:

3. When more fixed point datatypes are needed, or when it is considered necessary to give a
programmer access to more precise fixed point datatype specification, an approach similar
to the<stdint.h> approach could be taken, whereby (as an exarnfigés) leN _t could
designate a fixed point datatype with at least N databits, whdem_lév_IeN t could
designate a fixed point datatype with at lddsnhtegral bits andN fractional bits.

Defining fixed point datatypes in this general fashion offers the possibility to describe in a
more precise manner the properties of the fixed point datatypes, and the relationships with
other datatypes. But, on the other hand it creates a (possible) false sense of portability: if
not every system supports the general approach (and certainly the current hardware does
not do this) then either complete software emulation should be supported, or shortcuts

8

(i.e., mapping to other fixed point or floating point datatypes) should be implemented.

4. In order for the programmer to be able to write portable algorithms using fixed point
datatypes, information on (and/or control over) the nature and precision of the underlying
fixed point datatypes should be provided. The normal C-way of doing this is by defining
macro names (liksSsHORT_FIXED_FRAC_BITS etc.) that should be defined in an
implementation-defined manner.

2.2 Fixed point datatypes, based on LID (ISO/IEC 11404)

ISO/IEC 11404 - Language-Independent Datatypes (LID) describes the Scaled datatype as a
family of datatypes whose value spaces are subsets of the rational value space (the Rational
datatype being defined as a pair of unbounded integers with the obvious meaning), each
individual (scaled) datatype having a fixed denominator defined by two paramatixsafd

factor) whereby the value of the denominator is defineddolyx raised to the powdactor.

When the LID definition is used as a basis for fixed point datatypes in C, a relation between
the parameters defining the LID Scaled datatype and the corresponding C fixed point datatype
needs to be established. The parameters are:
1. The value of theadix parameter.
Although in theory any integer value larger than one could be used as valueradixhe
parameter, only the values 2 and 10 are (currently) supported by hardware
implementations (as binary fixed point values and BCD values).
Since embedded processors normally only support binary fixed point, this specification
only discusses fixed point datatypes with radix == 2, but the general requirements and
characteristics are also valid for other radix values.

2. The value of théactor parameter.
In principle any integer value (positive or negative) can be used as value factie
parameter: this value specifies the scaling factor (the number of places by which the
databits are to be shifted). For the type-A fixed point datatypes, the value fattine
parameter equals the number of databits minus one (for signed fixed point datatypes) in
the fixed point datavalue; for the type-B fixed point datatypes the value dad¢her
parameter is greater than zero, but less than the number of databits minus one in the
(signed) fixed point datavalue.

3. The size of the numerator.
In LID, integers are (in principle) unbounded; in C various integer types are supported
with varying sizes. However, the size (in bits) of the numerator establishes the
(maximum) precision of a fixed point datatype. Therefore, although the size of the
numerator is (from an LID point of view) not really a parameter defining the Scaled
datatype, for the correspondence between the Scaled datatype and the C fixed point
datatypes it is necessary to take the size of the numerator into account.

When omitting theradix parameter this leads to signed and unsigoé&d fixed leR F_t
fixed point datatypes, whereby the size of the numerator (i.e. the number of databits in the
fixed point datavalue) is at led8tand the value of thiactor parameter is indicated by

Some observations on the relationship between the thus defined fixed point datatypes and the
fixed point datatypes defined in the previous section (assuming that the recommendations are
followed):

- With the char, short andlong keywords as 'size indicators' for the various fixed point
datatypes, it is not the case that there is a one-to-one correspondence between the size of
the size indicator ani.

- Thefixed_leM_leN_t corresponds to thelD_fixed_leR_F_t type when 1+N)==R and
N==F.

- ThellD_fixed_leR F_t notation can easily be used for fixed point datatypes where the
radix point is located outside the databits;fiked leM leN_t notation cannot be used to
describe those datatypes (assuming that the required precision is much smaller than size
of the container).

2.3 Saturation

Saturationis a mode associated with a variable. When a value is assigned to a saturated
variable and that value is too large (or too small) to be represented by the variable, the
maximal (or minimal) value (according to the type of the variable) is assigned instead. In

other circumstances an overflow condition would have been created.

In order to implement saturation it is proposed to introduce a new keysabttat can be
used as qualifier in type specifications.

Note that with the above definition, the effect of saturation is directly related to the number of
databits in the datatype. A more general definition could introduce a limit on the values of a
variable, while this limit is not the maximal value that can be represented (think of a 4-bits
unsigned datatype that only is supposed to hold the values 0-9). With such a definition,
saturation becomes a special case of limiting values. Since such a general scheme is not
supported in hardware (or used in software) it is not proposed (or discussed) here. Still, this
generalised approach may be taken into account when defining the name of the kiyword (

or limited instead okat?).

With the above definition, saturation is only established during an assignment. When

saturation is also needed for intermediate results in expressions, there are several ways to

accomplish this:

- by inserting type casts in the expression;

- similar to theSTDC FP_CONTRACT pragma, by defining a pragma that requires that
all operations in an expression yield a saturated result;

- by including saturation in the usual arithmetic conversions so that any operation involving
a saturated operand yields a saturated result;

- by defining specialized operators for each operator (including the assignment operator)
that might yield a saturated result.

The above possibilities are not mutual exclusive; a mix is possible.

Note that, although saturation is usually connected with fixed point arithmetic, the usage of
the saturation keyword is not necessarily limited to fixed point arithmetic.

10

Attention:

- care should be taken in those cases whereby paddingbits are present directly to the left of
the most significant bits of the integral part of a saturated variable;

- some hardware has fixed point hardware registers, whereby a copy to memory
automatically implies saturation.

2.4 Usual arithmetic conversions, type casts

It is proposed to situate the fixed point datatypes 'between' the integer datatypes and the
floating point datatypes: if only integer datatypes are involved then the current standard rules
(cf. 6.3.1.1 and 6.3.1.8) are followed, when fixed point operands but no floating point
operands are involved the operation will be done using fixed point datatypes, otherwise
everything will be converted to the appropriate floating point datatype.

Since it is likely that an implementation will support more than one (type-A and/or type-B)
fixed point datatype, in order to assure arithmetic consistency it should be well-defined to
which fixed point datatype a type is converted to before an operation involving fixed point
and integer datavalues is performed. There are several approaches that could be followed
here:

- define that the result of any operation on fixed point datatypes should be as if the
operation is done using infinite precision. This gives an implementation the possibility to
choose an implementation dependent optimal way of calculating the result (depending on
the required precision of the expression by selecting certain fixed point operations, or,
maybe, emulate the fixed point expression in a floating point unit), as long as the required
result is obtained.

- define an (implementation defined?) 'extended’ fixed point datatype to which every
operand is converted before the operation. It is then important that the programmer has
access to the parameters of this extended fixed point type in order to control the
arithmetic and its results. As an example, this extended fixed point datatype could either
be the 'largest’ type-B fixed point datatype (if supported), or the ‘largest’ type-A fixed
point datatype.

- define the 'usual' C litany of possibilities ("if one of the operands has type ..."). The
conversion strategy then becomes a crucial issue: should conversions be ‘precision
preserving' (conversion towards types with the maximum number of databits) or to
'magnitude preserving' (conversion towards types with maximum number of bits in the
integral part).

- make all automatic type conversion illegal: various systems will support various types of
fixed point datatypes, hence automatic type conversion will behave differently on
different systems. Therefore, one way of giving the programmer control over the
conversions is by requiring that all conversions are indicated explicitly.

2.4.1 Mixing fixed point types with different precision

11

2.4.2 Mixing fixed point and integer types
2.4.3 Mixing fixed point and floating point types

2.4.4 Rounding modes, rounding control

The following rounding modes are usually supplied by the hardware when using fixed point
operations:

- rounding to plus infinity

- rounding to zero

- rounding to minus infinity

- rounding to infinity

- convergent rounding

- truncation

- truncation to zero.

Question: should all these rounding modes be supported?

2.5 The semantics of shift and other operators on fixed point values
2.6 The fixed point complex type

2.7 Fixed point constants

2.8 Format conversion of fixed point types

3. Memory qualifiers

Many embedded processors have support for more than one type of (physical) memory,
sometimes with overlapping address spaces, often with specific hardware instructions for
access to the different types of memory. In general it is impractical, if not impossible, for a
compiler to make use of, or to optimise the usage of, these various memories.

In order to give the programmer some control over the association of variables with memory,
extensions (either in the form of compiler directives or as extended syntax) are necessary. It
should be noted however that the semantics of such extensions is (or should be) highly
dependent on the underlying hardware architecture. Hence, overspecification could easily
lead to non-portable programs. It is therefore proposed to specify the absolute minimum
(almost as 'stubs’) with implementation defined semantics.

Possible approaches are:

- The introduction of a memory qualifier (of a class of memory qualifiers) to be used in the
type specification of a variable, with implementation defined semantics.

- Binding of variable declarations to memory spaces through pragma'’s.

12

- Define a mechanism similar to the C+inkage specification using implementation
definedstring literalsto indicate the memory class.

Possible discussion items:

- The relationship of the above concepts with the currently defined static, automatic and
allocated storage durations (section 6.2.4): multiple stacks, parameterized malloc calls etc.

- Passing pointers to objects in various memories to 'general routines'.

4. Circular buffers

It is proposed to introduce circular arrays and circular pointers. The obvious way to do this
seems to be through a new keywaicc: int circ buf[5]; andintcirc * p = buf,. The
semantics would be (roughly): an index in a circular array is always modulo the size of that
array (the first element ‘follows' the last element).

Some possible restrictions:

- only one dimensional arrays can be circular;

- the circular attribute cannot be inherited: only an array or pointer explicitly defined to be
circular is circular;

- avariable length array cannot be circular.

5. Summary of issues, raised in this document

1. Is there a need to have keywords to distinguish between type-A and type-B fixed point
datatypes?

Is there a need to have bailgnedandunsignedfixed point datatypes?

Is there a need to have a generalised fixed point datatype in the programming model?

Is there a need to have a generalised fixed point datatype to define the conversion and
rounding rules?

If there is a need to have a generalised fixed point datatype, which one should be used?
What should be the spelling of the new keyword(s)? Start with an underscore?

Should saturation be linked to the operation or to the operands?

What are the usual arithmetic conversions when fixed point datatypes are involved? Are
integers a subset of fixed point values which are a subset of floating point values?

9. Memory qualifiers.

10. Circular buffers.

11.1s fixed point spelledixed point(as is done in this document) orfxed-poin®?

hown

©~NOo O

13

