
N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C

Reply To: JeanHeyd Meneide <wg14@soasis.org>

Freek Wiedijk <freek@cs.ru.nl>

Abstract

(This cover sheet to be replaced by ISO.)

This document specifies the form and establishes the interpretation of programs expressed in the
programming language C. Its purpose is to promote portability, reliability, maintainability, and
efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language execution
library. Annexes summarize aspects of both of them, and enumerate factors that influence the
portability of C programs.

Although this document is intended to guide knowledgeable C language programmers as well as
implementors of C language translation systems, the document itself is not designed to serve as a
tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

The following documents, for all intents and purposes, have been applied to this draft from before
and during the October 2019 Meeting:

DR 476 volatile semantics for lvalues

DR 488 c16rtomb() on wide characters encoded as multiple char16_t

DR 494 Part 1: Alignment specifier expression evaluation

DR 496 offsetof and subobjects (with editorial modification)

DR 497 "white-space character" defined in two places

DR 499 Anonymous structure in union behavior

DR 500 Ambiguous specification for FLT_EVAL_METHOD

DR 501 make DECIMAL_DIG obsolescent

FP DR 13 totalorder parameters

FP DR 20 changes for obsolescing DECIMAL_DIG

FP DR 21 printf of one-digit character string

FP DR 22 changes for obsolescing DECIMAL_DIG, Part 2

FP DR 23 llquantexp invalid case

FP DR 24 remainder NaN case

FP DR 25 totalorder parameters

N2124 and N2319 rounding direction macro FE_TONEARESTFROMZERO

N2186 Alternative to N2166

N2212 type generic cbrt (with editorial changes)

Abstract i

mailto:wg14@soasis.org
mailto:freek@cs.ru.nl

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

N2260 Clarifying the restrict Keyword v2

N2265 Harmonizing static_assert with C++

N2267 nodiscard attribute

N2270 maybe_unused attribute

N2271 CR for pow divide-by-zero case

N2293 Alignment requirements for memory management functions

N2314 TS 18661-1 plus CR/DRs for C2X

N2322 preprocessor line numbers unspecified

N2325 DBL_NORM_MAX etc

N2326 floating-point zero and other normalization

N2334 deprecated attribute

N2335 attributes

N2337 strftime, with’b’ and’B’ swapped

N2338 error indicator for encoding errors in fgetwc

N2341 TS 18661-2 plus CR/DRs for C2X

N2345 editors, resolve ambiguity of a semicolon

N2349 the memccpy function

N2350 defining new types in offsetof

N2353 the strdup and strndup functions

N2356 update for payload functions

N2358 no internal state for mblen

N2359 part 2 (remove WANT macros from numbered clauses) and part 3 (version macros for
changed library clauses)

N2401 TS 18661-4a for C2X

N2408 The fallthrough attribute

N2412 Two’s complement sign representation for C2x

N2417 Section 6: Add time conversion functions that are relatively thread-safe

N2418 Adding the u8 character prefix

N2432 Remove support for function definitions with identifier lists

N2508 Free Positioning of Labels Inside Compound Statements

N2554 Minor attribute wording cleanups

The following documents have been applied to this draft from the October 2019 Meeting:

N2379 *_IS_IEC_60559 Feature Test Macros.

N2416 Floating Point Negation and Conversion.

N2384 Annex F.8 Update for Implementation Extensions and Rounding.

N2424 Why logp1 as a Function Name.

N2406 Signaling NaN Initializers.

N2393 _Bool Definitions For true and false.

The following documents have been applied to this draft from the March/April 2020 Virtual
Meeting:

N2444 More optionally per-thread state for the library.

N2446 printf of NAN().

N2448 [[nodiscard("should have a reason")]].

N2459 Add an interface to query resolution of time bases, v3.

N2464 Zero-size Reallocations are Undefined Behavior.

ii Abstract

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

N2476 Names and Locations of Floating Point Entities.
N2480 Allowing unnamed parameters in function definitions.
N2490 Why no wide string strfrom functions.

The following documents have been applied to this draft from the August 2020 Virtual Meeting:

N2491 powr justification
N2492 Note About Math Function Properties.
N2506 Range Errors in Math Functions.
N2508 Free Positioning of Labels.
N2517 Clarification Request for C17 Example of Undefined Behavior.
N2532 Min-max Functions.
N2553 Querying Attribute Support.
N2554 Minor Attribute Wording Cleanup.

The following documents have been applied to this draft from the October and November 2020
Virtual Meetings:

N2546 Missing DEC_EVAL_METHOD

N2547 Missing const in decimal getpayload functions
N2548 intmax_t removal from FP functions
N2549 Binary Literals
N2552 Editorial cleanup for rounding macros
N2557 Allow Duplicate Attributes
N2560 FP hex formatting precision
N2562 Unclear type relationship between a format specifier and its argument
N2563 Character encoding of diagnostic text
N2564 Range errors and math functions (updated previous version, N2506)
N2570 Feature and WANT macros for Annex F functions
N2571 snprintf nonnegative clarification
N2572 What We Think We Reserve
N2580 Decimal Floating Point Triples
N2586 Sufficient Formatting Precision
N2594 Remove Mixed Wide String Literal Concatenation
N2559 Update to IEC 60559:2020
N2600 Update to IEC 60559:2020 (updates previous version, N2559)
N2602 Infinity/NAN Macros, Editorial Fixes
N2607 Compatibility of Pointers to Arrays with Qualifiers

In addition to these, the document has undergone some editorial changes, namely

— The synopsis lists in Annex B are now generated automatically and classified according to
the feature test or WANT macros that are required to make them available.

— A new non-normative clause J.6 added to Annex J categorizes identifiers used by this
document.

— Renaming of the syntax term "struct declaration", "struct declaration list" "struct declarator",
and "struct declarator list" to the more appropriate "member declaration", "member declaration
list", "member declarator" and "member declarator list", respectively.

— Mispelling of "invokation" fixed to "invocation".
— A positional reference to a table was changed to be a more direct reference due to unfortunate

page breaks.
— Missing macros were added to from <float.h> and <limits.h>.
— A footnote added for simple atomic assignment (6.5.16).
— A footnote added for simple atomic assignment (6.5.16).
— The _Bool expansion macros were properly defined and fixed for true and false.

Abstract iii

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

iv Abstract

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Contents

Foreword xiii

Introduction xv

1 Scope 1

2 Normative references 2

3 Terms, definitions, and symbols 3

4 Conformance 8

5 Environment 9

5.1 Conceptual models . 9

5.1.1 Translation environment . 9

5.1.2 Execution environments . 10

5.2 Environmental considerations . 17

5.2.1 Character sets . 17

5.2.2 Character display semantics . 19

5.2.3 Signals and interrupts . 19

5.2.4 Environmental limits . 19

6 Language 32

6.1 Notation . 32

6.2 Concepts . 32

6.2.1 Scopes of identifiers . 32

6.2.2 Linkages of identifiers . 33

6.2.3 Name spaces of identifiers . 33

6.2.4 Storage durations of objects . 34

6.2.5 Types . 35

6.2.6 Representations of types . 39

6.2.7 Compatible type and composite type . 40

6.2.8 Alignment of objects . 41

6.3 Conversions . 42

6.3.1 Arithmetic operands . 42

6.3.2 Other operands . 45

6.4 Lexical elements . 47

6.4.1 Keywords . 48

6.4.2 Identifiers . 48

Contents v

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.4.3 Universal character names . 50

6.4.4 Constants . 51

6.4.5 String literals . 58

6.4.6 Punctuators . 60

6.4.7 Header names . 60

6.4.8 Preprocessing numbers . 61

6.4.9 Comments . 61

6.5 Expressions . 63

6.5.1 Primary expressions . 64

6.5.2 Postfix operators . 65

6.5.3 Unary operators . 71

6.5.4 Cast operators . 73

6.5.5 Multiplicative operators . 74

6.5.6 Additive operators . 74

6.5.7 Bitwise shift operators . 76

6.5.8 Relational operators . 76

6.5.9 Equality operators . 77

6.5.10 Bitwise AND operator . 78

6.5.11 Bitwise exclusive OR operator . 78

6.5.12 Bitwise inclusive OR operator . 79

6.5.13 Logical AND operator . 79

6.5.14 Logical OR operator . 79

6.5.15 Conditional operator . 79

6.5.16 Assignment operators . 81

6.5.17 Comma operator . 83

6.6 Constant expressions . 84

6.7 Declarations . 86

6.7.1 Storage-class specifiers . 87

6.7.2 Type specifiers . 88

6.7.3 Type qualifiers . 96

6.7.4 Function specifiers . 101

6.7.5 Alignment specifier . 102

6.7.6 Declarators . 103

6.7.7 Type names . 108

6.7.8 Type definitions . 109

6.7.9 Initialization . 111

6.7.10 Static assertions . 116

6.7.11 Attributes . 116

6.8 Statements and blocks . 122

6.8.1 Labeled statements . 122

vi Contents

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.8.2 Compound statement . 123

6.8.3 Expression and null statements . 123

6.8.4 Selection statements . 124

6.8.5 Iteration statements . 125

6.8.6 Jump statements . 126

6.9 External definitions . 129

6.9.1 Function definitions . 129

6.9.2 External object definitions . 131

6.10 Preprocessing directives . 133

6.10.1 Conditional inclusion . 134

6.10.2 Source file inclusion . 136

6.10.3 Macro replacement . 137

6.10.4 Line control . 143

6.10.5 Error directive . 144

6.10.6 Pragma directive . 144

6.10.7 Null directive . 145

6.10.8 Predefined macro names . 145

6.10.9 Pragma operator . 147

6.11 Future language directions . 148

6.11.1 Floating types . 148

6.11.2 Linkages of identifiers . 148

6.11.3 External names . 148

6.11.4 Character escape sequences . 148

6.11.5 Storage-class specifiers . 148

6.11.6 Function declarators . 148

6.11.7 Pragma directives . 148

6.11.8 Predefined macro names . 148

7 Library 149

7.1 Introduction . 149

7.1.1 Definitions of terms . 149

7.1.2 Standard headers . 149

7.1.3 Reserved identifiers . 150

7.1.4 Use of library functions . 151

7.2 Diagnostics <assert.h> . 153

7.2.1 Program diagnostics . 153

7.3 Complex arithmetic <complex.h> . 154

7.3.1 Introduction . 154

7.3.2 Conventions . 154

7.3.3 Branch cuts . 154

Contents vii

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.3.4 The CX_LIMITED_RANGE pragma . 155

7.3.5 Trigonometric functions . 155

7.3.6 Hyperbolic functions . 157

7.3.7 Exponential and logarithmic functions . 158

7.3.8 Power and absolute-value functions . 159

7.3.9 Manipulation functions . 160

7.4 Character handling <ctype.h> . 163

7.4.1 Character classification functions . 163

7.4.2 Character case mapping functions . 165

7.5 Errors <errno.h> . 167

7.6 Floating-point environment <fenv.h> . 168

7.6.1 The FENV_ACCESS pragma . 170

7.6.2 The FENV_ROUND pragma . 171

7.6.3 The FENV_DEC_ROUND pragma . 172

7.6.4 Floating-point exceptions . 173

7.6.5 Rounding and other control modes . 176

7.6.6 Environment . 178

7.7 Characteristics of floating types <float.h> . 180

7.8 Format conversion of integer types <inttypes.h> . 181

7.8.1 Macros for format specifiers . 181

7.8.2 Functions for greatest-width integer types . 182

7.9 Alternative spellings <iso646.h> . 184

7.10 Characteristics of integer types <limits.h> . 185

7.11 Localization <locale.h> . 186

7.11.1 Locale control . 186

7.11.2 Numeric formatting convention inquiry . 187

7.12 Mathematics <math.h> . 192

7.12.1 Treatment of error conditions . 195

7.12.2 The FP_CONTRACT pragma . 196

7.12.3 Classification macros . 196

7.12.4 Trigonometric functions . 199

7.12.5 Hyperbolic functions . 204

7.12.6 Exponential and logarithmic functions . 206

7.12.7 Power and absolute-value functions . 213

7.12.8 Error and gamma functions . 217

7.12.9 Nearest integer functions . 219

7.12.10 Remainder functions . 223

7.12.11 Manipulation functions . 224

7.12.12 Maximum, minimum, and positive difference functions 227

7.12.13 Floating multiply-add . 231

viii Contents

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.12.14 Functions that round result to narrower type 232

7.12.15 Quantum and quantum exponent functions 234

7.12.16 Decimal re-encoding functions . 236

7.12.17 Comparison macros . 237

7.13 Nonlocal jumps <setjmp.h> . 240

7.13.1 Save calling environment . 240

7.13.2 Restore calling environment . 240

7.14 Signal handling <signal.h> . 242

7.14.1 Specify signal handling . 242

7.14.2 Send signal . 243

7.15 Alignment <stdalign.h> . 245

7.16 Variable arguments <stdarg.h> . 246

7.16.1 Variable argument list access macros . 246

7.17 Atomics <stdatomic.h> . 249

7.17.1 Introduction . 249

7.17.2 Initialization . 250

7.17.3 Order and consistency . 250

7.17.4 Fences . 253

7.17.5 Lock-free property . 254

7.17.6 Atomic integer types . 254

7.17.7 Operations on atomic types . 255

7.17.8 Atomic flag type and operations . 257

7.18 Boolean type and values <stdbool.h> . 259

7.19 Common definitions <stddef.h> . 260

7.20 Integer types <stdint.h> . 261

7.20.1 Integer types . 261

7.20.2 Widths of specified-width integer types . 262

7.20.3 Width of other integer types . 263

7.20.4 Macros for integer constants . 264

7.20.5 Maximal and minimal values of integer types 264

7.21 Input/output <stdio.h> . 265

7.21.1 Introduction . 265

7.21.2 Streams . 267

7.21.3 Files . 268

7.21.4 Operations on files . 269

7.21.5 File access functions . 271

7.21.6 Formatted input/output functions . 274

7.21.7 Character input/output functions . 291

7.21.8 Direct input/output functions . 294

7.21.9 File positioning functions . 295

Contents ix

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.21.10 Error-handling functions . 297

7.22 General utilities <stdlib.h> . 299

7.22.1 Numeric conversion functions . 299

7.22.2 Pseudo-random sequence generation functions 305

7.22.3 Memory management functions . 306

7.22.4 Communication with the environment . 308

7.22.5 Searching and sorting utilities . 311

7.22.6 Integer arithmetic functions . 313

7.22.7 Multibyte/wide character conversion functions 314

7.22.8 Multibyte/wide string conversion functions 315

7.23 _Noreturn <stdnoreturn.h> . 317

7.24 String handling <string.h> . 318

7.24.1 String function conventions . 318

7.24.2 Copying functions . 318

7.24.3 Concatenation functions . 319

7.24.4 Comparison functions . 320

7.24.5 Search functions . 321

7.24.6 Miscellaneous functions . 324

7.25 Type-generic math <tgmath.h> . 326

7.26 Threads <threads.h> . 330

7.26.1 Introduction . 330

7.26.2 Initialization functions . 331

7.26.3 Condition variable functions . 331

7.26.4 Mutex functions . 333

7.26.5 Thread functions . 335

7.26.6 Thread-specific storage functions . 337

7.27 Date and time <time.h> . 340

7.27.1 Components of time . 340

7.27.2 Time manipulation functions . 341

7.27.3 Time conversion functions . 343

7.28 Unicode utilities <uchar.h> . 348

7.28.1 Restartable multibyte/wide character conversion functions 348

7.29 Extended multibyte and wide character utilities <wchar.h> 351

7.29.1 Introduction . 351

7.29.2 Formatted wide character input/output functions 351

7.29.3 Wide character input/output functions . 364

7.29.4 General wide string utilities . 368

7.29.4.1 Wide string numeric conversion functions 368

7.29.4.2 Wide string copying functions . 372

7.29.4.3 Wide string concatenation functions 373

x Contents

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.29.4.4 Wide string comparison functions . 374

7.29.4.5 Wide string search functions . 375

7.29.4.6 Miscellaneous functions . 379

7.29.5 Wide character time conversion functions . 379

7.29.6 Extended multibyte/wide character conversion utilities 380

7.29.6.1 Single-byte/wide character conversion functions 380

7.29.6.2 Conversion state functions . 380

7.29.6.3 Restartable multibyte/wide character conversion functions 381

7.29.6.4 Restartable multibyte/wide string conversion functions 382

7.30 Wide character classification and mapping utilities <wctype.h> 385

7.30.1 Introduction . 385

7.30.2 Wide character classification utilities . 385

7.30.2.1 Wide character classification functions 385

7.30.2.2 Extensible wide character classification functions 388

7.30.3 Wide character case mapping utilities . 389

7.30.3.1 Wide character case mapping functions 389

7.30.3.2 Extensible wide character case mapping functions 389

7.31 Future library directions . 391

7.31.1 Complex arithmetic <complex.h> . 391

7.31.2 Character handling <ctype.h> . 391

7.31.3 Errors <errno.h> . 391

7.31.4 Floating-point environment <fenv.h> . 391

7.31.5 Characteristics of floating types <float.h> . 391

7.31.6 Format conversion of integer types <inttypes.h> 391

7.31.7 Localization <locale.h> . 391

7.31.8 Mathematics <math.h> . 391

7.31.9 Signal handling <signal.h> . 392

7.31.10 Atomics <stdatomic.h> . 392

7.31.11 Boolean type and values <stdbool.h> . 392

7.31.12 Integer types <stdint.h> . 392

7.31.13 Input/output <stdio.h> . 392

7.31.14 General utilities <stdlib.h> . 392

7.31.15 String handling <string.h> . 392

7.31.16 Date and time <time.h> . 393

7.31.17 Threads <threads.h> . 393

7.31.18 Extended multibyte and wide character utilities <wchar.h> 393

7.31.19 Wide character classification and mapping utilities <wctype.h> 393

Annex A (informative) Language syntax summary 394

Annex B (informative) Library summary 408

Contents xi

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex C (informative) Sequence points 434

Annex D (normative) Universal character names for identifiers 435

Annex E (informative) Implementation limits 436

Annex F (normative) IEC 60559 floating-point arithmetic 439

Annex G (normative) IEC 60559-compatible complex arithmetic 469

Annex H (informative) Language independent arithmetic 480

Annex I (informative) Common warnings 484

Annex J (informative) Portability issues 485

Annex K (normative) Bounds-checking interfaces 520

Annex L (normative) Analyzability 568

Annex M (informative) Change History 570

Bibliography 573

Index 574

xii Contents

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

2 The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

3 Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

4 Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the
following URL: www.iso.org/iso/foreword.html.

6 This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

7 This fifth edition cancels and replaces the fourth edition, ISO/IEC 9899:2018. Major changes from
the previous edition include:

— remove obsolete sign representations and integer width constraints

— added a one-argument version of _Static_assert

— support for function definitions with identifier lists has been removed

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: asctime_r, ctime_r, gmtime_r, localtime_r, memccpy,
strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added deprecated, fallthrough, maybe_unused, and nodiscard attributes

Foreword xiii

https://www.iso.org/directives
https://www.iso.org/patents
https://www.iso.org/iso/foreword.html

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— added the u8 character prefix

8 A complete change history can be found in Annex M.

xiv Foreword

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Introduction

1 With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

2 Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.31]) is discouraged.

3 This document is divided into four major subdivisions:

— preliminary elements (Clauses 1–4);

— the characteristics of environments that translate and execute C programs (Clause 5);

— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

4 Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementors. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

5 The language clause (Clause 6) is derived from "The C Reference Manual".

6 The library clause (Clause 7) is based on the 1984 /usr/group Standard.

7 The Working Group responsible for this document (WG 14) maintains a site on the World Wide Web
at http://www.open-std.org/JTC1/SC22/WG14/ containing ancillary information that may be of
interest to some readers such as a Rationale for many of the decisions made during its preparation
and a log of Defect Reports and Responses.

Introduction xv

http://www.open-std.org/JTC1/SC22/WG14/

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the C
programming language.1) It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.

2 This document does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;

— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

1)This document is designed to promote the portability of C programs among a variety of data-processing systems. It is
intended for use by implementors and programmers. Annex J gives an overview of portability issues that a C program might
encounter.

§ 1 General 1

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

2. Normative references

1 The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

2 ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

3 ISO 4217, Codes for the representation of currencies and funds.

4 ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

5 ISO/IEC 10646, Information technology —Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

6 ISO/IEC60559:2020, Floating-point arithmetic.

7 ISO 80000–2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

2 General § 2

http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3. Terms, definitions, and symbols

1 For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000–2,
and the following apply.

2 ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

3 Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1
1 access (verb)

⟨execution-time action⟩ to read or modify the value of an object
2 Note 1 to entry: Where only one of these two actions is meant, "read" or "modify" is used.

3 Note 2 to entry: "Modify" includes the case where the new value being stored is the same as the previous value.

4 Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2
1 alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3
1 argument

actual argument (DEPRECATED: actual parameter)

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4
1 behavior

external appearance or action

3.4.1
1 implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made
2 Note 1 to entry: J.3 gives an overview over properties of C programs that lead to implementation-defined behavior.

3 EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2
1 locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

2 Note 1 to entry: J.4 gives an overview over properties of C programs that lead to locale-specific behavior.

§ 3.4.2 General 3

https://www.iso.org/obp
http://www.electropedia.org/

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

2 Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

3 Note 2 to entry: J.2 gives an overview over properties of C programs that lead to undefined behavior.

4 EXAMPLE An example of undefined behavior is the behavior on dereferencing a null pointer.

3.4.4
1 unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

2 Note 1 to entry: J.1 gives an overview over properties of C programs that lead to unspecified behavior.

3 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

2 Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

2 Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

3 Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7
1 character

⟨abstract⟩ member of a set of elements used for the organization, control, or representation of data

3.7.1
1 character

single-byte character

⟨C⟩ bit representation that fits in a byte

3.7.2
1 multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

2 Note 1 to entry: The extended character set is a superset of the basic character set.

4 General § 3.7.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3.7.3
1 wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8
1 constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9
1 correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

2 Note 1 to entry: In this document, when the words "correctly rounded" are not immediately followed by "result", this is the
intended usage.

3.10
1 diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11
1 forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12
1 implementation

particular set of software, running in a particular translation environment under particular con-
trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13
1 implementation limit

restriction imposed upon programs by the implementation

3.14
1 memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width
2 Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each

other.

3 Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently
update two non-atomic bit-fields in the same structure if all members declared between them are also (nonzero-length)
bit-fields, no matter what the sizes of those intervening bit-fields happen to be.

4 EXAMPLE A structure declared as

struct {
char a;
int b:5, c:11,:0, d:8;
struct { int ee:8; } e;

}

§ 3.14 General 5

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

3.15
1 object

region of data storage in the execution environment, the contents of which can represent values
2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
1 parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18
1 runtime-constraint

requirement on a program when calling a library function
2 Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be

diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.19.1
1 implementation-defined value

unspecified value where each implementation documents how the choice is made

3.19.2
1 indeterminate value

either an unspecified value or a trap representation

3.19.3
1 unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

2 Note 1 to entry: An unspecified value cannot be a trap representation.

6 General § 3.19.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3.19.4
1 trap representation

an object representation that need not represent a value of the object type

3.19.5
1 perform a trap

interrupt execution of the program such that no further operations are performed
2 Note 1 to entry: In this document, when the word "trap" is not immediately followed by "representation", this is the

intended usage.2)

3 Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20
1 ⌈x⌉

ceiling of x

the least integer greater than or equal to x

2 EXAMPLE ⌈2.4⌉ is 3, ⌈−2.4⌉ is −2.

3.21
1 ⌊x⌋

floor of x

the greatest integer less than or equal to x

2 EXAMPLE ⌊2.4⌋ is 2, ⌊−2.4⌋ is −3.

2)For example, "Trapping or stopping (if supported) is disabled . . . " (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

§ 3.21 General 7

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

4. Conformance

1 In this document, "shall" is to be interpreted as a requirement on an implementation or on a program;
conversely, "shall not" is to be interpreted as a prohibition.

2 If a "shall" or "shall not" requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words "undefined behavior" or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe "behavior that is undefined".

3 A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

4 The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

5 A strictly conforming program shall use only those features of the language and library specified
in this document.3) It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

6 The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implemen-
tation shall accept any strictly conforming program in which the use of the features specified
in the library clause (Clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming program.4)

7 The strictly conforming programs that shall be accepted by a conforming freestanding implementa-
tion that defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ may also use features in
the contents of the standard headers <fenv.h> and <math.h> and the numeric conversion functions
(7.22.1) of the standard header <stdlib.h>. All identifiers that are reserved when <stdlib.h> is
included in a hosted implementation are reserved when it is included in a freestanding implementa-
tion.

8 A conforming program is one that is acceptable to a conforming implementation.5)

9 An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <iso646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h> (7.18), common definitions <stddef.h> (7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

3)A strictly conforming program can use conditional features (see 6.10.8.3) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef __STDC_IEC_60559_BFP__ /* FE_UPWARD defined */
/* ... */
fesetround(FE_UPWARD);
/* ... */

#endif

4)This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

5)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

8 General § 4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

5. Environment

1 An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Program structure

1 A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

1 The precedence among the syntax rules of translation is specified by the following phases.6)

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.
Trigraph sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens7) and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

6)This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

7)As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of< within a #include preprocessing directive.

§ 5.1.1.2 Environment 9

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set; if there is no
corresponding member, it is converted to an implementation-defined member other than the
null (wide) character.8)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-
tives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics
1 A conforming implementation shall produce at least one diagnostic message (identified in an

implementation-defined manner) if a preprocessing translation unit or translation unit contains a
violation of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined
or implementation-defined. Diagnostic messages need not be produced in other circumstances.9)

2 EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a constraint error
and resulting in undefined behavior, the constraint error is still required to be diagnosed.

5.1.2 Execution environments
1 Two execution environments are defined: freestanding and hosted. In both cases, program startup

occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.9).

5.1.2.1 Freestanding environment
1 In a freestanding environment (in which C program execution may take place without any ben-

efit of an operating system), the name and type of the function called at program startup are
implementation-defined. Any library facilities available to a freestanding program, other than the
minimal set required by Clause 4, are implementation-defined.

2 The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment
1 A hosted environment need not be provided, but shall conform to the following specifications if

present.

8)An implementation need not convert all non-corresponding source characters to the same execution character.
9)An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an

implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

10 Environment § 5.1.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

5.1.2.2.1 Program startup
1 The function called at program startup is named main. The implementation declares no prototype

for this function. It shall be defined with a return type of int and with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

or equivalent;10) or in some other implementation-defined manner.

2 If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.

— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution
1 In a hosted environment, a program may use all the functions, macros, type definitions, and objects

described in the library clause (Clause 7).

5.1.2.2.3 Program termination
1 If the return type of the main function is a type compatible with int, a return from the initial call

to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;11) reaching the} that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.4.4).

5.1.2.3 Program execution
1 The semantic descriptions in this document describe the behavior of an abstract machine in which

issues of optimization are irrelevant.

2 An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying a file, or calling a function that does any of those operations

10)Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char ** argv, and so
on.

11)In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

§ 5.1.2.3 Environment 11

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

are all side effects,12) which are changes in the state of the execution environment. Evaluation of
an expression in general includes both value computations and initiation of side effects. Value
computation for an lvalue expression includes determining the identity of the designated object.

3 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.13) The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

4 In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or through
volatile access to an object).

5 When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the dynamic floating-point environment. The value of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the dynamic floating-point environment if
it is modified by the handler and not restored to its original state.

6 The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.

7 What constitutes an interactive device is implementation-defined.

8 More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

9 EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

10 Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

11 EXAMPLE 2 In executing the fragment

12)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

12 Environment § 5.1.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

char c1, c2;
/* ... */
c1 = c1 + c2;

the "integer promotions" require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

12 EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
/* ... */
f1 = f2 * d;

the multiplication can be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double).

13 EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate semantics. Values are
independent of whether they are represented in a register or in memory. For example, an implicit spilling of a register is
not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the storage type. In
particular, casts and assignments are required to perform their specified conversion. For the fragment

double d1, d2;
float f;
d1 = f = expression;
d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

14 EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see F.9).

double x, y, z;
/* ... */
x = (x * y) * z; // not equivalent to x *= y * z;
z = (x - y) + y; // not equivalent to z = x;
z = x + x * y; // not equivalent to z = x * (1.0 + y);
y = x / 5.0; // not equivalent to y = x * 0.2;

15 EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... */
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [−32768,+32767], the implementation cannot rewrite this
expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, −32754 and −15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

§ 5.1.2.3 Environment 13

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and −8 or −17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

16 EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - ’0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - ’0’) + ((*(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races
1 Under a hosted implementation, a program can have more than one thread of execution (or thread)

running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.14)

Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

2 The value of an object visible to a thread T at a particular point is the initial value of the object, a
value stored in the object by T , or a value stored in the object by another thread, according to the
rules below.

3 NOTE 1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support
atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

4 Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

5 The library defines a number of atomic operations (7.17) and operations on mutexes (7.26.4) that are
specially identified as synchronization operations. These operations play a special role in making
assignments in one thread visible to another. A synchronization operation on one or more memory
locations is either an acquire operation, a release operation, both an acquire and release operation, or a
consume operation. A synchronization operation without an associated memory location is a fence and
can be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

6 NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads
that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

7 All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M . If A and B are modifications of an atomic object M , and A happens before B,
then A shall precede B in the modification order of M , which is defined below.

8 NOTE 3 This states that the modification orders are expected to respect the "happens before" relation.

14)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

14 Environment § 5.1.2.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

9 NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

10 A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M , where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

11 Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

12 NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

13 NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition "reads
the value written" by the last mutex release.

14 An evaluation A carries a dependency15) to an evaluation B if:

— the value of A is used as an operand of B, unless:

• B is an invocation of the kill_dependency macro,

• A is the left operand of a && or || operator,

• A is the left operand of a ?: operator, or

• A is the left operand of a , operator;

or

— A writes a scalar object or bit-field M , B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X , A carries a dependency to X and X carries a dependency to B.

15 An evaluation A is dependency-ordered before16) an evaluation B if:

— A performs a release operation on an atomic object M , and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X , A is dependency-ordered before X and X carries a dependency to B.

16 An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X :

— A synchronizes with X and X is sequenced before B,

— A is sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

17 NOTE 7 The "inter-thread happens before" relation describes arbitrary concatenations of "sequenced before", "synchronizes
with", and "dependency-ordered before" relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with "dependency-ordered before" followed by "sequenced before". The reason for this limitation is
that a consume operation participating in a "dependency-ordered before" relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior

15)The "carries a dependency" relation is a subset of the "sequenced before" relation, and is similarly strictly intra-thread.
16)The "dependency-ordered before" relation is analogous to the "synchronizes with" relation, but uses release/consume in

place of release/acquire.

§ 5.1.2.4 Environment 15

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

consume operation. The second exception is that a concatenation is not permitted to consist entirely of "sequenced before".
The reasons for this limitation are (1) to permit "inter-thread happens before" to be transitively closed and (2) the "happens
before" relation, defined below, provides for relationships consisting entirely of "sequenced before".

18 An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
"happens before" relation.

19 NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

20 A visible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the value stored
by the visible side effect A.

21 NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

22 NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

23 The value of an atomic object M , as determined by evaluation B, shall be the value stored by some
side effect A that modifies M , where B does not happen before A.

24 NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

25 If an operation A that modifies an atomic object M happens before an operation B that modifies M ,
then A shall be earlier than B in the modification order of M .

26 NOTE 12 The requirement above is known as "write-write coherence".

27 If a value computation A of an atomic object M happens before a value computation B of M , and A
takes its value from a side effect X on M , then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M , where Y follows X in the modification
order of M .

28 NOTE 13 The requirement above is known as "read-read coherence".

29 If a value computation A of an atomic object M happens before an operation B on M , then A shall
take its value from a side effect X on M , where X precedes B in the modification order of M .

30 NOTE 14 The requirement above is known as "read-write coherence".

31 If a side effect X on an atomic object M happens before a value computation B of M , then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M .

32 NOTE 15 The requirement above is known as "write-read coherence".

33 NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
"relaxed" loads. By doing so, it effectively makes the "cache coherence" guarantee provided by most hardware available to C
atomic operations.

34 NOTE 17 The value observed by a load of an atomic object depends on the "happens before" relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the "happens before" relation
derived as described above, satisfy the resulting constraints as imposed here.

35 The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

36 NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as "sequential consistency". However, this applies only to data-race-free programs,

16 Environment § 5.1.2.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

37 NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

38 NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations
5.2.1 Character sets

1 Two sets of characters and their associated collating sequences collating sequences shall be defined:
the set in which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a basic character
set, whose contents are given by this subclause, and a set of zero or more locale-specific members
(which are not members of the basic character set) called extended characters. The combined set is
also called the extended character set. The values of the members of the execution character set are
implementation-defined.

2 In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

3

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

4 A letter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

§ 5.2.1 Environment 17

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

5 The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing
directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences
1 Before any other processing takes place, each occurrence of one of the following sequences of three

characters (called trigraph sequences)17) is replaced with the corresponding single character.

??= #
??([
??/ \

??)]
??’ ^
??< {

??! |
??> }
??- ~

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.

2 EXAMPLE 1

??=define arraycheck(a, b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a, b) a[b] || b[a]

3 EXAMPLE 2 The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence ??/)

printf("Eh?\n");

5.2.1.2 Multibyte characters
1 The source character set may contain multibyte characters, used to represent members of the

extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.

— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

17)The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described in
ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment § 5.2.1.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

5.2.2 Character display semantics
1 The active position is that location on a display device where the next character output by the

fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

2 Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

3 Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts
1 Functions shall be implemented such that they may be interrupted at any time by a signal, or may be

called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.2.4 Environmental limits
1 Both the translation and execution environments constrain the implementation of language trans-

lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits
1 The implementation shall be able to translate and execute at least one program that contains at least

one instance of every one of the following limits:18)

— 127 nesting levels of blocks

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

18)Implementations are encouraged to avoid imposing fixed translation limits whenever possible.

§ 5.2.4.1 Environment 19

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)19)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

5.2.4.2 Numerical limits
1 An implementation is required to document all the limits specified in this subclause, which are

specified in the headers <limits.h> and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Characteristics of integer types <limits.h>
1 The values given below shall be replaced by constant expressions suitable for use in #if preprocess-

ing directives. Their implementation-defined values shall be equal or greater to those shown.

— width for an object of type _Bool

BOOL_WIDTH 1

— number of bits for smallest object that is not a bit-field (byte)

CHAR_BIT 8

19)See "future language directions" (6.11.3).

20 Environment § 5.2.4.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

— width for an object of type unsigned short int

USHRT_WIDTH 16

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

UINT_WIDTH 16

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

ULONG_WIDTH 32

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

ULLONG_WIDTH 64

The macro LLONG_WIDTH represents the width of the type long long int and shall expand to
the same value as ULLONG_WIDTH.

— maximum number of bytes in a multibyte character, for any supported locale

MB_LEN_MAX 1

2 For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
_WIDTH holding its width N , there is a macro with suffix _MAX holding the maximal value 2N − 1
that is representable by the type, that is suitable for use in #if preprocessing directives and that
has the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

3 For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix _WIDTH
holding its width N , there are macros with suffix _MIN and _MAX holding the minimal and maximal
values −2N−1 and 2N−1 − 1 that are representable by the type, that are suitable for use in #if
preprocessing directives and that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions.

4 If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.20)

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1), integer types
<stdint.h> (7.20).

5.2.4.2.2 Characteristics of floating types <float.h>
1 The characteristics of floating types are defined in terms of a model that describes a representa-

tion of floating-point numbers and values that provide information about an implementation’s

20)See 6.2.5.

§ 5.2.4.2.2 Environment 21

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

floating-point arithmetic.21) An implementation that defines __STDC_IEC_60559_BFP__ or
__STDC_IEC_559__ shall implement floating point types and arithmetic conforming to IEC 60559
as specified in Annex F. An implementation that defines __STDC_IEC_60559_COMPLEX__ or
__STDC_IEC_559_COMPLEX__ shall implement complex types and arithmetic conforming to
IEC 60559 as specified in Annex G.

2 The following parameters are used to define the model for each floating-point type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less than b (the significand digits)

For each floating-point type, the parameters b, p, emin, and emax are fixed constants.

3 For each floating-point type, a floating-point number (x) is defined by the following model:

x = sbe
p∑

k=1

fkb
−k, emin ≤ e ≤ emax

4 Floating types shall be able to represent zero (all fk == 0) and all normalized floating-point numbers
(f1 > 0 and all possible k digits and e exponents result in values representable in the type). In
addition, floating types may be able to contain other kinds of floating-point numbers,22) such as
negative zero, subnormal floating-point numbers (x ̸= 0, e = emin, f1 = 0) and unnormalized floating-point
numbers (x ̸= 0, e > emin, f1 = 0), and values that are not floating-point numbers, such as infinities
and NaNs. A NaN is a value signifying Not-a-Number. A quiet NaN propagates through almost
every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.23)

5 An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this document to retrieve the sign shall produce an unspecified sign, and any requirement to set
the sign shall be ignored.

6 An implementation may prefer particular representations of values that have multiple representa-
tions in a floating type, 6.2.6.1 not withstanding.24) The preferred representations of a floating type,
including unique representations of values in the type, are called canonical. A floating type may also
contain non-canonical representations, for example, redundant representations of some or all of its
values, or representations that are extraneous to the floating-point model.25) Typically, floating-point
operations deliver results with canonical representations. IEC 60559 operations deliver results with
canonical representations, unless specified otherwise.

7 The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

8 The accuracy of the floating-point operations (+ ,- , * , /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state

21)The floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

22)Some implementations have types that include finite numbers with extra range and/or precision that are not covered by
the model.

23)IEC 60559 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559, the terms quiet NaN
and signaling NaN are intended to apply to values with similar behavior.

24)The library operations iscanonical and canonicalize distinguish canonical (preferred) representations, but this
distinction alone does not imply that canonical and non-canonical representations are of different values.

25)Some of the values in the IEC 60559 decimal formats have non-canonical representations (as well as a canonical
representation).

22 Environment § 5.2.4.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

that the accuracy is unknown. Decimal floating-point operations have stricter requirements.

9 All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
All except CR_DECIMAL_DIG (F.5), DECIMAL_DIG, DEC_EVAL_METHOD, FLT_EVAL_METHOD, FLT_RADIX,
and FLT_ROUNDS have separate names for all floating-point types. The floating-point model repre-
sentation is provided for all values except DEC_EVAL_METHOD, FLT_EVAL_METHOD and FLT_ROUNDS.

10 The remainder of this subclause specifies characteristics of standard floating types.

11 The rounding mode for floating-point addition for standard floating types is characterized by the
implementation-defined value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any
execution-time change of rounding mode through the function fesetround in <fenv.h>.

−1 indeterminable

0 toward zero

1 to nearest, ties to even

2 toward positive infinity

3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

12 Whether a type matches an IEC 60559 format (and perhaps, operations) is characterized
by the implementation-defined values of FLT_IS_IEC_60559, DBL_IS_IEC_60559, and
LDBL_IS_IEC_60559 (this does not imply conformance to Annex F):

0 type does not match an IEC 60559 format

1 type matches an IEC 60559 format

2 type matches an IEC 60559 format and operations

13 The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are
evaluated to a format whose range and precision may be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the
format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:26)

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, F.6).

14 The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

26)The evaluation method determines evaluation formats of expressions involving all floating types, not just real
types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

§ 5.2.4.2.2 Environment 23

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

−1 indeterminable27)

0 absent (type does not support subnormal numbers)28)

1 present (type does support subnormal numbers)

15 The signaling NaN macros

FLT_SNAN
DBL_SNAN
LDBL_SNAN

each is defined if and only if the respective type contains signaling NaNs. They expand to a constant
expression of the respective type representing a signaling NaN. If an optional unary + or - operator
followed by a signaling NaN macro is used as the initializer for initializing an object of the same
type that has static or thread-local storage duration, the object is initialized with a signaling NaN
value.

16 The macro

INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time. 29)

17 The macro

NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

18 The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

FLT_RADIX 2

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to
the value,{

p log10 b if b is a power of 10
⌈1 + p log10 b⌉ otherwise

27)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

28)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

29)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

24 Environment § 5.2.4.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest of the supported
floating types and the supported IEC 60559 encodings with pmax radix b digits can be rounded
to a floating-point number with n decimal digits and back again without change to the value,{

pmax log10 b if b is a power of 10
⌈1 + pmax log10 b⌉ otherwise

DECIMAL_DIG 10

This is an obsolescent feature, see 7.31.8.

— number of decimal digits, q, such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the q decimal digits,{

p log10 b if b is a power of 10
⌊(p− 1) log10 b⌋ otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers,

⌈
log10b

emin−1
⌉

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, emax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, ⌊log10((1− b−p)bemax)⌋

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

§ 5.2.4.2.2 Environment 25

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

19 The values given in the following list shall be replaced by constant expressions with implementation-
defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is
(1− b−p)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1− b−p)bemax

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

20 The values given in the following list shall be replaced by constant expressions with implementation-
defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating-point type, b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, bemin−1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number30)

FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

Recommended practice
21 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG

digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

22 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this
document, and the appropriate values in a <float.h> header for type float:

x = s16e
6∑

k=1
fk16

−k , −31 ≤ e ≤ +32

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6

30)If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

26 Environment § 5.2.4.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

23 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,31) and the appropriate values in a <float.h> header for types float and double:

xf = s2e
24∑

k=1
fk2

−k , −125 ≤ e ≤ +128

xd = s2e
53∑

k=1
fk2

−k , −1021 ≤ e ≤ +1024

FLT_IS_IEC_60559 2
FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN 0X1P-149F // hex constant
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_IS_IEC_60559 2
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.8), complex arith-
metic <complex.h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.29), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h>
(7.21), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F), IEC 60559-
compatible complex arithmetic (Annex G).

31)The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

§ 5.2.4.2.2 Environment 27

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

5.2.4.2.3 Characteristics of decimal floating types in <float.h>

1 This subclause specifies macros in <float.h> that provide characteristics of decimal floating types
in terms of the model presented in 5.2.4.2.2. An implementation that does not support decimal
floating types shall not provide these macros. The prefixes DEC32_, DEC64_, and DEC128_ denote
the types _Decimal32, _Decimal64, and _Decimal128 respectively.

2 DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.2.4.2.2). Its
implementation-defined value characterizes the use of evaluation formats for decimal floating
types:

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
precision of the _Decimal64 type, evaluate _Decimal128 operations and constants to the
range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128 type.

3 The decimal signaling NaN macros

D32_SNAN
D64_SNAN
D128_SNAN

each expands to a constant expression of the respective decimal floating type representing a signaling
NaN. If an optional unary + or - operator followed by a signaling NaN macro is used for initializing
an object of the same type that has static or thread-local storage duration, the object is initialized
with a signaling NaN value.

4 The macro

DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

5 The macro

DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN.

6 The integer values given in the following lists shall be replaced by constant expressions suitable for
use in #if preprocessing directives:

— radix of exponent representation, b(=10)

For the standard floating types, this value is implementation-defined and is specified by the
macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the
value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description
of a function that has versions that operate on decimal floating types, it is noted that for the
decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

— number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

— minimum exponent

28 Environment § 5.2.4.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

DEC32_MIN_EXP -94
DEC64_MIN_EXP -382
DEC128_MIN_EXP -6142

— maximum exponent

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128_MAX_EXP 6145

— maximum representable finite decimal floating-point number (there are 6, 15 and 33 9’s after
the decimal points respectively)

DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

— the difference between 1 and the least value greater than 1 that is representable in the given
floating type

DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

— minimum normalized positive decimal floating-point number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

— minimum positive subnormal decimal floating-point number

DEC32_TRUE_MIN 0.000001E-95DF
DEC64_TRUE_MIN 0.000000000000001E-383DD
DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL

7 For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent
model where the significand is represented with integer rather than fraction digits. With s, b, e, p,
and fk as defined in 5.2.4.2.2, a floating-point number x is defined by the model:

x = s · b(e−p)

p∑
k=1

fk · b(p−k)

8 With b fixed to 10, a decimal floating-point number x is thus:

x = s · 10(e−p)

p∑
k=1

fk · 10(p−k)

The quantum exponent is q = e− p and the coefficient is c = f1f2 · · · fp, which is an integer between
0 and 10(p−1), inclusive. Thus, x = s · c · 10q is represented by the triple of integers (s, c, q). The
quantum of x is 10q , which is the value of a unit in the last place of the coefficient.

§ 5.2.4.2.3 Environment 29

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Quantum exponent ranges

Type _Decimal32 _Decimal64 _Decimal128
Maximum Quantum Exponent (qmax) 90 369 6111
Minimum Quantum Exponent (qmin) −101 −398 −6176

9 For binary floating-point arithmetic following IEC 60559, representations in the model described
in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However, for
decimal floating-point arithmetic, representations that have the same numerical value but different
quantum exponents, e.g., (+1, 10,−1) representing 1.0 and (+1, 100,−2) representing 1.00, are
distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal
floating type have a preferred quantum exponent, as specified in IEC 60559, which is determined
by the quantum exponents of the operands if they have decimal floating types (or by specific
rules for conversions from other types). The table below gives rules for determining preferred
quantum exponents for results of IEC 60559 operations, and for other operations specified in
this document. When exact, these operations produce a result with their preferred quantum
exponent, or as close to it as possible within the limitations of the type. When inexact, these
operations produce a result with the least possible quantum exponent. For example, the preferred
quantum exponent for addition is the minimum of the quantum exponents of the operands. Hence
(+1, 123,−2) + (+1, 4000,−3) = (+1, 5230,−3) or 1.23 + 4.000 = 5.230.

10 The following table shows, for each operation delivering a result in decimal floating-point format,
how the preferred quantum exponents of the operands, Q(x), Q(y), etc., determine the preferred
quantum exponent of the operation result.

Preferred quantum exponents

Operation Preferred quantum exponent of result
roundeven, round, trunc, ceil, floor,
rint, nearbyint

max(Q(x), 0)

nextup, nextdown, nextafter, nexttoward least possible
remainder min(Q(x), Q(y))
fmin, fmax, fminimum, fmaximum,
fminimum_mag, fmaximum_mag,
fminimum_num, fmaximum_num,
fminimum_mag_num, fmaximum_mag_num

Q(x) if x gives the result, Q(y) if y gives the result

scalbn, scalbln Q(x) + n
ldexp Q(x) + p
logb 0
+ , d32add, d64add min(Q(x), Q(y))
- , d32sub, d64sub min(Q(x), Q(y))

* , d32mul, d64mul Q(x) +Q(y)
/, d32div, d64div Q(x)−Q(y)
sqrt, d32sqrt, d64sqrt ⌊Q(x)/2⌋
fma, d32fma, d64fma min(Q(x) +Q(y), Q(z))
conversion from integer type 0
exact conversion from non-decimal floating
type

0

inexact conversion from non-decimal floating
type

least possible

conversion between decimal floating types Q(x)

*cx returned by canonicalize Q(*x)
strto, wcsto, scanf, floating constants of
decimal floating type

see 7.22.1.6

30 Environment § 5.2.4.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

-(x) Q(x)
fabs Q(x)
copysign Q(x)
quantize Q(y)
quantum Q(x)

*encptr returned by encodedec, encodebin Q(*xptr)

*xptr returned by decodedec, decodebin Q(*encptr)
fmod min(Q(x), Q(y))
fdim min((Q(x), Q(y)) if x > y, 0 if x ≤ y
cbrt ⌊Q(x)/3⌋
hypot min(Q(x), Q(y))
pow ⌊y×Q(x)⌋
modf Q(value)

*iptr returned by modf max(Q(value), 0)
frexp Q(value) if value = 0, –(length of coefficient of

value) otherwise
*res returned by setpayload,
setpayloadsig

0 if pl does not represent a valid payload, not
applicable otherwise (NaN returned)

getpayload 0 if*x is a NaN, unspecified otherwise
compoundn ⌊n×min(0, Q(x))⌋
pown ⌊n×Q(x)⌋
powr ⌊y ×Q(x)⌋
rootn ⌊Q(x)/n⌋
rsqrt −⌊Q(x)/2⌋
transcendental functions 0

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,
ceil indicates the functions ceild32, ceild64, and ceild128.

Forward references: extended multibyte and wide character utilities <wchar.h> (7.29), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h>
(7.21), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.25), IEC 60559
floating-point arithmetic (Annex F).

§ 5.2.4.2.3 Environment 31

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6. Language

6.1 Notation
1 In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic

type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words "one of". An optional symbol is indicated by the subscript "opt", so
that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

3 A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

3 A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

4 Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function
declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

5 Unless explicitly stated otherwise, where this document uses the term "identifier" to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

6 Two identifiers have the same scope if and only if their scopes terminate at the same point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in
a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has scope that

32 Language § 6.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

begins just after the completion of its declarator.

8 As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers
1 An identifier declared in different scopes or in the same scope more than once can be made to refer to

the same object or function by a process called linkage.32) There are three kinds of linkage: external,
internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

3 If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.33)

4 For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,34) if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier, its linkage is external.

6 The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

7 If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers
1 If more than one declaration of a particular identifier is visible at any point in a translation unit, the

syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any35) of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute specifier
and name of the attribute token) (6.7.11);

32)There is no linkage between different identifiers.
33)A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
34)As specified in 6.2.1, the later declaration might hide the prior declaration.
35)There is only one name space for tags even though three are possible.

§ 6.2.3 Language 33

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— the trailing identifier in an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the trailing identifier token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects
1 An object has a storage duration that determines its lifetime. There are four storage durations: static,

thread, automatic, and allocated. Allocated storage is described in 7.22.3.

2 The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,36) and retains its last-stored value
throughout its lifetime.37) If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

3 An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

4 An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

5 An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

6 For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object is created each time. The initial value of
the object is indeterminate. If an initialization is specified for the object, it is performed each time
the declaration or compound literal is reached in the execution of the block; otherwise, the value
becomes indeterminate each time the declaration is reached.

7 For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.38) If the scope is
entered recursively, a new instance of the object is created each time. The initial value of the object is
indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.39) Its lifetime begins
when the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with

36)The term "constant address" means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

37)In the case of a volatile object, the last store need not be explicit in the program.
38)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior

to the declaration, leaves the scope of the declaration.
39)The address of such an object is taken implicitly when an array member is accessed.

34 Language § 6.2.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object need not
have a unique address.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators (6.7.6),
function calls (6.5.2.2), initialization (6.7.9), statements (6.8), effective type (6.5).

6.2.5 Types
1 The meaning of a value stored in an object or returned by a function is determined by the type of the

expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).40)

2 An object declared as type _Bool is large enough to store the values 0 and 1.

3 An object declared as type char is large enough to store any member of the basic execution char-
acter set. If a member of the basic execution character set is stored in a char object, its value is
guaranteed to be nonnegative. If any other character is stored in a char object, the resulting value is
implementation-defined but shall be within the range of values that can be represented in that type.

4 There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.41) The
standard and extended signed integer types are collectively called signed integer types.42)

5 An object declared as type signed char occupies the same amount of storage as a "plain" char
object. A "plain" int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

6 For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type _Bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. The standard and extended unsigned integer types are collectively called
unsigned integer types.43)

7 The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

8 For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

9 The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.44) A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

40)A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

41)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.
42)Therefore, any statement in this document about signed integer types also applies to the extended signed integer types.
43)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer

types.
44)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

§ 6.2.5 Language 35

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

10 There are three standard floating types, designated as float, double, and long double.45) The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

45)See "future language directions" (6.11.1).

36 Language § 6.2.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

11 There are three decimal floating types, designated as _Decimal32, _Decimal64, and _Decimal128.
Respectively, they have the IEC 60559 formats: decimal32,46) decimal64, and decimal128. Decimal
floating types are real floating types.

12 The standard floating types and the decimal floating types are collectively called the real floating
types.

13 There are three complex types, designated as float _Complex, double _Complex, and long double
_Complex.47) (Complex types are a conditional feature that implementations need not support; see
6.10.8.3.) The real floating and complex types are collectively called the floating types.

14 For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
_Complex from the type name.

15 Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

16 The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.48)

17 The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.49)

18 An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

19 The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

20 Integer and floating types are collectively called arithmetic types.50) Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

21 The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

22 Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called "array of T". The construction of an array
type from an element type is called "array type derivation".

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

46)IEC 60559 specifies decimal32 as a data-interchange format that does not require arithmetic support; however,
_Decimal32 is a fully supported arithmetic type.

47)A specification for imaginary types is in Annex G.
48)An implementation can define new keywords that provide alternative ways to designate a basic (or any other) type; this

does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

49)CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

50)Annex H documents the extent to which the C language supports the ISO/IEC 10967–1 standard for language-
independent arithmetic (LIA–1).

§ 6.2.5 Language 37

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

23 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.51)

24 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

25 A type has known constant size if the type is not incomplete and is not a variable length array type.

26 Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

27 A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

28 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type52), corresponding to the combinations of one, two, or all three of the const, volatile, and
restrict qualifiers. The qualified or unqualified versions of a type are distinct types that belong to
the same type category and have the same representation and alignment requirements.53) An array
and its element type are always considered to be identically qualified54). Any other derived type is
not qualified by the qualifiers (if any) of the type from which it is derived.

29 Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase "atomic,
qualified, or unqualified type" whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase "qualified or unqualified type", without specific
mention of atomic, does not include the atomic types.

30 A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.53) Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

51)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

52)See 6.7.3 regarding qualified array and function types.
53)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.
54)This does not apply to the _Atomic qualifier. Note that qualifiers do not have any direct effect on the array type itself,

but affect conversion rules for pointer types that reference an array type.

38 Language § 6.2.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

31 EXAMPLE 1 The type designated as "float *" has type "pointer to float". Its type category is pointer, not a floating type.
The const-qualified version of this type is designated as "float * const" whereas the type designated as "const float *"
is not a qualified type — its type is "pointer to const-qualified float" and is a pointer to a qualified type.

32 EXAMPLE 2 The type designated as "struct tag (*[5])(float)" has type "array of pointer to function returning
struct tag". The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

3 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.55)

4 Values stored in non-bit-field objects of any other object type consist of n× CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type
unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object representation of
the value. Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

5 Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.56) Such a representation is called a trap representation.

6 When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.57)

The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

8 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.58) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

9 Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), lvalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types
1 For unsigned integer types the bits of the object representation shall be divided into two groups:

value bits and padding bits. If there are N value bits, each bit shall represent a different power of

55)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHAR

_BIT − 1.
56)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value

of the variable cannot be used until a proper value is stored in it.
57)Thus, for example, structure assignment need not copy any padding bits.
58)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects

of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

§ 6.2.6.2 Language 39

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

2 between 1 and 2N−1, so that objects of that type shall be capable of representing values from 0
to 2N − 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified.The number of value bits N is called the width of the
unsigned integer type. There need not be any padding bits; unsigned char shall not have any
padding bits.

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. If the corresponding unsigned type has width N , the
signed type uses the same number of N bits, its width, as value bits and sign bit. N − 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value −(2N−1). There need not be any
padding bits; signed char shall not have any padding bits.

3 The values of any padding bits are unspecified. A valid (non-trap) object representation of a signed
integer type where the sign bit is zero is a valid object representation of the corresponding unsigned
type, and shall represent the same value. For any integer type, the object representation where all
the bits are zero shall be a representation of the value zero in that type.

4 The precision of an integer type is the number of value bits.
5 NOTE 1 Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity

bit. Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

6 NOTE 2 The sign representation defined in this document is called two’s complement. Previous revisions of this document
additionally allowed other sign representations.

7 NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type
1 Two types have compatible type if their types are the same. Additional rules for determining whether

two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.59) Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

2 All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

3 A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

• If one type is an array of known constant size, the composite type is an array of that size.

• Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

• Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

59)Two types need not be identical to be compatible.

40 Language § 6.2.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

• Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

• Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

4 For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,60) if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.6.2).
5 EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

6.2.8 Alignment of objects
1 Complete object types have alignment requirements which place restrictions on the addresses at

which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the _Alignas keyword.

2 A fundamental alignment is a valid alignment less than or equal to _Alignof (max_align_t). Fun-
damental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;

— all types specified in Clause 7 as complete object types;

— all structure or union types all of whose elements have types with fundamental alignment
requirements and none of whose elements have an alignment specifier specifying an alignment
that is not a fundamental alignment.

3 An extended alignment is represented by an alignment greater than _Alignof (max_align_t). It is
implementation-defined whether any extended alignments are supported and the storage durations
for which they are supported. A type having an extended alignment requirement is an over-aligned
type.61)

60)As specified in 6.2.1, the later declaration might hide the prior declaration.
61)Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has

been applied.

§ 6.2.8 Language 41

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

4 Alignments are represented as values of the type size_t. Valid alignments include only fundamental
alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

6 The alignment requirement of a complete type can be queried using an _Alignof expression. The
types char, signed char, and unsigned char shall have the weakest alignment requirement.

7 Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.

— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.3 Conversions
1 Several operators convert operand values from one type to another automatically. This subclause

specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

2 Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands
6.3.1.1 Boolean, characters, and integers

1 Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.

— The rank of _Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

42 Language § 6.3.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

2 The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type _Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type (as restricted by the width, for a bit-field), the
value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.62) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a "plain" char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type
1 When any scalar value is converted to _Bool, the result is 0 if the value compares equal to 0;

otherwise, the result is 1.63)

6.3.1.3 Signed and unsigned integers
1 When a value with integer type is converted to another integer type other than _Bool, if the value

can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.64)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer
1 When a finite value of standard floating type is converted to an integer type other than _Bool, the

fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.65)

2 When a finite value of decimal floating type is converted to an integer type other than _Bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the "invalid" floating-point exception shall be raised and
the result of the conversion is unspecified.

3 When a value of integer type is converted to a standard floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

4 When a value of integer type is converted to a decimal floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted cannot
be represented exactly, the result shall be correctly rounded with exceptions raised as specified in
IEC 60559.

62)The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary+ ,- , and~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

63)NaNs do not compare equal to 0 and thus convert to 1.
64)The rules describe arithmetic on the mathematical value, not the value of a given type of expression.
65)The remaindering operation performed when a value of integer type is converted to unsigned type need not be

performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(−1, Utype_MAX + 1).

§ 6.3.1.4 Language 43

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.3.1.5 Real floating types
1 When a value of real floating type is converted to a real floating type, if the value being converted

can be represented exactly in the new type, it is unchanged.

2 When a value of real floating type is converted to a standard floating type, if the value being
converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

3 When a value of real floating type is converted to a decimal floating type, if the value being converted
cannot be represented exactly, the result is correctly rounded with exceptions raised as specified in
IEC 60559.

4 Results of some implicit conversions may be represented in greater range and precision than that
required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types
1 When a value of complex type is converted to another complex type, both the real and imaginary

parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex
1 When a value of real type is converted to a complex type, the real part of the complex result value is

determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

2 When a value of complex type is converted to a real type other than _Bool,66) the imaginary part of
the complex value is discarded and the value of the real part is converted according to the conversion
rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions
1 Many operators that expect operands of arithmetic type cause conversions and yield result types in

a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

If one operand has decimal floating type, the other operand shall not have standard floating,
complex, or imaginary type.

First, if the type of either operand is _Decimal128, the other operand is converted to
_Decimal128.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
_Decimal64.

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
_Decimal32.

Otherwise, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

66)See 6.3.1.2.

44 Language § 6.3.1.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.67)

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.2.4.2.2 regarding evaluation formats.

6.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with an object type other than void) that potentially designates an
object;68) if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, the unary & operator, the++ operator, the--
operator, or the left operand of the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated object (and is no longer an lvalue);
this is called lvalue conversion. If the lvalue has qualified type, the value has the unqualified version
of the type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic
version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an
incomplete type and does not have array type, the behavior is undefined. If the lvalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type "array of type" is converted to an expression
with type "pointer to type" that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the

67)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

68)The name "lvalue" comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) lvalue. It is perhaps better considered as representing an object "locator value". What is sometimes called
"rvalue" is in this document described as the "value of an expression".

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object,*E is an lvalue that designates the object to which E points.

§ 6.3.2.1 Language 45

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

sizeof operator,69) or the unary & operator, a function designator with type "function returning
type" is converted to an expression that has type "pointer to function returning type".

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and _Alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.70) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the result is
implementation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.71)

6 Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

7 A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned72) for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

69)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

70)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.
71)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with

the addressing structure of the execution environment.
72)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,

which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

46 Language § 6.3.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.4 Lexical elements
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

Constraints
2 Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an

identifier, a constant, a string literal, or a punctuator.

Semantics
3 A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of

tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.73) If a’ or a " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-
feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

4 If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

5 EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for
example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

6 EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

73)An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

§ 6.4 Language 47

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.4.1 Keywords
Syntax

1 keyword: one of
auto
break
case
char
const
continue
default
do
double
else
enum
extern

float
for
goto
if
inline
int
long
register
restrict
return
short
signed

sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while
_Alignas
_Alignof

_Atomic
_Bool
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn
_Static_assert
_Thread_local

Semantics
2 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords

except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.74)

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics
2 An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and

uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in 6.2.1. Lowercase and uppercase letters are distinct. There is no specific limit on the
maximum length of an identifier.

3 The use of universal character names in identifiers is specified in Annex D: Each universal character
name in an identifier shall designate a character whose encoding in ISO/IEC 10646 falls into

74)One possible specification for imaginary types appears in Annex G.

48 Language § 6.4.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

one of the ranges specified in D.1.75) The initial character shall not be a universal character
name designating a character whose encoding falls into one of the ranges specified in D.2. An
implementation may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character names is
implementation-defined.

4 When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

5 Some identifiers are reserved.

— All identifiers that begin with a double underscore (__) or begin with an underscore (_)
followed by an uppercase letter are reserved for any use, except those identifiers which are
lexically identical to keywords76)

— All identifiers that begin with an underscore are reserved for use as identifiers with file scope
in both the ordinary and tag name spaces.

Other identifiers may be reserved, see 7.1.3.

6 If the program declares or defines an identifier in a context in which it is reserved (other than as
allowed by 7.1.4), the behavior is undefined.

7 If the program defines a reserved identifier or attribute token described in 6.7.11.1 as a macro name,
or removes (with #undef) any macro definition of an identifier in the first group listed above or
attribute token described in 6.7.11.1, the behavior is undefined.

8 Some identifiers may be potentially reserved. A potentially reserved identifier is an identifier which is
not reserved but is anticipated to become reserved by a future version of this document.

Recommended Practice
9 Implementations are encouraged to issue a diagnostic message when a potentially reserved identifier

is declared or defined for any use to bring attention to a potential conflict when porting a program
to a future revision of this document.

Implementation limits
10 As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters

in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

11 Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3), reserved library
identifiers (7.1.3), use of library functions (7.1.4), attributes (6.7.11.1).

6.4.2.2 Predefined identifiers
Semantics

1 The identifier __func__ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.77)

75)On systems in which linkers cannot accept extended characters, an encoding of the universal character name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal character name. Extended characters can produce a long external identifier.

76)This allows a reserved identifier that matches the spelling of a keyword to be used as a macro nameby the program.
77)Since the name __func__ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared

using the name __func__, the behavior is undefined.

§ 6.4.2.2 Language 49

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

2 This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

3 EXAMPLE Consider the code fragment:

#include <stdio.h>
void myfunc(void)
{

printf("%s\n", __func__);
/* ... */

}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

6.4.3 Universal character names
Syntax

1 universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints
2 A universal character name shall not specify a character whose short identifier is less than 00A0

other than 0024 ($), 0040 (@), or 0060 (‘), nor one in the range D800 through DFFF inclusive.78)

Description
3 Universal character names may be used in identifiers, character constants, and string literals to

designate characters that are not in the basic character set.

Semantics
4 The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier

(as specified by ISO/IEC 10646) is nnnnnnnn.79) Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnnn (and whose eight-digit short
identifier is 0000nnnn).

78)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, and the S-zone (reserved for use by UTF–16).

79)Short identifiers for characters were first specified in ISO/IEC 10646–1:1993/Amd 9:1997.

50 Language § 6.4.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints
2 Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt
binary-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

binary-prefix: one of
0b 0B

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

binary-digit: one of
0 1

§ 6.4.4.1 Language 51

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

Description
2 An integer constant begins with a digit, but has no period or exponent part. It may have a prefix

that specifies its base and a suffix that specifies its type.

3 A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively. A binary
constant consists of the prefix 0b or 0B followed by a sequence of the digits 0 or 1.

Semantics
4 The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a

hexadecimal constant, base 16; that of a binary constant, base 2. The lexically first digit is the most
significant.

5 The type of an integer constant is the first of the corresponding list in which its value can be
represented.

Octal, Hexadecimal or Binary
Suffix Decimal Constant Constant
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long long int
Both u or U unsigned long long int unsigned long long int
and ll or LL

52 Language § 6.4.4.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6 If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has
no type.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1).

6.4.4.2 Floating constants
Syntax

1 floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L df dd dl DF DD DL

§ 6.4.4.2 Language 53

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Constraints
2 A floating suffix df, dd, dl, DF, DD, or DL shall not be used in a hexadecimal floating constant.

Description
3 A floating constant has a significand part that may be followed by an exponent part and a suffix that

specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part
has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

Semantics
4 The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence

in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

5 An unsuffixed floating constant has type double. If suffixed by a floating suffix it has a type
according to the following table:

Suffixes for floating-point constants

Suffix Type
f, F float
l, L long double
df, DF _Decimal32
dd, DD _Decimal64
dl, DL _Decimal128

6 The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2 regarding
evaluation formats.80)

7 Floating constants of decimal floating type that have the same numerical value but different quantum
exponents have distinguishable internal representations. The value shall be correctly rounded as
specified in IEC 60559. The coefficient c and the quantum exponent q of a finite converted decimal
floating-point number (see 5.2.4.2.3) are determined as follows:

— q is set to the value of signopt digit-sequence in the exponent part, if any, or to 0, otherwise.

— If there is a fractional constant, q is decreased by the number of digits to the right of the period
and the period is removed to form a digit sequence.

— c is set to the value of the digit sequence (after any period has been removed).

— Rounding required because of insufficient precision or range in the type of the result will
round c to the full precision available in the type, and will adjust q accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case the result

80)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

54 Language § 6.4.4.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

is an appropriately signed internal representation of infinity). If the full precision of the type
would require q to be smaller than the minimum for the type, then q is pinned at the minimum
and c is adjusted through the subnormal range accordingly, perhaps to zero.

8 Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form81) shall convert to the same internal format with
the same value.

9 EXAMPLE Following are floating constants of type _Decimal64 and their values as triples (s, c, q). Note that for
_Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range is −398 ≤ q ≤ 369.

0.dd (+1, 0, 0)
0.00dd (+1, 0,−2)
123.dd (+1, 123, 0)
1.23E3dd (+1, 123, 1)
1.23E+3dd (+1, 123, 1)
12.3E+7dd (+1, 123, 6)
12.0dd (+1, 120,−1)
12.3dd (+1, 123,−1)
0.00123dd (+1, 123,−5)
1.23E-12dd (+1, 123,−14)
1234.5E-4dd (+1, 12345,−5)
0E+7dd (+1, 0, 7)
12345678901234567890.dd (+1, 1234567890123457, 4) assuming default rounding and DEC_EVAL_METHOD is 0

or 182)

1234E-400dd (+1, 12,−398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1
1234E-402dd (+1, 0,−398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1
1000.dd (+1, 1000, 0)
.0001dd (+1, 1,−4)
1000.e0dd (+1, 1000, 0)
.0001e0dd (+1, 1,−4)
1000.0dd (+1, 10000,−1)
0.0001dd (+1, 1,−4)
1000.00dd (+1, 100000,−2)
00.0001dd (+1, 1,−4)
001000.dd (+1, 1000, 0)
001000.0dd (+1, 10000,−1)
001000.00dd (+1, 100000,−2)
00.00dd (+1, 0,−2)
00.dd (+1, 0, 0)
.00dd (+1, 0,−2)
00.00e-5dd (+1, 0,−7)
00.e-5dd (+1, 0,−5)
.00e-5dd (+1, 0,−7)

Recommended practice
10 The implementation should produce a diagnostic message if a hexadecimal constant cannot be

represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

11 The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding. 83)

12 NOTE Floating constants do not include a sign and are negated by the unary - operator (6.5.3.3) which negates the rounded
value of the constant. In contrast, the numeric conversion functions in the strto family (7.22.1.5, 7.22.1.6) include the sign as
part of the input value and convert and round the negated input. Negating before rounding and negating after rounding
might yield different results, depending on the rounding direction and whether the results are correctly rounded. For
example, the results are the same when both are correctly rounded using rounding to nearest or rounding toward zero, but
the results are different when they are inexact and correctly rounded using rounding toward positive infinity or rounding

81)1.23, 1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus need not convert to the same internal
format and value.

82)That is, assuming the default translation rounding-direction mode is not changed by an FENV_DEC_ROUND pragma (7.6.3).
83)The specification for the library functions recommends more accurate conversion than required for floating constants

(see 7.22.1.5).

§ 6.4.4.2 Language 55

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

toward negative infinity.

Conversions yielding exact results require no rounding, so are not affected by the order of negating and rounding. For
types with radix 10, decimal floating constants expressed within the precision and range of the evaluation format convert
exactly. For types whose radix is a power of 2, hexadecimal floating constants expressed within the precision and range of the
evaluation format convert exactly.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1), the
strto function family (7.22.1.5, 7.22.1.6).

6.4.4.3 Enumeration constants
Syntax

1 enumeration-constant:
identifier

Semantics
2 An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax

1 character-constant:
encoding-prefixopt ’ c-char-sequence ’

encoding-prefix:
u8
u
U
L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

56 Language § 6.4.4.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 An integer character constant is a sequence of one or more multibyte characters enclosed in single-

quotes, as in’x’ . A UTF–8 character constant is the same, except prefixed by u8. A wide character
constant is the same, except prefixed by the letter L, u, or U. With a few exceptions detailed later,
the elements of the sequence are any members of the source character set; they are mapped in an
implementation-defined manner to members of the execution character set.

3 The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote’ \’
double quote " \"
question mark ? \?
backslash \ \\
octal character \octal digits
hexadecimal character \x hexadecimal digits

4 The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ’ and the backslash \ shall be represented,
respectively, by the escape sequences \’ and \\.

5 The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

6 The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

7 Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

8 In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \

followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.84)

Constraints
9 The value of an octal or hexadecimal escape sequence shall be in the range of representable values

for the corresponding type:

Prefix Corresponding Type
none unsigned char
u8 unsigned char
L the unsigned type corresponding to wchar_t
u char16_t
U char32_t

10 A UTF–8 character constant shall not contain more than one character.85) The value shall be
representable with a single UTF–8 code unit.

Semantics
11 An integer character constant has type int. The value of an integer character constant containing

a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,’ab’), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer

84)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See "future language directions" (6.11.4).

85)For example u8’ab’ violates this constraint.

§ 6.4.4.4 Language 57

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

12 A UTF–8 character constant has type unsigned char. The value of a UTF–8 character constant is
equal to its ISO/IEC 10646 code point value, provided that the code point value can be encoded as a
single UTF–8 code unit.

13 A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the
<stddef.h> header; a wide character constant prefixed by the letter u or U has type char16_t or
char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtoc16, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

14 EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

15 EXAMPLE 2 Consider implementations that use eight bits for objects that have type char. In an implementation in which
type char has the same range of values as signed char, the integer character constant’\xFF’ has the value −1; if type
char has the same range of values as unsigned char, the character constant’\xFF’ has the value +255.

16 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are’\x12’ and’3’ , the
construction’\0223’ can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

17 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’ specifies the
implementation-defined value that results from the combination of the values 0123 and’4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 If a sequence of adjacent string literal tokens includes prefixed string literal tokens, the prefixed

tokens shall all have the same prefix.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF–8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF–8 string literal) or a wide character constant (for a

58 Language § 6.4.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

wide string literal), except that the single-quote’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

Semantics
5 In translation phase 6, the multibyte character sequences specified by any sequence of adjacent

character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.

6 In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals. 86) The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF–8 string literals, the array elements have type
char, and are initialized with the characters of the multibyte character sequence, as encoded in
UTF–8. For wide string literals prefixed by the letter L, the array elements have type wchar_t and are
initialized with the sequence of wide characters corresponding to the multibyte character sequence,
as defined by the mbstowcs function with an implementation-defined current locale.For wide string
literals prefixed by the letter u or U, the array elements have type char16_t or char32_t, respectively,
and are initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by successive calls to the mbrtoc16, or mbrtoc32 function as appropriate for
its type, with an implementation-defined current locale. The value of a string literal containing a
multibyte character or escape sequence not represented in the execution character set is implementa-
tion-defined.

7 It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

8 EXAMPLE 1 This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are’\x12’ and’3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

9 EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

86)A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

§ 6.4.5 Language 59

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : :: ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

Semantics
2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on

context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

3 In all aspects of the language, the six tokens87)

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[] { } # ##

except for their spelling.88)

Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).

6.4.7 Header names
Syntax

1 header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and "

87)These tokens are sometimes called "digraphs".
88)Thus [and<: behave differently when "stringized" (see 6.10.3.2), but can otherwise be freely interchanged.

60 Language § 6.4.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Semantics
2 The sequences in both forms of header names are mapped in an implementation-defined manner to

headers or external source file names as specified in 6.10.2.

3 If the characters’ , \, ", //, or /* occur in the sequence between the< and > delimiters, the behavior
is undefined. Similarly, if the characters ’ , \, //, or /* occur in the sequence between the "
delimiters, the behavior is undefined.89) Header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives.90)

4 EXAMPLE The following sequence of characters:

0x3<1/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by a { on the left
and a } on the right).

{0x3}{<}{1}{/}{a}{.}{h}{>}{1e2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

1 pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description
2 A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed

by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

3 Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics
4 A preprocessing number does not have type or a value; it acquires both after a successful conversion

(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments
1 Except within a character constant, a string literal, or a comment, the characters /* introduce a

comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters */ that terminate it.91)

2 Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.

89)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
90)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.
91)Thus, /* . . .*/ comments do not nest.

§ 6.4.9 Language 61

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

3 EXAMPLE

"a//b" // four-character string literal
#include "//e" // undefined behavior
// */ // comment, not syntax error
f = g/**//h; // equivalent to f = g / h;
//\
i(); // part of a two-line comment
/\
/ j(); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/*//*/ l(); // equivalent to l();
m = n//**/o
+ p; // equivalent to m = n + p;

62 Language § 6.4.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.5 Expressions
1 An expression is a sequence of operators and operands that specifies computation of a value,92) or

that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

2 If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.93)

3 The grouping of operators and operands is indicated by the syntax.94) Except as specified later, side
effects and value computations of subexpressions are unsequenced.95)

4 Some operators (the unary operator ~ , and the binary operators << , >>, &, ^, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

5 If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

6 The effective type of an object for an access to its stored value is the declared type of the object, if
any.96) If a value is stored into an object having no declared type through an lvalue having a type
that is not a character type, then the type of the lvalue becomes the effective type of the object for
that access and for subsequent accesses that do not modify the stored value. If a value is copied into
an object having no declared type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and for subsequent accesses that
do not modify the value is the effective type of the object from which the value is copied, if it has
one. For all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:97)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

92)Annex H documents the extent to which the C language supports the ISO/IEC 10967–1 standard for language-
independent arithmetic (LIA–1).

93)This paragraph renders undefined statement expressions such as

i = ++i + 1;
a[i++] = i;

while allowing

i = i + 1;
a[i] = i;

94)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

95)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

96)Allocated objects have no declared type.
97)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§ 6.5 Language 63

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evalua-
tion method.98) The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted
expressions. Otherwise, whether and how expressions are contracted is implementation-defined.99)

9 Operators involving decimal floating types are evaluated according to the semantics of IEC 60559,
including production of results with the preferred quantum exponent as specified in IEC 60559.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics
2 An identifier is a primary expression, provided it has been declared as designating an object (in

which case it is an lvalue) or a function (in which case it is a function designator).100)

3 A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

4 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

5 A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an lvalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function designator, or a void expression.

6 A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax

1 generic-selection:
_Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association
generic-assoc-list , generic-association

98)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

99)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.
100)Thus, an undeclared identifier is a violation of the syntax.

64 Language § 6.5.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

generic-association:
type-name : assignment-expression
default : assignment-expression

Constraints
2 A generic selection shall have no more than one default generic association. The type name in a

generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,101)

array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics
3 The controlling expression of a generic selection is not evaluated. If a generic selection has a generic

association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

4 The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

5 EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

See 7.25 how such a macro could be implemented with the required rounding properties.

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
(type-name) { initializer-list }
(type-name) { initializer-list , }

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

101)An lvalue conversion drops type qualifiers.

§ 6.5.2 Language 65

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.5.2.1 Array subscripting
Constraints

1 One of the expressions shall have type "pointer to complete object type", the other expression shall
have integer type, and the result has type "type".

Semantics
2 A postfix expression followed by an expression in square brackets [] is a subscripted designation of

an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((E1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n ≥ 2) with dimensions i× j × · · · × k, then E (used as other than an lvalue) is
converted to a pointer to an (n− 1)-dimensional array with dimensions j × · · · × k. If the unary*
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n− 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

4 EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Here x

is a 3× 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[i],
which is equivalent to (*((x)+(i))), x is first converted to a pointer to the initial array of five int s. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[i][j], that array is in turn converted to a pointer to the first of the int s, so x[i][j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

1 The expression that denotes the called function102) shall have type pointer to function returning
void or returning a complete object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the number of
arguments shall agree with the number of parameters. Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the type of its corresponding
parameter.

Semantics
3 A postfix expression followed by parentheses () containing a possibly empty, comma-separated

list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

4 An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.103)

5 If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined
as specified in 6.8.6.4. Otherwise, the function call has type void.

102)Most often, this is the result of converting an identifier that is a function designator.
103)A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the

other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A
parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

66 Language § 6.5.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6 If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with
a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined.

7 If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

10 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.104)

11 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
to by pf[f1()] is called.

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), the return statement
(6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,105) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

4 A postfix expression followed by the-> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression
points, and is an lvalue.106) If the first expression is a pointer to a qualified type, the result has the

104)In other words, function executions do not "interleave" with each other.
105)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called "type punning"). This might be a trap representation.
106)If &E is a valid pointer expression (where & is the "address-of" operator, which generates a pointer to its operand), the

expression (&E)->MOS is the same as E.MOS.

§ 6.5.2.3 Language 67

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

so-qualified version of the type of the designated member.

5 Accessing a member of an atomic structure or union object results in undefined behavior.107)

6 One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

7 EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f().x is a valid
postfix expression but is not an lvalue.

8 EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;
const struct s cs;
volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

9 EXAMPLE 3 The following is a valid fragment:

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 *p1, struct t2 *p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()

107)For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

68 Language § 6.5.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

{
union {

struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

1 The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The result of the postfix++ operator is the value of the operand. As a side effect, the value of the

operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix++ is a single evaluation. Postfix
++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.108)

3 The postfix-- operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals
Constraints

1 The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

2 All the constraints for initializer lists in 6.7.9 also apply to compound literals.

Semantics
3 A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.109)

4 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise

108)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T *addr = &E;
T old = *addr;
T new;
do {

new = old + 1;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.

109)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an lvalue.

§ 6.5.2.5 Language 69

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

5 The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

6 All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.110)

7 String literals, and compound literals with const-qualified types, need not designate distinct ob-
jects.111)

8 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

9 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

10 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

11 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

12 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

110)For example, subobjects without explicit initializers are initialized to zero.
111)This allows implementations to share storage for string literals and constant compound literals with the same or

overlapping representations.

70 Language § 6.5.2.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a label, the lifetime of the unnamed object would
be the body of the loop only, and on entry next time around p would have an indeterminate value, which would result in
undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
_Alignof (type-name)

unary-operator: one of
& * + - ~ !

6.5.3.1 Prefix increment and decrement operators
Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The value of the operand of the prefix++ operator is incremented. The result is the new value of the

operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

3 The prefix-- operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

§ 6.5.3.1 Language 71

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

1 The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

2 The operand of the unary* operator shall have pointer type.

Semantics
3 The unary & operator yields the address of its operand. If the operand has type "type", the result has

type "pointer to type". If the operand is the result of a unary* operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary* that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

4 The unary* operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type "pointer to type", the result has type "type". If an invalid value has been assigned to the pointer,
the behavior of the unary* operator is undefined.112)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

1 The operand of the unary+ or- operator shall have arithmetic type; of the~ operator, integer type;
of the ! operator, scalar type.

Semantics
2 The result of the unary+ operator is the value of its (promoted) operand. The integer promotions

are performed on the operand, and the result has the promoted type.

3 The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

4 The result of the~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression~E is equivalent to the maximum value representable in
that type minus E.

5 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to
0, 1 if the value of its operand compares equal to 0. The result has type int. The expression !E is
equivalent to (0==E).

6.5.3.4 The sizeof and _Alignof operators
Constraints

1 The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The _Alignof operator shall not be applied to a function type or an incomplete type.

112)Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if E is a
function designator or an lvalue that is a valid operand of the unary & operator,*&E is a function designator or an lvalue
equal to E. If*P is an lvalue and T is the name of an object pointer type,*(T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary* operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

72 Language § 6.5.3.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Semantics
2 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the

parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

3 The _Alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

4 When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.113) When applied to an operand that has structure or
union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

5 The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef.h> (and other headers).

6 EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O
systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

7 EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

8 EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // variable length array
return sizeof b; // execution time sizeof

}

int main()
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

Forward references: common definitions <stddef.h> (7.19), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

6.5.4 Cast operators
Syntax

1 cast-expression:
unary-expression
(type-name) cast-expression

113)When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted
(pointer) type (see 6.9.1).

§ 6.5.4 Language 73

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Constraints
2 Unless the type name specifies a void type, the type name shall specify atomic, qualified, or

unqualified scalar type, and the operand shall have scalar type.

3 Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be
specified by means of an explicit cast.

4 A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

Semantics
5 Preceding an expression by a parenthesized type name converts the value of the expression to the

unqualified version of the named type. This construction is called a cast.114) A cast that specifies no
conversion has no effect on the type or value of an expression.

6 If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.9), function declarators (6.7.6.3), simple assignment
(6.5.16.1), type names (6.7.7).

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints
2 Each of the operands shall have arithmetic type. The operands of the % operator shall have integer

type.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 The usual arithmetic conversions are performed on the operands.

5 The result of the binary* operator is the product of the operands.

6 The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

7 When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.115) If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;
otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

114)A cast does not yield an lvalue.
115)This is often called "truncation toward zero".

74 Language § 6.5.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Constraints
2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a

complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

4 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
5 If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

6 The result of the binary+ operator is the sum of the operands.

7 The result of the binary- operator is the difference resulting from the subtraction of the second
operand from the first.

8 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

9 When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i+ n-th
and i− n-th elements of the array object, provided they exist. Moreover, if the expression P points to
the last element of an array object, the expression (P)+1 points one past the last element of the array
object, and if the expression Q points one past the last element of an array object, the expression
(Q)-1 points to the last element of the array object. If both the pointer operand and the result point
to elements of the same array object, or one past the last element of the array object, the evaluation
shall not produce an overflow; otherwise, the behavior is undefined. If the result points one past
the last element of the array object, it shall not be used as the operand of a unary* operator that is
evaluated.

10 When two pointers are subtracted, both shall point to elements of the same array object, or one past
the last element of the array object; the result is the difference of the subscripts of the two array
elements. The size of the result is implementation-defined, and its type (a signed integer type) is
ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object of that
type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the
i-th and j-th elements of an array object, the expression (P)-(Q) has the value i− j provided the
value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1
and as-((P)-((Q)+1)) , and has the value zero if the expression P points one past the last element
of the array object, even though the expression (Q)+1 does not point to an element of the array
object.116)

116)Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the

§ 6.5.6 Language 75

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

11 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

12 If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef.h> (7.19).

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The integer promotions are performed on each of the operands. The type of the result is that of the

promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1× 2E2, reduced modulo one more than the maximum
value representable in the result type. If E1 has a signed type and nonnegative value, and E1× 2E2 is
representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

5 The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of
E1/2E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

1 relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
2 One of the following shall hold:

— both operands have real type; or

integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally
pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference
between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the
program) just after the end of the object in order to satisfy the "one past the last element" requirements.

76 Language § 6.5.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— both operands are pointers to qualified or unqualified versions of compatible object types.

3 If either operand has decimal floating type, the other operand shall not have standard floating type.

Semantics
4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

5 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

7 Each of the operators< (less than), > (greater than),<= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.117) The result has type int.

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints
2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for

their lower precedence.118) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

5 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts

117)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, "if a is less than b, compare 1 to c; otherwise, compare 0 to c".

118)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

§ 6.5.9 Language 77

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

6 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

7 Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.119)

8 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator
Syntax

1 AND-expression:
equality-expression

AND-expression & equality-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.11 Bitwise exclusive OR operator
Syntax

1 exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the ^ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

119)Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members
of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

78 Language § 6.5.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.5.12 Bitwise inclusive OR operator
Syntax

1 inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.13 Logical AND operator
Syntax

1 logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
2 Each of the operands shall have scalar type.

Semantics
3 The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The

result has type int.

4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator
Syntax

1 logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
2 Each of the operands shall have scalar type.

Semantics
3 The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0.

The result has type int.

4 Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

6.5.15 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

§ 6.5.15 Language 79

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Constraints
2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

4 If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics
5 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.120)

6 If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

7 If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

8 EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

9 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

120)A conditional expression does not yield an lvalue.

80 Language § 6.5.15

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

Constraints
2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics
3 An assignment operator stores a value in the object designated by the left operand. An assignment

expression has the value of the left operand after the assignment,121) but is not an lvalue. The type of
an assignment expression is the type the left operand would have after lvalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of
the left and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints

1 One of the following shall hold:122)

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer
constant; or

— the left operand has type atomic, qualified, or unqualified _Bool, and the right is a pointer.

Semantics
2 In simple assignment (=), the value of the right operand is converted to the type of the assignment

expression and replaces the value stored in the object designated by the left operand. 123)

3 If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

4 EXAMPLE 1 In the program fragment

121)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.
122)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in

6.3.2.1) that changes lvalues to "the value of the expression" and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).
123)As described in 6.2.6.1, a store to an object with atomic type is done with memory_order_seq_cst semantics.

§ 6.5.16.1 Language 81

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int f(void);
char c;
/* ... */
if ((c = f()) == -1)

/* ... */

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which "plain" char has the same range of values as unsigned char (and
char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable c would be declared as int.

5 EXAMPLE 2 In the fragment:

char c;
int i;
long l;

l = (c = i);

the value of i is converted to the type of the assignment expression c = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, long int type.

6 EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char c = ’A’;

cpp = &p; // constraint violation

*cpp = &c; // valid

*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.16.2 Compound assignment
Constraints

1 For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

2 For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after lvalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
4 A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression

E1 = E1 op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
terminately-sequenced function call, the operation of a compound assignment is a single evalu-
ation. If E1 has an atomic type, compound assignment is a read-modify-write operation with
memory_order_seq_cst memory order semantics.

5 NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the following
code sequence where T1 is the type of E1 and T2 is the type of E2:

T1 *addr = &E1;
T2 val = (E2);
T1 old = *addr;
T1 new;
do {

new = old op val;

82 Language § 6.5.16.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

} while (!atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is 0, the
equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* ... */

fenv_t fenv;
T1 *addr = &E1;
T2 val = E2;
T1 old = *addr;
T1 new;
feholdexcept(&fenv);
for (;;) {

new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))

break;
feclearexcept(FE_ALL_EXCEPT);

}
feupdateenv(&fenv);

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is evaluated in order
to satisfy the equivalence.

6.5.17 Comma operator
Syntax

1 expression:
assignment-expression
expression , assignment-expression

Semantics
2 The left operand of a comma operator is evaluated as a void expression; there is a sequence point

between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.124)

3 EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in contexts where
a comma is used to separate items in a list (such as arguments to functions or lists of initializers). On the other hand, it can be
used within a parenthesized expression or within the second expression of a conditional operator in such contexts. In the
function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.9).

124)A comma operator does not yield an lvalue.

§ 6.5.17 Language 83

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.6 Constant expressions
Syntax

1 constant-expression:
conditional-expression

Description
2 A constant expression can be evaluated during translation rather than runtime, and accordingly

may be used in any place that a constant may be.

Constraints
3 Constant expressions shall not contain assignment, increment, decrement, function-call, or comma

operators, except when they are contained within a subexpression that is not evaluated.125)

4 Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

Semantics
5 An expression that evaluates to a constant is required in several contexts. If a floating expression

is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment. 126)

6 An integer constant expression127) shall have integer type and shall only have operands that are integer
constants, enumeration constants, character constants, sizeof expressions whose results are integer
constants, _Alignof expressions, and floating constants that are the immediate operands of casts.
Cast operators in an integer constant expression shall only convert arithmetic types to integer types,
except as part of an operand to the sizeof or _Alignof operator.

7 More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

— an arithmetic constant expression,

— a null pointer constant,

— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

8 An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, enumeration constants, character constants, sizeof expressions
whose results are integer constants, and _Alignof expressions. Cast operators in an arithmetic
constant expression shall only convert arithmetic types to arithmetic types, except as part of an
operand to a sizeof or _Alignof operator.

9 An address constant is a null pointer, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array
or function type. The array-subscript [] and member-access . and-> operators, the address & and
indirection* unary operators, and pointer casts may be used in the creation of an address constant,
but the value of an object shall not be accessed by use of these operators.

10 An implementation may accept other forms of constant expressions.

125)The operand of a sizeof or _Alignof operator is usually not evaluated (6.5.3.4).
126)The use of evaluation formats as characterized by FLT_EVAL_METHOD and DEC_EVAL_METHOD also applies to evaluation in

the translation environment.
127)An integer constant expression is required in a number of contexts such as the size of a bit-field member of a structure,

the value of an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer
constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

84 Language § 6.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

11 The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.128)

Forward references: array declarators (6.7.6.2), initialization (6.7.9).

128)Thus, in the following initialization,

static int i = 2 || 1 / 0;

the expression is a valid integer constant expression with value one.

§ 6.6 Language 85

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.7 Declarations
Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration attribute-declaration

declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers

declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

attribute-declaration:
attribute-specifier-sequence ;

Constraints
2 A declaration other than a static_assert or attribute declaration shall declare at least a declarator

(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics
5 A declaration specifies the interpretation and properties of a set of identifiers. A definition of an

identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;129)

— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

6 The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that
the declarators denote. The init declarator list is a comma-separated sequence of declarators, each of
which may have additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared. The optional attribute specifier sequence appertains to each of the
entities declared by the declarators of the init declarator list.

129)Function definitions have a different syntax, described in 6.9.1.

86 Language § 6.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7 If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters, it is the adjusted type (see 6.7.6.3) that is required to be complete.

8 The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

9 Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.
10 EXAMPLE In the declaration for an entity, attributes appertaining to that entity may appear at the start of the declaration

and after the identifier for that declaration.

[[deprecated]] void f [[deprecated]] (void); // valid

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.9), type
names (6.7.7), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register

Constraints
2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except

that _Thread_local may appear with static or extern.130)

3 In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 _Thread_local shall not appear in the declaration specifiers of a function declaration.

Semantics
5 The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it is

discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4.

6 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.131)

7 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

8 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

Forward references: type definitions (6.7.8).
130)See "future language directions" (6.11.5).
131)The implementation can treat any register declaration simply as an auto declaration. However, whether or not

addressable storage is actually used, the address of any part of an object declared with storage-class specifier register
cannot be computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting
an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.

§ 6.7.1 Language 87

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Decimal32
_Decimal64
_Decimal128
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints
2 At least one type specifier shall be given in the declaration specifiers in each declaration, and in the

specifier-qualifier list in each member declaration and type name. Each list of type specifiers shall
be one of the following multisets (delimited by commas, when there is more than one multiset per
item); the type specifiers may occur in any order, possibly intermixed with the other declaration
specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int

— unsigned long long, or unsigned long long int

— float

— double

— long double

— _Decimal32

— _Decimal64

— _Decimal128

— _Bool

88 Language § 6.7.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— float _Complex

— double _Complex

— long double _Complex

— atomic type specifier

— struct or union specifier

— enum specifier

— typedef name

3 The type specifier _Complex shall not be used if the implementation does not support complex
types, and the type specifiers _Decimal32, _Decimal64, and _Decimal128 shall not be used if the
implementation does not support decimal floating types (see 6.10.8.3).

Semantics
4 Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through

6.7.2.4. Declarations of typedef names are discussed in 6.7.8. The characteristics of the other types
are discussed in 6.2.5.

5 Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

6.7.2.1 Structure and union specifiers
Syntax

1 struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }
struct-or-union attribute-specifier-sequenceopt identifier

struct-or-union:
struct
union

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
attribute-specifier-sequenceopt specifier-qualifier-list member-declarator-listopt ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

§ 6.7.2.1 Language 89

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator
declaratoropt : constant-expression

Constraints
2 A member declaration that does not declare an anonymous structure or anonymous union shall

contain a member declarator list.

3 A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

4 The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.132) If the value is zero, the declaration shall have no
declarator.

5 A bit-field shall have a type that is a qualified or unqualified version of _Bool, signed int,
unsigned int, or some other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

6 An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics
7 As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is

allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

8 Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

9 The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

10 The presence of a member declaration list in a struct-or-union specifier declares a new type, within
a translation unit. The member declaration list is a sequence of declarations for the members of
the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the} that terminates the list, and complete thereafter.

11 A member of a structure or union may have any complete object type other than a variably modified
type.133) In addition, a member may be declared to consist of a specified number of bits (including

132)While the number of bits in a _Bool object is at least CHAR_BIT, the width of a _Bool can be just 1 bit.
133)A structure or union cannot contain a member with a variably modified type because member names are not ordinary

90 Language § 6.7.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

a sign bit, if any). Such a member is called a bit-field;134) its width is preceded by a colon.

12 A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.135) If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a _Bool bit-field has the semantics of a
_Bool.

13 An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

14 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.136) As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

15 An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

16 Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

17 Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

18 The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

19 There may be unnamed padding at the end of a structure or union.

20 As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

21 EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

struct [[deprecated]] S; // valid, [[deprecated]] appertains to struct S
void f(struct S *s); // valid, the struct S type has the [[deprecated]]

// attribute
struct S { // valid, struct S inherits the [[deprecated]] attribute

identifiers as defined in 6.2.3.
134)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field

objects.
135)As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is

implementation-defined whether the bit-field is signed or unsigned.
136)An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

§ 6.7.2.1 Language 91

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int a; // from the previous declaration
};
void g(struct [[deprecated]] S s); // invalid

22 EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union

struct { int i, j; }; // anonymous structure
struct { long k, l; } w;

};
int m;

} v1;

v1.i = 2; // valid
v1.k = 3; // invalid: inner structure is not anonymous
v1.w.k = 5; // valid

23 EXAMPLE 3 After the declaration:

struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /* some value */;
struct s *p = malloc(sizeof (struct s) + sizeof (double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p had been
declared as:

struct { int n; double d[m]; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might not be the same).

24 Following the above declaration:

struct s t1 = { 0 }; // valid
struct s t2 = { 1, { 4.2 }}; // invalid
t1.n = 4; // valid
t1.d[0] = 4.2; // might be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain member d.
The assignment to t1.d[0] is probably undefined behavior, but it is possible that

sizeof (struct s) >= offsetof(struct s, d) + sizeof (double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

25 After the further declaration:

struct ss { int n; };

the expressions:

sizeof (struct s) >= sizeof (struct ss)
sizeof (struct s) >= offsetof(struct s, d)

are always equal to 1.

26 If sizeof (double) is 8, then after the following code is executed:

struct s *s1;
struct s *s2;
s1 = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

92 Language § 6.7.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes, as if the
identifiers had been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

27 Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;
dp = &(s1->d[0]); // valid

*dp = 42; // valid
dp = &(s2->d[0]); // valid

*dp = 42; // undefined behavior

28 The assignment:

*s1 = *s2;

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
might be copied or simply overwritten with indeterminate values.

29 EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the containing
structure or union, struct s in the following example has more than one named member and thus the use of a flexible array
member is valid:

struct s {
struct { int i; };
int a[];

};

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers
Syntax

1 enum-specifier:
enum attribute-specifier-sequenceopt identifieropt { enumerator-list }
enum attribute-specifier-sequenceopt identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant attribute-specifier-sequenceopt
enumeration-constant attribute-specifier-sequenceopt = constant-expression

Constraints
2 The expression that defines the value of an enumeration constant shall be an integer constant

expression that has a value representable as an int.

Semantics
3 The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the

attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration

§ 6.7.2.2 Language 93

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

4 The identifiers in an enumerator list are declared as constants that have type int and may appear
wherever such are permitted.137) An enumerator with = defines its enumeration constant as the
value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

5 Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,138) but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the} that terminates the list of enumerator declarations, and complete thereafter.

6 EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &col;
if (*cp != burgundy)

/* ... */

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1, 20, 21}.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags
Constraints

1 A specific type shall have its content defined at most once.

2 Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum.

3 A type specifier of the form

enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

4 A type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

shall not contain an attribute specifier sequence.139)

Semantics
5 All declarations of structure, union, or enumerated types that have the same scope and use the same

tag declare the same type. Irrespective of whether there is a tag or what other declarations of the
type are in the same translation unit, the type is incomplete140) until immediately after the closing
brace of the list defining the content, and complete thereafter.

6 Two declarations of structure, union, or enumerated types which are in different scopes or use

137)Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.
138)An implementation can delay the choice of which integer type until all enumeration constants have been seen.
139)As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.
140)An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,

when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. (See incomplete types in 6.2.5.) The specification has to be complete before such a
function is called or defined.

94 Language § 6.7.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

7 A type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }

or

enum attribute-specifier-sequenceopt identifieropt { enumerator-list }

or

enum attribute-specifier-sequenceopt identifieropt { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,141) the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumeration type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumeration type whenever it is named.

8 A declaration of the form

struct-or-union attribute-specifier-sequenceopt identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.142) The optional
attribute specifier sequence appertains to the structure or union type being declared; the attributes
in that attribute specifier sequence are thereafter considered attributes of the structure or union type
whenever it is named.

9 If a type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.142)

10 If a type specifier of the form

struct-or-union attribute-specifier-sequenceopt identifier

or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

11 EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations, the
expression sp->left refers to the left struct tnode pointer of the object to which sp points; the expression s.right->count
designates the count member of the right struct tnode pointed to from s.

12 The following alternative formulation uses the typedef mechanism:

141)If there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.
Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.
142)A similar construction with enum does not exist.

§ 6.7.2.3 Language 95

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

typedef struct tnode TNODE;
struct tnode {

int count;
TNODE *left, *right;

};
TNODE s, *sp;

13 EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, the
declarations

struct s1 { struct s2 *s2p; /* ... */ }; // D1
struct s2 { struct s1 *s1p; /* ... */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax

1 atomic-type-specifier:
_Atomic (type-name)

Constraints
2 Atomic type specifiers shall not be used if the implementation does not support atomic types (see

6.10.8.3).

3 The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics
4 The properties associated with atomic types are meaningful only for expressions that are lvalues.

If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers
Syntax

1 type-qualifier:
const
restrict
volatile
_Atomic

Constraints
2 Types other than pointer types whose referenced type is an object type and (possibly multi-

dimensional) array types with such pointer types as element type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

96 Language § 6.7.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Semantics
5 The properties associated with qualified types are meaningful only for expressions that are lval-

ues.143)

6 If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the _Atomic qualifier the resulting type is the so-qualified
atomic type.

7 If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.144)

8 An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.145) What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

9 An object that is accessed through a restrict-qualified pointer has a special association with that
pointer. This association, defined in 6.7.3.1 below, requires that all accesses to that object use, directly
or indirectly, the value of that particular pointer.146) The intended use of the restrict qualifier (like
the register storage class) is to promote optimization, and deleting all instances of the qualifier
from all preprocessing translation units composing a conforming program does not change its
meaning (i.e., observable behavior).

10 If the specification of an array type includes any type qualifiers, both the array and the element type
is so-qualified. If the specification of a function type includes any type qualifiers, the behavior is
undefined.147)

11 For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

12 EXAMPLE 1 An object declared

extern const volatile int real_time_clock;

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

13 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate
type:

const struct s { int mem; } cs = { 1 };
struct s ncs; // the object ncs is modifiable
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;
const int *pci;

ncs = cs; // valid

143)The implementation can place a const object that is not volatile in a read-only region of storage. Moreover, the
implementation need not allocate storage for such an object if its address is never used.
144)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually

defined as objects in the program (such as an object at a memory-mapped input/output address).
145)A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an

object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be "optimized
out" by an implementation or reordered except as permitted by the rules for evaluating expressions.
146)For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between

the allocated object and the pointer.
147)This can occur through the use of typedef s. Note that this rule does not apply to the _Atomic qualifier, and that

qualifiers do not have any direct effect on the array type itself, but affect conversion rules for pointer types that reference an
array type.

§ 6.7.3 Language 97

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

cs = ncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid
pi = &cs.mem; // violates type constraints for =
pci = &cs.mem; // valid
pi = a[0]; // invalid: a[0] has type "const int *"

14 EXAMPLE 3 The declaration

_Atomic volatile int *p;

specifies that p has the type "pointer to volatile atomic int", a pointer to a volatile-qualified atomic type.

98 Language § 6.7.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.7.3.1 Formal definition of restrict
1 Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a

restrict-qualified pointer to type T.

2 If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated block.
Otherwise, let B denote the block of main (or the block of whatever function is called at program
startup in a freestanding environment).

3 In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into
which it formerly pointed would change the value of E.148) Note that "based" is defined only for
expressions with pointer types.

4 During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of
X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another restricted pointer object P2, associated with block B2, then either the execution
of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment.
If these requirements are not met, then the behavior is undefined.

5 Here an execution of B means that portion of the execution of the program that would correspond to
the lifetime of an object with scalar type and automatic storage duration associated with B.

6 A translator is free to ignore any or all aliasing implications of uses of restrict.
7 EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or c, and that object is modified anywhere in the program, then it is never
accessed using either of the other two.

8 EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{

while (n-- > 0)

*p++ = *q++;
}

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters, then it is not
also accessed through the other. The translator can make this no-aliasing inference based on the parameter declarations alone,
without analyzing the function body.

9 The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence analysis of function f
without examining any of the calls of f in the program. The cost is that the programmer has to examine all of those calls to
ensure that none give undefined behavior. For example, the second call of f in g has undefined behavior because each of
d[1] through d[49] is accessed through both p and q.

void g(void)
{

extern int d[100];
f(50, d + 50, d); // valid
f(50, d + 1, d); // undefined behavior

}

148)In other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int **restrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions*p and p[1] are not.

§ 6.7.3.1 Language 99

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

10 EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict q, int * restrict r)
{

int i;
for (i = 0; i < n; i++)

p[i] = q[i] + r[i];
}

illustrate how an unmodified object can be aliased through two restricted pointers. In particular, if a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

11 EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a function call and
an equivalent nested block. With one exception, only "outer-to-inner" assignments between restricted pointers declared in
nested blocks have defined behavior.

{
int * restrict p1;
int * restrict q1;
p1 = q1; // undefined behavior
{

int * restrict p2 = p1; // valid
int * restrict q2 = q1; // valid
p1 = q2; // undefined behavior
p2 = q2; // undefined behavior

}
}

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more precisely, the
ordinary identifier used to designate it) is declared when that block finishes execution. For example, this permits new_vector
to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{

vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;

}

13 EXAMPLE 5 Suppose that a programmer knows that references of the form p[i] and q[j] are never aliases in the body of a
function:

void f(int n, int *p, int *q) { /* ... */ }

There are several ways that this information could be conveyed to a translator using the restrict qualifier. Example 2 shows
the most effective way, qualifying all pointer parameters, and can be used provided that neither p nor q becomes based on
the other in the function body. A potentially effective alternative is:

void f(int n, int * restrict p, int * const q) { /* ... */ }

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though now
it must use subtler reasoning: that the const-qualification of q precludes it becoming based on p. There is also a requirement
that q is not modified, so this alternative cannot be used for the function in Example 2, as written.

14 EXAMPLE 6 Another potentially effective alternative is:

void f(int n, int *p, int const * restrict q) { /* ... */ }

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though
now it must use even subtler reasoning: that this combination of restrict and const means that objects referenced using q
cannot be modified, and so no modified object can be referenced using both p and q.

100 Language § 6.7.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

15 EXAMPLE 7 The least effective alternative is:

void f(int n, int * restrict p, int *q) { /* ... */ }

Here the translator can make the no-aliasing inference only by analyzing the body of the function and proving that q cannot
become based on p. Some translator designs may choose to exclude this analysis, given availability of the more effective
alternatives above. Such a translator is required to assume that aliases are present because assuming that aliases are not
present may result in an incorrect translation. Also, a translator that attempts the analysis may not succeed in all cases and
thus need to conservatively assume that aliases are present.

6.7.4 Function specifiers
Syntax

1 function-specifier:
inline
_Noreturn

Constraints
2 Function specifiers shall be used only in the declaration of an identifier for a function.

3 An inline definition of a function with external linkage shall not contain a definition of a modifiable
object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

4 In a hosted environment, no function specifier(s) shall appear in a declaration of main.

Semantics
5 A function specifier may appear more than once; the behavior is the same as if it appeared only

once.

6 A function declared with an inline function specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.149) The extent to which such
suggestions are effective is implementation-defined.150)

7 Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all of the file scope declarations for a function in
a translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition
for the function, and does not forbid an external definition in another translation unit. An inline
definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the function
uses the inline definition or the external definition.151)

8 A function declared with a _Noreturn function specifier shall not return to its caller.

Recommended practice
9 The implementation should produce a diagnostic message for a function declared with a _Noreturn

function specifier that appears to be capable of returning to its caller.
10 EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external definition, or a

definition available for use only within the translation unit. A file scope declaration with extern creates an external definition.
The following example shows an entire translation unit.

149)By using, for example, an alternative to the usual function call mechanism, such as "inline substitution". Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.
150)For example, an implementation might never perform inline substitution, or might only perform inline substitutions to

calls in the scope of an inline declaration.
151)Since an inline definition is distinct from the corresponding external definition and from any other corresponding inline

definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

§ 6.7.4 Language 101

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

inline double fahr(double t)
{

return (9.0 * t) / 5.0 + 32.0;
}

inline double cels(double t)
{

return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)
{

/* A translator may perform inline substitutions */
return is_fahr ? cels(temp): fahr(temp);

}

11 Note that the definition of fahr is an external definition because fahr is also declared with extern, but the definition of cels
is an inline definition. Because cels has external linkage and is referenced, an external definition has to appear in another
translation unit (see 6.9); the inline definition and the external definition are distinct and either can be used for the call.

12 EXAMPLE 2

_Noreturn void f () {
abort(); // ok

}

_Noreturn void g (int i) { // causes undefined behavior if i <= 0
if (i > 0) abort();

}

Forward references: function definitions (6.9.1).

6.7.5 Alignment specifier
Syntax

1 alignment-specifier:
_Alignas (type-name)
_Alignas (constant-expression)

Constraints
2 An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the

specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either of the storage-class specifiers
typedef or register, nor in a declaration of a function or bit-field.

3 The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

4 An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

5 The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

102 Language § 6.7.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Semantics
6 The first form is equivalent to _Alignas(_Alignof(type-name)).

7 The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.152) When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

8 If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.6 Declarators
Syntax

1 declarator:
pointeropt direct-declarator

direct-declarator:
identifier attribute-specifier-sequenceopt
(declarator)
array-declarator attribute-specifier-sequenceopt
function-declarator attribute-specifier-sequenceopt

array-declarator:
direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]

function-declarator:
direct-declarator (parameter-type-listopt)

pointer:
* attribute-specifier-sequenceopt type-qualifier-listopt

* attribute-specifier-sequenceopt type-qualifier-listopt pointer
type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator
attribute-specifier-sequenceopt declaration-specifiers abstract-declaratoropt

Semantics
2 Each declarator declares one identifier, and asserts that when an operand of the same form as

the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

3 A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of

152)An alignment specification of zero also does not affect other alignment specifications in the same declaration.

§ 6.7.6 Language 103

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

4 In the following subclauses, consider a declaration

T D1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

5 If, in the declaration "T D1", D1 has the form

identifier attribute-specifier-sequenceopt

then the type specified for ident is T and the optional attribute specifier sequence appertains to the
entity that is declared.

6 If, in the declaration "T D1", D1 has the form

(D)

then ident has the type specified by the declaration "T D". Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits
7 As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function

declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8).

6.7.6.1 Pointer declarators
Semantics

1 If, in the declaration "T D1", D1 has the form

* attribute-specifier-sequenceopt type-qualifier-listopt D

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list type-qualifier-list pointer to T". For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

2 For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

3 EXAMPLE The following pair of declarations demonstrates the difference between a "variable pointer to a constant value"
and a "constant pointer to a variable value".

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but ptr_to_constant
itself can be changed to point to another object. Similarly, the contents of the int pointed to by constant_ptr can be
modified, but constant_ptr itself always points to the same location.

4 The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type "pointer to int".

typedef int *int_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type "const-qualified pointer to int".

104 Language § 6.7.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.7.6.2 Array declarators
Constraints

1 In addition to optional type qualifiers and the keyword static, the [and] may delimit an expres-
sion or* . If they delimit an expression (which specifies the size of an array), the expression shall
have an integer type. If the expression is a constant expression, it shall have a value greater than
zero. The element type shall not be an incomplete or function type. The optional type qualifiers and
the keyword static shall appear only in a declaration of a function parameter with an array type,
and then only in the outermost array type derivation.

2 If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
3 If, in the declaration "T D1", D1 has one of the forms:

D [type-qualifier-listopt assignment-expressionopt] attribute-specifier-sequenceopt
D [static type-qualifier-listopt assignment-expression] attribute-specifier-sequenceopt
D [type-qualifier-list static assignment-expression] attribute-specifier-sequenceopt
D [type-qualifier-listopt *] attribute-specifier-sequenceopt

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list array of T".153)154) The optional attribute specifier
sequence appertains to the array. (See 6.7.6.3 for the meaning of the optional type qualifiers and the
keyword static.)

4 If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used in
declarations or type names with function prototype scope;155) such arrays are nonetheless complete
types. If the size is an integer constant expression and the element type has a known constant size,
the array type is not a variable length array type; otherwise, the array type is a variable length array
type. (Variable length arrays are a conditional feature that implementations need not support; see
6.10.8.3.)

5 If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by* ; otherwise, each time it is evaluated
it shall have a value greater than zero. The size of each instance of a variable length array type
does not change during its lifetime. Where a size expression is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated. Where a size expression is part of the
operand of an _Alignof operator, that expression is not evaluated.

6 For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

7 EXAMPLE 1

float fa[11], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

8 EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

153)When several "array of" specifications are adjacent, a multidimensional array is declared.
154)The array is considered identically qualified to T according to 6.2.5.
155)Thus,* can be used only in function declarations that are not definitions (see 6.7.6.3).

§ 6.7.6.2 Language 105

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage for which is defined elsewhere.

9 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;

void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because 4 != 6
r = c; // compatible, but defined behavior only if

// n == 6 and m == n+1
}

10 EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;
int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

void fvla(int m, int C[m][m]); // valid: VLA with prototype scope

void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{

typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier that shall occur in a parameter declaration is register.

3 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
4 If, in the declaration "T D1", D1 has the form

D (parameter-type-listopt) attribute-specifier-sequenceopt
and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the

106 Language § 6.7.6.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".
The optional attribute specifier sequence appertains to the function type.

5 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

6 A declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

7 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

8 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.156)

9 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

10 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

11 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

12 The storage class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

13 For a function declarator without a parameter type list: if it is part of a definition of that function
the function has no parameters and the effect is as if it were declared with a parameter type list
consisting of the keyword void; otherwise it specifies that no information about the number or types
of the parameters is supplied.157) A function declarator provides a prototype for the function if it
includes a parameter type list.158) Otherwise, a function declaration is said to have no prototype.

14 For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type has none and is not part of a function definition, the
parameter list shall not have an ellipsis terminator. In the determination of type compatibility and
of a composite type, each parameter declared with function or array type is taken as having the
adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

15 EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter specification returning a pointer
to an int, and a pointer pfi to a function with no parameter specification returning an int. It is especially useful to compare
the last two. The binding of*fip() is*(fip()) , so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the pointer result to yield an int. In the declarator
(*pfi)(), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns an int.

16 If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the declaration
occurs inside a function, the identifiers of the functions f and fip have block scope and either internal or external linkage

156)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.
157)See "future language directions" (6.11.6).
158)This implies that a function definition without a parameter list provides a prototype, and that subsequent calls to that

function in the same translation unit are constrained not to provide any argument to the function call. Thus a definition of a
function without parameter list and one that has such a list consisting of the keyword void are fully equivalent.

§ 6.7.6.3 Language 107

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(depending on what file scope declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

17 EXAMPLE 2 The declaration

int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters that are
pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope at the end of the
declaration of apfi.

18 EXAMPLE 3 The declaration

int (*fpfi(int (*)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two parameters: a
pointer to a function returning an int (with one parameter of type long int), and an int. The pointer returned by fpfi
points to a function that has one int parameter and accepts zero or more additional arguments of any type.

19 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()
{

double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int i = 0; i < n; i++)

for (int j = 0, k = n*m+300; j < k; j++)
// a is a pointer to a VLA with n*m+300 elements
a[i][j] += x;

}

20 EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[][*]);
double maximum(int n, int m, double a[][m]);

as are:

void f(double (* restrict a)[5]);
void f(double a[restrict][5]);
void f(double a[restrict 3][5]);
void f(double a[restrict static 3][5]);

(Note that the last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.7).

6.7.7 Type names
Syntax

1 type-name:
specifier-qualifier-list abstract-declaratoropt

108 Language § 6.7.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceopt
function-abstract-declarator attribute-specifier-sequenceopt

array-abstract-declarator:
direct-abstract-declaratoropt [type-qualifier-listopt assignment-expressionopt]
direct-abstract-declaratoropt [static type-qualifier-listopt assignment-expression]
direct-abstract-declaratoropt [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropt [*]

function-abstract-declarator:
direct-abstract-declaratoropt (parameter-type-listopt)

Semantics
2 In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is

syntactically a declaration for a function or an object of that type that omits the identifier.159) The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array
or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

3 EXAMPLE The constructions

(a) int
(b) int *
(c) int *[3]
(d) int (*)[3]
(e) int (*)[*]
(f) int *()
(g) int (*)(void)
(h) int (*const [])(unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an array of three int s,
(e) pointer to a variable length array of an unspecified number of int s, (f) function with no parameter specification returning
a pointer to int, (g) pointer to function with no parameters returning an int, and (h) array of an unspecified number of
constant pointers to functions, each with one parameter that has type unsigned int and an unspecified number of other
parameters, returning an int.

6.7.8 Type definitions
Syntax

1 typedef-name:
identifier

Constraints
2 If a typedef name specifies a variably modified type then it shall have block scope.

Semantics
3 In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to

be a typedef name that denotes the type specified for the identifier in the way described in 6.7.6.
Any array size expressions associated with variable length array declarators are evaluated each time
the declaration of the typedef name is reached in the order of execution. A typedef declaration

159)As indicated by the syntax, empty parentheses in a type name are interpreted as "function with no parameter specifica-
tion", rather than redundant parentheses around the omitted identifier.

§ 6.7.8 Language 109

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

does not introduce a new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type "derived-declarator-type-list T" where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators.

4 EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;
extern KLICKSP *metricp;
range x;
range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is "pointer to function with no parameter specification
returning int", and that of x and z is the specified structure; zp is a pointer to such a structure. The object distance has a
type compatible with any other int object.

5 EXAMPLE 2 After the declarations

typedef struct s1 { int x; } t1, *tp1;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with type struct s1, but not compatible
with the types struct s2, t2, the type pointed to by tp2, or int.

6 EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-field
members, one named t that contains values in the range [0, 15], an unnamed const-qualified bit-field which (if it could
be accessed) would contain values in either the range [−15,+15] or [−16,+15], and one named r that contains values in
one of the ranges [0, 31], [−15,+15], or [−16,+15]. (The choice of range is implementation-defined.) The first two bit-field
declarations differ in that unsigned is a type specifier (which forces t to be the name of a structure member), while const is
a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed in an inner scope
by

t f(t (t));
long t;

then a function f is declared with type "function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int", and an identifier t with type
long int.

7 EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);

110 Language § 6.7.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

fv *signal(int, fv *);
pfv signal(int, pfv);

8 EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)
{

typedef int B[n]; // B is n ints, n evaluated now
n += 1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i = 1; i < n; i++)

a[i-1] = b[i];
}

6.7.9 Initialization
Syntax

1 initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression]
. identifier

Constraints
2 No initializer shall attempt to provide a value for an object not contained within the entity being

initialized.

3 The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

4 All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

5 If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

6 If a designator has the form

[constant-expression]

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

7 If a designator has the form

. identifier

§ 6.7.9 Language 111

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics
8 An initializer specifies the initial value stored in an object.

9 Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.

10 If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.
If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;

— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

11 The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

12 The rest of this subclause deals with initializers for objects that have aggregate or union type.

13 The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

14 An array of character type may be initialized by a character string literal or UTF–8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

15 An array with element type compatible with a qualified or unqualified version of wchar_t, char16_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

16 Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

17 Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.160) In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.161)

18 Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its

160)If the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.
161)After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of

an object containing the union.

112 Language § 6.7.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

current object and changes the current object for the next designator (if any) to be that member.162)

The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

19 The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;163) all subobjects that are not
initialized explicitly shall be initialized implicitly the same as objects that have static storage duration.

20 If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

21 If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration.

22 If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

23 The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.164)

24 EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex c = 5 + 3 * I;

define and initialize i with the value 3 and c with the value 5.0 + i3.0.

25 EXAMPLE 2 The declaration

int x[] = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and there are three
initializers.

26 EXAMPLE 3 The declaration

int y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]), namely
y[0][0], y[0][1], and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early, so y[3] is
initialized with zeros. Precisely the same effect could have been achieved by

int y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next three are
taken successively for y[1] and y[2].

27 EXAMPLE 4 The declaration

162)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.
163)Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at

all.
164)In particular, the evaluation order need not be the same as the order of subobject initialization.

§ 6.7.9 Language 113

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int z[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of z as specified and initializes the rest with zeros.

28 EXAMPLE 5 The declaration

struct { int a[3], b; } w[] = { { 1 }, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures: w[0].a[0] is 1
and w[1].a[0] is 2; all the other elements are zero.

29 EXAMPLE 6 The declaration

short q[4][3][2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object: q[0][0][0]
is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize q[2][0][0], q[2][0][1], and q[2][1][0], respectively;
all the rest are zero. The initializer for q[0][0] does not begin with a left brace, so up to six items from the current list
could be used. There is only one, so the values for the remaining five elements are initialized with zero. Likewise, the
initializers for q[1][0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing their respective
two-dimensional subaggregates. If there had been more than six items in any of the lists, a diagnostic message would have
been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

};

or by:

short q[4][3][2] = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
};

in a fully bracketed form.

30 Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

31 EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declaration

typedef int A[]; // OK - declared with block scope

the declaration

A a = { 1, 2 }, b = { 3, 4, 5 };

is identical to

int a[] = { 1, 2 }, b[] = { 3, 4, 5 };

114 Language § 6.7.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

due to the rules for incomplete types.

32 EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines "plain" char array objects s and t whose elements are initialized with character string literals. This declaration is
identical to

char s[] = { ’a’, ’b’, ’c’, ’\0’ },
t[] = { ’a’, ’b’, ’c’ };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type "pointer to char" and initializes it to point to an object with type "array of char" with length 4 whose
elements are initialized with a character string literal. If an attempt is made to use p to modify the contents of the array, the
behavior is undefined.

33 EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char *nm[] = {

[member_two] = "member two",
[member_one] = "member one",

};

34 EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

div_t answer = {.quot = 2, .rem = -1 };

35 EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists might be misunder-
stood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

36 EXAMPLE 12

struct T {
int k;
int l;

};

struct S {
int i;
struct T t;

};

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

37 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

§ 6.7.9 Language 115

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Static assertions
Syntax

1 static_assert-declaration:
_Static_assert (constant-expression , string-literal) ;
_Static_assert (constant-expression) ;

Constraints
2 The constant expression shall compare unequal to 0.

Semantics
3 The constant expression shall be an integer constant expression. If the value of the constant expres-

sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message which should include the text of the string
literal, if present.

Forward references: diagnostics (7.2).

6.7.11 Attributes
1 Attributes specify additional information for various source constructs such as types, variables,

identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

2 Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

3 Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appertainance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

4 In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.165)

Recommended practice
5 It is recommended that implementations support all standard attributes as defined in this document.

6.7.11.1 General
Syntax

1 attribute-specifier-sequence:
attribute-specifier-sequenceopt attribute-specifier

attribute-specifier:
[[attribute-list]]

165)Thus, the attributes [[nodiscard]] and [[__nodiscard__]] can be freely interchanged. Implementations are encour-
aged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

116 Language § 6.7.11.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

attribute-list:
attributeopt
attribute-list , attributeopt

attribute:
attribute-token attribute-argument-clauseopt

attribute-token:
standard-attribute
attribute-prefixed-token

standard-attribute:
identifier

attribute-prefixed-token:
attribute-prefix :: identifier

attribute-prefix:
identifier

attribute-argument-clause:
(balanced-token-sequenceopt)

balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token

balanced-token:
(balanced-token-sequenceopt)
[balanced-token-sequenceopt]
{ balanced-token-sequenceopt }

any token other than a parenthesis, a bracket, or a brace

Constraints
2 The identifier in a standard attribute shall be one of:

deprecated fallthrough maybe_unused nodiscard

Semantics
3 An attribute specifier that contains no attributes has no effect. The order in which attribute tokens

appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic require-
ments of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute. 166)

4 NOTE For each standard attribute, the form of the balanced token sequence, if any, will be specified.

Recommended Practice
5 Each implementation should choose a distinctive name for the attribute prefix in an attribute

prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

6 EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes named daisy
and rosie.

[[deprecated, hal::daisy]] double nine1000(double);
[[deprecated]] [[hal::daisy]] double nine1000(double);
[[deprecated]] double nine1000 [[hal::daisy]] (double);

Then all the following declarations should be equivalent aside from the spelling:

[[__deprecated__, __hal__::__daisy__]] double nine1000(double);
[[__deprecated__]] [[__hal__::__daisy__]] double nine1000(double);

166)Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

§ 6.7.11.1 Language 117

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

[[__deprecated__]] double nine1000 [[__hal__::__daisy__]] (double);

These use the alternate spelling that is required for all standard attributes and recommended for prefixed attributes. These
may be better-suited for use in header files, where the use of the alternate spelling avoids naming conflicts with user-provided
macros.

7 EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering inside
attribute lists is not important.

[[hal::daisy, hal::rosie]] double nine999(double);
[[hal::rosie, hal::daisy]] double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute specifiers
may affect the semantics.

[[hal::daisy]] [[hal::rosie]] double nine999(double);
[[hal::rosie]] [[hal::daisy]] double nine999(double); // may have different semantics

6.7.11.2 The nodiscard attribute
Constraint

1 The nodiscard attribute shall be applied to the identifier in a function declaration or to the definition
of a structure, union, or enumeration type. If an attribute argument clause is present, it shall have
the form:

(string-literal)

Semantics
2 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202003L

when given nodiscard as the pp-tokens operand.

3 A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended Practice
4 A nodiscard call is a function call expression that calls a function previously declared with attribute

nodiscard, or whose return type is a structure, union, or enumeration type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

5 The diagnostic message should include text provided by the string literal within the attribute
argument clause of any nodiscard attribute applied to the name or entity.

6 EXAMPLE 1

struct [[nodiscard]] error_info { /*...*/ };
struct error_info enable_missile_safety_mode(void);
void launch_missiles(void);
void test_missiles(void) {

enable_missile_safety_mode();
launch_missiles();

}

A diagnostic for the call to enable_missile_safety_mode is encouraged.

7 EXAMPLE 2

[[nodiscard]] int important_func(void);
void call(void) {

int i = important_func();
}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

118 Language § 6.7.11.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

8 EXAMPLE 3

[[nodiscard("must check armed state")]]
bool arm_detonator(int);

void call(void) {
arm_detonator(3);
detonate();

}

A diagnostic for the call toarm_detonator using the string literal "must check armed state" from the attribute argument
clause is encouraged.

6.7.11.3 The maybe_unused attribute
Constraint

1 The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, a variable, a structure or union member, a function, an enumeration, or an enumerator. No
attribute argument clause shall be present.

Semantics
2 The maybe_unused attribute indicates that a name or entity is possibly intentionally unused.

3 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given maybe_unused as the pp-tokens operand.

A name or entity declared without the maybe_unused attribute can later be redeclared with the
attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended Practice
4 For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that

the entity is unused, or that the entity is used despite the presence of the attribute.
5 EXAMPLE

[[maybe_unused]] void f([[maybe_unused]] int i) {
[[maybe_unused]] int j = i + 100;
assert(j);

}

Implementations are encouraged not to diagnose that j is unused, whether or not NDEBUG is defined.

6.7.11.4 The deprecated attribute
Constraint

1 The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
a variable, a structure or union member, a function, an enumeration, or an enumerator.

2 If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics
3 The deprecated attribute can be used to mark names and entities whose use is still allowed, but is

discouraged for some reason. 167)

4 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given deprecated as the pp-tokens operand.

5 A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that

167)In particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit
for purpose.

§ 6.7.11.4 Language 119

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

marks it.

Recommended Practice
6 Implementations should use the deprecated attribute to produce a diagnostic message in case the

program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message should include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

7 EXAMPLE

struct [[deprecated]] S {
int a;

};

enum [[deprecated]] E1 {
one

};

enum E2 {
two [[deprecated("use ’three’ instead")]],
three

};

[[deprecated]] typedef int Foo;

void f1(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of E1
int j = two; // Diagnose use of two: "use ’three’ instead"
int k = three;
Foo f; // Diagnose use of Foo

}

[[deprecated]] void f2(struct S s) {
int i = one;
int j = two;
int k = three;
Foo f;

}

struct [[deprecated]] T {
Foo f;
struct S s;

};

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself deprecated, as
indicated for function f1, but not to diagnose within function f2 and struct T, as they are themselves deprecated.

6.7.11.5 The fallthrough attribute
Constraint

1 The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a declara-
tion is a fallthrough declaration. No attribute argument clause shall be present. A fallthrough decla-
ration may only appear within an enclosing switch statement (6.8.4.2). The next block item(6.8.2)
that would be encountered after a fallthrough declaration shall be a case label or default label
associated with the smallest enclosing switch statement.

Semantics
2 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L

when given fallthrough as the pp-tokens operand.

120 Language § 6.7.11.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Recommended Practice
3 The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation

might otherwise issue for a case or default label that is reachable from another case or default
label along some path of execution. Implementations are encouraged to issue a diagnostic if a
fallthrough declaration is not dynamically reachable.

4 EXAMPLE

void f(int n) {
void g(void), h(void), i(void);
switch (n) {
case 1: /* diagnostic on fallthrough discouraged */
case 2:

g();
[[fallthrough]];

case 3: /* diagnostic on fallthrough discouraged */
h();

case 4: /* fallthrough diagnostic encouraged */
i();
[[fallthrough]]; /* constraint violation */

}
}

§ 6.7.11.5 Language 121

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.8 Statements and blocks
Syntax

1 statement:
labeled-statement
unlabeled-statement

unlabeled-statement:
expression-statement
attribute-specifier-sequenceopt compound-statement
attribute-specifier-sequenceopt selection-statement
attribute-specifier-sequenceopt iteration-statement
attribute-specifier-sequenceopt jump-statement

Semantics
2 A statement specifies an action to be performed. Except as indicated, statements are executed in

sequence. The optional attribute specifier sequence appertains to the respective statement.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,
— an initializer that is not part of a compound literal,
— the expression in an expression statement,
— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,
— each of the (optional) expressions of a for statement,
— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

1 label:
attribute-specifier-sequenceopt identifier :
attribute-specifier-sequenceopt case constant-expression :
attribute-specifier-sequenceopt default :

labeled-statement:
label statement

Constraints
2 A case or default label shall appear only in a switch statement. Further constraints on such labels

are discussed under the switch statement.

122 Language § 6.8.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3 Label names shall be unique within a function.

Semantics
4 Any statement may be preceded by a prefix that declares an identifier as a label name. The optional

attribute specifier sequence appertains to the label. Labels in themselves do not alter the flow of
control, which continues unimpeded across them.

Forward references: the goto statement (6.8.6.1), the switch statement (6.8.4.2).

6.8.2 Compound statement
Syntax

1 compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
unlabeled-statement
label

Semantics
2 A compound statement is a block. A label shall be translated as if it were followed by a null statement.

6.8.3 Expression and null statements
Syntax

1 expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;

Semantics
2 The attribute specifier sequence appertains to the expression. The expression in an expression

statement is evaluated as a void expression for its side effects.168)

3 A null statement (consisting of just a semicolon) performs no operations.
4 EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the discarding of its value can

be made explicit by converting the expression to a void expression by means of a cast:

int p(int);
/* ... */
(void)p(0);

5 EXAMPLE 2 In the program fragment

char *s;
/* ... */
while (*s++ != ’\0’)

;

a null statement is used to supply an empty loop body to the iteration statement.

Forward references: iteration statements (6.8.5).

168)Such as assignments, and function calls which have side effects.

§ 6.8.3 Language 123

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.8.4 Selection statements
Syntax

1 selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics
2 A selection statement selects among a set of statements depending on the value of a controlling

expression.

3 A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection
statement.

6.8.4.1 The if statement
Constraints

1 The controlling expression of an if statement shall have scalar type.

Semantics
2 In both forms, the first substatement is executed if the expression compares unequal to 0. In the

else form, the second substatement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

3 An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.4.2 The switch statement
Constraints

1 The controlling expression of a switch statement shall have integer type.

2 If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.169)

3 The expression of each case label shall be an integer constant expression and no two of the case
constant expressions in the same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing switch statement.)

Semantics
4 A switch statement causes control to jump to, into, or past the statement that is the switch body,

depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

5 The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matched case label. Otherwise, if there is a default label, control jumps to the statement following
the default label. If no converted case constant expression matches and there is no default label,
no part of the switch body is executed.

Implementation limits
6 As discussed in 5.2.4.1, the implementation may limit the number of case values in a switch

statement.

169)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

124 Language § 6.8.4.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through into default code */

default:
printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value. Similarly,
the call to the function f cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

Constraints
2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics
4 An iteration statement causes a statement called the loop body to be executed repeatedly until the

controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.170)

5 An iteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

6 An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,171) and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:172)

— input/output operations

— accessing a volatile object

— synchronization or atomic operations.

6.8.5.1 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

170)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.
171)An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.
172)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be

proven.

§ 6.8.5.2 Language 125

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.8.5.3 The for statement
1 The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.173)

2 Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements
Syntax

1 jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

Semantics
2 A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement
Constraints

1 The identifier in a goto statement shall name a label located somewhere in the enclosing function. A
goto statement shall not jump from outside the scope of an identifier having a variably modified
type to inside the scope of that identifier.

Semantics
2 A goto statement causes an unconditional jump to the statement prefixed by the named label in the

enclosing function.
3 EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline

presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

/* ... */
goto first_time;
for (;;) {

// determine next operation
/* ... */
if (need to reinitialize) {

// reinitialize-only code
/* ... */

first_time:
// general initialization code

173)Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

126 Language § 6.8.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

/* ... */
continue;

}
// handle other operations
/* ... */

}

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints

1 A continue statement shall appear only in or as a loop body.

Semantics
2 A continue statement causes a jump to the loop-continuation portion of the smallest enclosing

iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin:
}

do {
/* ... */
continue;
/* ... */

contin:;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin:
}

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.174)

6.8.6.3 The break statement
Constraints

1 A break statement shall appear only in or as a switch body or loop body.

Semantics
2 A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

1 A return statement with an expression shall not appear in a function whose return type is void. A
return statement without an expression shall only appear in a function whose return type is void.

174)Following the contin: label in the 2nd example is a null statement. The null statement in the first and third example is
implied by the label (6.8.2).

§ 6.8.6.4 Language 127

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Semantics
2 A return statement terminates execution of the current function and returns control to its caller. A

function may have any number of return statements.

3 If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.175)

4 EXAMPLE In:

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

175)The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

128 Language § 6.8.6.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifiers auto and register shall not appear in the declaration specifiers in an

external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics
4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.176)

6.9.1 Function definitions
Syntax

1 function-definition:
attribute-specifier-sequenceopt declaration-specifiers declarator function-body

function-body:
compound-statement

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

5 If the parameter list consists of a single parameter of type void, the parameter declarator shall not
include an identifier.

Semantics
6 The optional attribute specifier sequence in a function definition appertains to the function.

176)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

§ 6.9.1 Language 129

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7 The declarator in a function definition specifies the name of the function being defined and the
types (and optionally the names) of all the parameters; the declarator also serves as a function
prototype for later calls to the same function in the same translation unit. The type of each parameter
is adjusted as described in 6.7.6.3; the resulting type shall be a complete object type.

8 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

9 Each parameter has automatic storage duration; its identifier, if any177), is an lvalue.178) The layout
of the storage for parameters is unspecified.

10 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

11 After all parameters have been assigned, the compound statement of the function body is executed.

12 Unless otherwise specified, if the} that terminates the function body is reached, and the value of the
function call is used by the caller, the behavior is undefined.

13 NOTE In a function definition, the type of the function and its prototype cannot be inherited from a typedef:

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

14 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ return a > b ? a: b; }

is the function body.

15 EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... */
g(f);

Then the definition of g might read

void g(int (*funcp)(void))
{

/* ... */
(*funcp)(); /* or funcp(); ...*/

}

or, equivalently,

177)A parameter that has no declared name is inaccessible within the function body.
178)A parameter identifier cannot be redeclared in the function body except in an enclosed block.

130 Language § 6.9.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

void g(int func(void))
{

/* ... */
func(); /* or (*func)(); ...*/

}

6.9.2 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a tentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equal to { 0 } .

3 If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

§ 6.9.2 Language 131

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

4 EXAMPLE 1

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to previous, whose linkage is external
extern int i2; // refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; // refers to previous, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero on program
startup.

132 Language § 6.9.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.10 Preprocessing directives
Syntax

1 preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

identifier-list:
identifier
identifier-list , identifier

§ 6.10 Language 133

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following

constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last
token in the sequence is the first new-line character that follows the first token in the sequence.179)

A new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

3 A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

4 When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints
5 The only white-space characters that shall appear between preprocessing tokens within a prepro-

cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

Semantics
6 The implementation can process and skip sections of source files conditionally, include other source

files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

7 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

8 EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a # at
the start of translation phase 4, even though it will do so after the macro EMPTY has been replaced.

9 The execution of a non-directive preprocessing directive results in undefined behavior.

6.10.1 Conditional inclusion
Constraints

1 The expression that controls conditional inclusion shall be an integer constant expression except that:
identifiers (including those lexically identical to keywords) are interpreted as described below 180) .

2 It may contain unary operator expressions of the form

defined identifier

or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined
or if it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

3 The conditional inclusion expression may contain unary operator expressions of the form

179)Thus, preprocessing directives are commonly called "lines". These "lines" have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 6.10.3.2, for example).
180)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not

macro names — there simply are no keywords, enumeration constants, etc.

134 Language § 6.10.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

__has_c_attribute (pp-tokens)

which are replaced by a nonzero pp-number matching the form of an integer constant if the
implementation supports an attribute with the name specified by interpreting the pp-tokens as an
attribute token, and by 0 otherwise. The pp-tokens shall match the form of an attribute token.

4 Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a
token (6.4).

Semantics
5 The #ifdef and #ifndef directives, and the defined conditional inclusion operator, shall treat

__has_c_attribute as if it was the name of a defined macro. The identifier __has_c_attribute
shall not appear in any context not mentioned in this subclause.

6 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

7 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and evaluations of the defined and __has_c_attribute unary operators have been performed,
all remaining identifiers (including those lexically identical to keywords) are replaced with the
pp-number 0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of 6.6. For the
purposes of this token conversion and evaluation, all signed integer types and all unsigned integer
types act as if they have the same representation as, respectively, the types intmax_t and uintmax_t
defined in the header <stdint.h>. 181) This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric
value for these character constants matches the value obtained when an identical character constant
occurs in an expression (other than within a #if or #elif directive) is implementation-defined.
182)

Also, whether a single-character character constant may have a negative value is implementation-
defined.

8 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if !defined identifier respectively.

9 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose

181)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is 0xFFFF, the constant 0x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

182)Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if ’z’ - ’a’ == 25
if (’z’ - ’a’ == 25)

§ 6.10.1 Language 135

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

control condition evaluates to true (nonzero) is processed; any following groups are skipped and
their controlling directives are processed as if they were in a group that is skipped. If none of the
conditions evaluates to true, and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped. 183)

10

11 EXAMPLE

/* Fallback for compilers not yet implementing this feature. */
#ifndef __has_c_attribute
#define __has_c_attribute(x) 0
#endif /* __has_c_attribute */

#if __has_c_attribute(fallthrough)
/* Standard attribute is available, use it. */
#define FALLTHROUGH [[fallthrough]]
#elif __has_c_attribute(vendor::fallthrough)
/* Vendor attribute is available, use it. */
#define FALLTHROUGH [[vendor::fallthrough]]
#else
/* Fallback implementation. */
#define FALLTHROUGH
#endif

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.20.1.5).

6.10.2 Source file inclusion
Constraints

1 A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

Semantics
2 A preprocessing directive of the form

include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by
the specified sequence between the " delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the directive is
reprocessed as if it read

include < h-char-sequence > new-line

with the identical contained sequence (including > characters, if any) from the original directive.

4 A preprocessing directive of the form

183)As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

136 Language § 6.10.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.184) The method by which a sequence
of preprocessing tokens between a< and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation may ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

7 EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

2 An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

3 There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be more
arguments in the invocation than there are parameters in the macro definition (excluding the ...).
There shall exist a) preprocessing token that terminates the invocation.

5 The identifier __VA_ARGS__ shall occur only in the replacement-list of a function-like macro that
uses the ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its scope.
184)Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);

thus, an expansion that results in two string literals is an invalid directive.

§ 6.10.3 Language 137

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Semantics
7 The identifier immediately following the define is called the macro name. There is one name

space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name185) to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

10 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a (as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,186) the behavior is
undefined.

12 If there is a ... in the identifier-list in the macro definition, then the trailing arguments, including
any separating comma preprocessing tokens, are merged to form a single item: the variable arguments.
The number of arguments so combined is such that, following merger, the number of arguments is
one more than the number of parameters in the macro definition (excluding the ...).

6.10.3.1 Argument substitution
1 After the arguments for the invocation of a function-like macro have been identified, argument

substitution takes place. A parameter in the replacement list, unless preceded by a # or ## prepro-
cessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding
argument after all macros contained therein have been expanded. Before being substituted, each
argument’s preprocessing tokens are completely macro replaced as if they formed the rest of the
preprocessing file; no other preprocessing tokens are available.

2 An identifier__VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

185)Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned for macro names or
parameters.

186)Despite the name, a non-directive is a preprocessing directive.

138 Language § 6.10.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.10.3.2 The # operator
Constraints

1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics
2 If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both

are replaced by a single character string literal preprocessing token that contains the spelling of
the preprocessing token sequence for the corresponding argument. Each occurrence of white space
between the argument’s preprocessing tokens becomes a single space character in the character
string literal. White space before the first preprocessing token and after the last preprocessing token
composing the argument is deleted. Otherwise, the original spelling of each preprocessing token in
the argument is retained in the character string literal, except for special handling for producing
the spelling of string literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting " characters), except that
it is implementation-defined whether a \ character is inserted before the \ character beginning a
universal character name. If the replacement that results is not a valid character string literal, the
behavior is undefined. The character string literal corresponding to an empty argument is "". The
order of evaluation of # and ## operators is unspecified.

6.10.3.3 The ## operator
Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics
2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed

by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-
ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.187)

3 For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)

187)Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

§ 6.10.3.3 Language 139

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is
not the ## operator.

6.10.3.4 Rescanning and further replacement
1 After all parameters in the replacement list have been substituted and # and ## processing has

taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.9 below.

4 EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example, given the following
macro definitions:

#define f(a) a*g
#define g(a) f(a)

the invocation

f(2)(9)

could expand to either

2*f(9)

or

2*9*g

Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.3.5 Scope of macro definitions
1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is

encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a "manifest constant", as in

#define TABSIZE 100

int table[TABSIZE];

140 Language § 6.10.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has the advantages
of working for any compatible types of the arguments and of generating in-line code without the overhead of function calling.
It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(\~{ }
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (\~{ } 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

§ 6.10.3.5 Language 141

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(+1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space */ \

a /* other stuff on this line

*/)

But the following redefinitions are invalid:

142 Language § 6.10.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

6.10.4 Line control
Constraints

1 The string literal of a #line directive, if present, shall be a character string literal.

Semantics
2 The line number of the current source line is one greater than the number of new-line characters read

or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

3 If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans two or
more physical lines, it is unspecified which of those line numbers is associated with the preprocessing
directive. If a macro invocation spans multiple physical or logical lines, it is unspecified which of
those line numbers is associated with that invocation. The line number of a preprocessing token is
independent of the context (in particular, as a macro argument or in a preprocessing directive). The
line number of a __LINE__ in a macro body is the line number of the macro invocation.

4 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The
digit sequence shall not specify zero, nor a number greater than 2147483647.

5 A preprocessing directive of the form

line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

6 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after

§ 6.10.4 Language 143

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

all replacements shall match one of the two previous forms and is then processed as appropriate.188)

Recommended practice
7 The line number associated with a pp-token should be the line number of the first character of the

pp-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the
line number of the first character of the macro name in the invocation.

6.10.5 Error directive
Semantics

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.6 Pragma directive
Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to
any macro replacement)189) causes the implementation to behave in an implementation-defined man-
ner. The behavior might cause translation to fail or cause the translator or the resulting program to
behave in a non-conforming manner. Any such pragma that is not recognized by the implementation
is ignored.

2 If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms190) whose meanings are described elsewhere:

standard-pragma:
pragma STDC FP_CONTRACT on-off-switch
pragma STDC FENV_ACCESS on-off-switch
pragma STDC FENV_DEC_ROUND dec-direction
pragma STDC FENV_ROUND direction
pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

188)Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while
processing to the first pp-token can be different depending on whether or not the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.

189)An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.
190)See "future language directions" (6.11.7).

144 Language § 6.10.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the FENV_DEC_ROUND pragma (7.6.3), the FENV_ROUND pragma (7.6.2), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.7 Null directive
Semantics

1 A preprocessing directive of the form

new-line

has no effect.

6.10.8 Predefined macro names
1 The values of the predefined macros listed in the following subclauses191) (except for __FILE__ and

__LINE__) remain constant throughout the translation unit.

2 None of these macro names, nor the identifiers defined or __has_c_attribute, shall be the subject
of a #define or a #undef preprocessing directive. Any other predefined macro names shall begin
with a leading underscore followed by an uppercase letter or a second underscore.

3 The implementation shall not predefine the macro__cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory macros
1 The following macro names shall be defined by the implementation:

191)See "future language directions" (6.11.8).

§ 6.10.8.1 Language 145

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).192)

__LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).192)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

__STDC_VERSION__ The integer constant yyyymmL.193)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime functions. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime functions (7.27.3.1).

6.10.8.2 Environment macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

__STDC_MB_MIGHT_NEQ_WC__ The integer constant 1, intended to indicate that, in the encoding for
wchar_t, a member of the basic character set need not have a code value equal to its
value when used as the lone character in an integer character constant.

__STDC_UTF_16__ The integer constant 1, intended to indicate that values of type char16_t are
UTF–16 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

__STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are
UTF–32 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

Forward references: common definitions (7.19), unicode utilities (7.28).

6.10.8.3 Conditional feature macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-
tions in Annex L (Analyzability).

__STDC_IEC_60559_BFP__ The integer constant yyyymmL, intended to indicate conformance to
Annex F (IEC 60559 binary floating-point arithmetic).

192)The presumed source file name and line number can be changed by the #line directive.
193)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

146 Language § 6.10.8.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic). Use of this macro is an obsolescent
feature.

__STDC_IEC_60559_DFP__ The integer constant yyyymmL, intended to indicate support of deci-
mal floating types and conformance to Annex F for IEC 60559 decimal floating-point
arithmetic.

__STDC_IEC_60559_COMPLEX__ The integer constant yyyymmL, intended to indicate conformance
to the specifications in Annex G (IEC 60559 compatible complex arithmetic).

__STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic). Use of this macro is an
obsolescent feature.

__STDC_LIB_EXT1__ The integer constant yyyymmL, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).194)

__STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads.h> header.

__STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays or variably modified types.

2 An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_60559_COMPLEX__
or __STDC_IEC_559_COMPLEX__.

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

194)The intention is that this will remain an integer constant of type long int that is increased with each revision of this
document.

§ 6.10.9 Language 147

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6.11 Future language directions
6.11.1 Floating types

1 Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers
1 Declaring an identifier with internal linkage at file scope without the static storage-class specifier

is an obsolescent feature.

6.11.3 External names
1 Restriction of the significance of an external name to fewer than 255 characters (considering each

universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences
1 Lowercase letters as escape sequences are reserved for future standardization. Other characters may

be used in extensions.

6.11.5 Storage-class specifiers
1 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in

a declaration is an obsolescent feature.

6.11.6 Function declarators
1 The use of function declarators without prototypes is an obsolescent feature.

6.11.7 Pragma directives
1 Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.8 Predefined macro names
1 Macro names beginning with __STDC_ are reserved for future standardization.

2 Uses of the __STDC_IEC_559__ and __STDC_IEC_559_COMPLEX__ macros are obsolescent features.

148 Language § 6.11.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7. Library

7.1 Introduction
7.1.1 Definitions of terms

1 A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to
a string is a pointer to its initial (lowest addressed) character. The length of a string is the number
of bytes preceding the null character and the value of a string is the sequence of the values of the
contained characters, in order.

2 The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.195) It is represented in the text and examples by a period, but may be changed by the
setlocale function.

3 A null wide character is a wide character with code value zero.

4 A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

5 A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially) causes
a change in shift state (see 5.2.1.2). A shift sequence shall not have a corresponding wide character;
it is instead taken to be an adjunct to an adjacent multibyte character.196) In this clause, references to
"white-space character" refer to (execution) white-space character as defined by isspace. References to
"white-space wide character" refer to (execution) white-space wide character as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

7.1.2 Standard headers
1 Each library function is declared, with a type that includes a prototype, in a header,197) whose contents

are made available by the #include preprocessing directive. The header declares a set of related
functions, plus any necessary types and additional macros needed to facilitate their use. In addition
to the provisions given in this clause, an implementation that defines __STDC_LIB_EXT1__ shall
conform to the specifications in Annex K and Subclause K.3 should be read as if it were merged into
the parallel structure of named subclauses of this clause. Declarations of types described here or in
Annex K shall not include type qualifiers, unless explicitly stated otherwise.

2 An implementation that does not support decimal floating types (6.10.8.3) need not support inter-
faces or aspects of interfaces that are specific to these types.

3 The standard headers are198)

<assert.h>
<complex.h>
<ctype.h>
<errno.h>

<fenv.h>
<float.h>
<inttypes.h>
<iso646.h>

<limits.h>
<locale.h>
<math.h>
<setjmp.h>

195)The functions that make use of the decimal-point character are the numeric conversion functions (7.22.1, 7.29.4.1) and the
formatted input/output functions (7.21.6, 7.29.2).
196)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to

count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.
197)A header is not necessarily a source file, nor are the< and > delimited sequences in header names necessarily valid source

file names.
198)The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations need not

support; see 6.10.8.3.

§ 7.1.2 Library 149

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

<signal.h>
<stdalign.h>
<stdarg.h>
<stdatomic.h>
<stdbool.h>
<stddef.h>

<stdint.h>
<stdio.h>
<stdlib.h>
<stdnoreturn.h>
<string.h>
<tgmath.h>

<threads.h>
<time.h>
<uchar.h>
<wchar.h>
<wctype.h>

4 If a file with the same name as one of the above< and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

5 Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h> depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

6 Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_XXXX_H__ which expands to yyyymmL,
where XXXX is the all-caps spelling of the corresponding header <xxxx.h>.

7 Any definition of an object-like macro described in this clause or Annex K shall expand to code that
is fully protected by parentheses where necessary, so that it groups in an arbitrary expression as if it
were a single identifier.

8 Any declaration of a library function shall have external linkage.

9 A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers
1 Each header declares or defines all identifiers listed in its associated subclause, and optionally

declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All potentially reserved identifiers (including ones listed in the future library directions)
thatare provided by an implementation are reserved for any use. No other potentially reserved
identifiers are reserved.199)

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.200)

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

199)A potentially reserved identifier becomes a reserved identifier when an implementation begins using it or a future
standard reserves it, but is otherwise available for use by the programmer.
200)The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

150 Library § 7.1.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.1.4 Use of library functions
1 Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-

tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.201)

The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.202)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.203)

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

2 Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

3 There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.204)

5 Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or

201)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

202)Such macros might not contain the sequence points that the corresponding function calls do.
203)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can

provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.
204)Thus, a signal handler cannot, in general, call standard library functions.

§ 7.1.4 Library 151

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.205) Implementations may share their own
internal objects between threads if the objects are not visible to users and are protected against data
races.

6 Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.206)

7 EXAMPLE The function atoi can be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* ... */
i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* ... */
i = atoi(str);

or

#include <stdlib.h>
const char *str;
/* ... */
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;
/* ... */
i = atoi(str);

205)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.
206)This allows implementations to parallelize operations if there are no visible side effects.

152 Library § 7.1.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.2 Diagnostics <assert.h>
1 The header <assert.h> defines the assert and static_assert macros and refers to another

macro,

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert.h> is included, the assert macro is defined simply as

#define assert(ignore) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

2 The assert macro shall be implemented as a macro, not as an actual function. If the macro definition
is suppressed in order to access an actual function, the behavior is undefined.

3 The macro

static_assert

expands to _Static_assert.

7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

1 #include <assert.h>
void assert(scalar expression);

Description
2 The assert macro puts diagnostic tests into programs; it expands to a void expression. When it

is executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
the assert macro writes information about the particular call that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros __FILE__ and __LINE__ and of
the identifier __func__) on the standard error stream in an implementation-defined format.207) It
then calls the abort function.

Returns
3 The assert macro returns no value.

Forward references: the abort function (7.22.4.1).

207)The message written might be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

§ 7.2.1.1 Library 153

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.3 Complex arithmetic <complex.h>
7.3.1 Introduction

1 The header <complex.h> defines macros and declares functions that support complex arithmetic.208)

2 Implementations that define the macro __STDC_NO_COMPLEX__ need not provide this header nor
support any of its facilities.

3 Each synopsis, other than for the CMPLX macros, specifies a family of functions consisting of a princi-
pal function with one or more double complex parameters and a double complex or double return
value; and other functions with the same name but with f and l suffixes which are corresponding
functions with float and long double parameters and return values.

4 The macro

complex

expands to _Complex; the macro

_Complex_I

expands to a constant expression of type const float _Complex, with the value of the imaginary
unit.209)

5 The macros

imaginary

and

_Imaginary_I

are defined if and only if the implementation supports imaginary types;210) if defined, they expand
to _Imaginary and a constant expression of type const float _Imaginary with the value of the
imaginary unit.

6 The macro

I

expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I shall expand to
_Complex_I.

7 Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros complex, imaginary, and I.

Forward references: the CMPLX macros (7.3.9.3), IEC 60559-compatible complex arithmetic (An-
nex G).

7.3.2 Conventions
1 Values are interpreted as radians, not degrees. An implementation may set errno but is not required

to.

7.3.3 Branch cuts
1 Some of the functions below have branch cuts, across which the function is discontinuous. For

implementations with a signed zero (including all IEC 60559 implementations) that follow the
specifications of Annex G, the sign of zero distinguishes one side of a cut from another so the
function is continuous (except for format limitations) as the cut is approached from either side. For

208)See "future library directions" (7.31.1).
209)The imaginary unit is a number i such that i2 = −1.
210)A specification for imaginary types is in Annex G.

154 Library § 7.3.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

example, for the square root function, which has a branch cut along the negative real axis, the top of
the cut, with imaginary part+0 , maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part-0 , maps to the negative imaginary axis.

2 Implementations that do not support a signed zero (see Annex F) cannot distinguish the sides of
branch cuts. These implementations shall map a cut so the function is continuous as the cut is
approached coming around the finite endpoint of the cut in a counter clockwise direction. (Branch
cuts for the functions specified here have just one finite endpoint.) For example, for the square root
function, coming counter clockwise around the finite endpoint of the cut along the negative real axis
approaches the cut from above, so the cut maps to the positive imaginary axis.

7.3.4 The CX_LIMITED_RANGE pragma
Synopsis

1 #include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description
2 The usual mathematical formulas for complex multiply, divide, and absolute value are problem-

atic because of their treatment of infinities and because of undue overflow and underflow. The
CX_LIMITED_RANGE pragma can be used to inform the implementation that (where the state is "on")
the usual mathematical formulas are acceptable.211) The pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGE pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another CX_LIMITED_RANGE
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state for the pragma is "off".

7.3.5 Trigonometric functions
7.3.5.1 The cacos functions
Synopsis

1 #include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Description
2 The cacos functions compute the complex arc cosine of z, with branch cuts outside the interval

[−1,+1] along the real axis.

Returns
3 The cacos functions return the complex arc cosine value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [0, π] along the real axis.

211)The purpose of the pragma is to allow the implementation to use the formulas:

(x+ iy)× (u+ iv) = (xu− yv) + i(yu+ xv)

(x+ iy) / (u+ iv) = [(xu+ yv) + i(yu− xv)]/(u2 + v2)

|x+ iy| =
√

x2 + y2

where the programmer can determine they are safe.

§ 7.3.5.1 Library 155

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.3.5.2 The casin functions
Synopsis

1 #include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

Description
2 The casin functions compute the complex arc sine of z, with branch cuts outside the interval

[−1,+1] along the real axis.

Returns
3 The casin functions return the complex arc sine value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [−π
2 ,+

π
2] along the real axis.

7.3.5.3 The catan functions
Synopsis

1 #include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

Description
2 The catan functions compute the complex arc tangent of z, with branch cuts outside the interval

[−i,+i] along the imaginary axis.

Returns
3 The catan functions return the complex arc tangent value, in the range of a strip mathematically

unbounded along the imaginary axis and in the interval [−π
2 ,+

π
2] along the real axis.

7.3.5.4 The ccos functions
Synopsis

1 #include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

Description
2 The ccos functions compute the complex cosine of z.

Returns
3 The ccos functions return the complex cosine value.

7.3.5.5 The csin functions
Synopsis

1 #include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

Description
2 The csin functions compute the complex sine of z.

156 Library § 7.3.5.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The csin functions return the complex sine value.

7.3.5.6 The ctan functions
Synopsis

1 #include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

Description
2 The ctan functions compute the complex tangent of z.

Returns
3 The ctan functions return the complex tangent value.

7.3.6 Hyperbolic functions
7.3.6.1 The cacosh functions
Synopsis

1 #include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

Description
2 The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch cut at values

less than 1 along the real axis.

Returns
3 The cacosh functions return the complex arc hyperbolic cosine value, in the range of a half-strip of

nonnegative values along the real axis and in the interval [−iπ,+iπ] along the imaginary axis.

7.3.6.2 The casinh functions
Synopsis

1 #include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

Description
2 The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts outside the

interval [−i,+i] along the imaginary axis.

Returns
3 The casinh functions return the complex arc hyperbolic sine value, in the range of a strip mathe-

matically unbounded along the real axis and in the interval [− iπ
2 ,+

iπ
2] along the imaginary axis.

7.3.6.3 The catanh functions
Synopsis

1 #include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

§ 7.3.6.3 Library 157

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside

the interval [−1,+1] along the real axis.

Returns
3 The catanh functions return the complex arc hyperbolic tangent value, in the range of a strip

mathematically unbounded along the real axis and in the interval [− iπ
2 ,+

iπ
2] along the imaginary

axis.

7.3.6.4 The ccosh functions
Synopsis

1 #include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

Description
2 The ccosh functions compute the complex hyperbolic cosine of z.

Returns
3 The ccosh functions return the complex hyperbolic cosine value.

7.3.6.5 The csinh functions
Synopsis

1 #include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

Description
2 The csinh functions compute the complex hyperbolic sine of z.

Returns
3 The csinh functions return the complex hyperbolic sine value.

7.3.6.6 The ctanh functions
Synopsis

1 #include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

Description
2 The ctanh functions compute the complex hyperbolic tangent of z.

Returns
3 The ctanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions
7.3.7.1 The cexp functions
Synopsis

1 #include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);

158 Library § 7.3.7.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

long double complex cexpl(long double complex z);

Description
2 The cexp functions compute the complex base-e exponential of z.

Returns
3 The cexp functions return the complex base-e exponential value.

7.3.7.2 The clog functions
Synopsis

1 #include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

Description
2 The clog functions compute the complex natural (base-e) logarithm of z, with a branch cut along

the negative real axis.

Returns
3 The clog functions return the complex natural logarithm value, in the range of a strip mathematically

unbounded along the real axis and in the interval [−iπ,+iπ] along the imaginary axis.

7.3.8 Power and absolute-value functions
7.3.8.1 The cabs functions
Synopsis

1 #include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Description
2 The cabs functions compute the complex absolute value (also called norm, modulus, or magnitude)

of z.

Returns
3 The cabs functions return the complex absolute value.

7.3.8.2 The cpow functions
Synopsis

1 #include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x, long double complex y);

Description
2 The cpow functions compute the complex power function xy, with a branch cut for the first parameter

along the negative real axis.

Returns
3 The cpow functions return the complex power function value.

§ 7.3.8.2 Library 159

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.3.8.3 The csqrt functions
Synopsis

1 #include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

Description
2 The csqrt functions compute the complex square root of z, with a branch cut along the negative

real axis.

Returns
3 The csqrt functions return the complex square root value, in the range of the right half-plane

(including the imaginary axis).

7.3.9 Manipulation functions
7.3.9.1 The carg functions
Synopsis

1 #include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Description
2 The carg functions compute the argument (also called phase angle) of z, with a branch cut along

the negative real axis.

Returns
3 The carg functions return the value of the argument in the interval [−π,+π].

7.3.9.2 The cimag functions
Synopsis

1 #include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

Description

2 The cimag functions compute the imaginary part of z.212)

Returns
3 The cimag functions return the imaginary part value (as a real).

7.3.9.3 The CMPLX macros
Synopsis

1 #include <complex.h>
double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);

212)For a variable z of complex type, z == creal(z)+cimag(z)*I.

160 Library § 7.3.9.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The CMPLX macros expand to an expression of the specified complex type, with the real part having

the (converted) value of x and the imaginary part having the (converted) value of y. The resulting
expression shall be suitable for use as an initializer for an object with static or thread storage duration,
provided both arguments are likewise suitable.

Returns
3 The CMPLX macros return the complex value x + iy.
4 NOTE These macros act as if the implementation supported imaginary types and the definitions were:

#define CMPLX(x, y) ((double complex)((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex)((float)(x) + \
_Imaginary_I * (float)(y)))

#define CMPLXL(x, y) ((long double complex)((long double)(x) + \
_Imaginary_I * (long double)(y)))

7.3.9.4 The conj functions
Synopsis

1 #include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

Description
2 The conj functions compute the complex conjugate of z, by reversing the sign of its imaginary part.

Returns
3 The conj functions return the complex conjugate value.

7.3.9.5 The cproj functions
Synopsis

1 #include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

Description
2 The cproj functions compute a projection of z onto the Riemann sphere: z projects to z except that

all complex infinities (even those with one infinite part and one NaN part) project to positive infinity
on the real axis. If z has an infinite part, then cproj(z) is equivalent to

INFINITY + I * copysign(0.0, cimag(z))

Returns
3 The cproj functions return the value of the projection onto the Riemann sphere.

7.3.9.6 The creal functions
Synopsis

1 #include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

§ 7.3.9.6 Library 161

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description

2 The creal functions compute the real part of z.213)

Returns
3 The creal functions return the real part value.

213)For a variable z of complex type, z == creal(z)+cimag(z)*I.

162 Library § 7.3.9.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.4 Character handling <ctype.h>

1 The header <ctype.h> declares several functions useful for classifying and mapping characters.214)

In all cases the argument is an int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

2 The behavior of these functions is affected by the current locale. Those functions that have locale-
specific aspects only when not in the "C" locale are noted below.

3 The term printing character refers to a member of a locale-specific set of characters, each of which
occupies one printing position on a display device; the term control character refers to a member of a
locale-specific set of characters that are not printing characters.215) All letters and digits are printing
characters.

Forward references: EOF (7.21.1), localization (7.11).

7.4.1 Character classification functions
1 The functions in this subclause return nonzero (true) if and only if the value of the argument c

conforms to that in the description of the function.

7.4.1.1 The isalnum function
Synopsis

1 #include <ctype.h>
int isalnum(int c);

Description
2 The isalnum function tests for any character for which isalpha or isdigit is true.

7.4.1.2 The isalpha function
Synopsis

1 #include <ctype.h>
int isalpha(int c);

Description
2 The isalpha function tests for any character for which isupper or islower is true, or any character

that is one of a locale-specific set of alphabetic characters for which none of iscntrl, isdigit,
ispunct, or isspace is true.216) In the "C" locale, isalpha returns true only for the characters for
which isupper or islower is true.

7.4.1.3 The isblank function
Synopsis

1 #include <ctype.h>
int isblank(int c);

Description
2 The isblank function tests for any character that is a standard blank character or is one of a locale-

specific set of characters for which isspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (’ ’), and horizontal tab (’\t’). In
the "C" locale, isblank returns true only for the standard blank characters.

214)See "future library directions" (7.31.2).
215)In an implementation that uses the seven-bit US ASCII character set, the printing characters are those whose values lie

from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL) through 0x1F (US),
and the character 0x7F (DEL).
216)The functions islower and isupper test true or false separately for each of these additional characters; all four combina-

tions are possible.

§ 7.4.1.3 Library 163

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.4.1.4 The iscntrl function
Synopsis

1 #include <ctype.h>
int iscntrl(int c);

Description
2 The iscntrl function tests for any control character.

7.4.1.5 The isdigit function
Synopsis

1 #include <ctype.h>
int isdigit(int c);

Description
2 The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.4.1.6 The isgraph function
Synopsis

1 #include <ctype.h>
int isgraph(int c);

Description
2 The isgraph function tests for any printing character except space (’ ’).

7.4.1.7 The islower function
Synopsis

1 #include <ctype.h>
int islower(int c);

Description
2 The islower function tests for any character that is a lowercase letter or is one of a locale-specific set

of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
islower returns true only for the lowercase letters (as defined in 5.2.1).

7.4.1.8 The isprint function
Synopsis

1 #include <ctype.h>
int isprint(int c);

Description
2 The isprint function tests for any printing character including space (’ ’).

7.4.1.9 The ispunct function
Synopsis

1 #include <ctype.h>
int ispunct(int c);

Description
2 The ispunct function tests for any printing character that is one of a locale-specific set of punctuation

characters for which neither isspace nor isalnum is true. In the "C" locale, ispunct returns true
for every printing character for which neither isspace nor isalnum is true.

164 Library § 7.4.1.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.4.1.10 The isspace function
Synopsis

1 #include <ctype.h>
int isspace(int c);

Description
2 The isspace function tests for any character that is a standard white-space character or is one of

a locale-specific set of characters for which isalnum is false. The standard white-space characters
are the following: space (’ ’), form feed (’\f’), new-line (’\n’), carriage return (’\r’), horizontal
tab (’\t’), and vertical tab (’\v’). In the "C" locale, isspace returns true only for the standard
white-space characters.

7.4.1.11 The isupper function
Synopsis

1 #include <ctype.h>
int isupper(int c);

Description
2 The isupper function tests for any character that is an uppercase letter or is one of a locale-specific

set of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
isupper returns true only for the uppercase letters (as defined in 5.2.1).

7.4.1.12 The isxdigit function
Synopsis

1 #include <ctype.h>
int isxdigit(int c);

Description
2 The isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.1).

7.4.2 Character case mapping functions
7.4.2.1 The tolower function
Synopsis

1 #include <ctype.h>
int tolower(int c);

Description
2 The tolower function converts an uppercase letter to a corresponding lowercase letter.

Returns
3 If the argument is a character for which isupper is true and there are one or more corresponding

characters, as specified by the current locale, for which islower is true, the tolower function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

7.4.2.2 The toupper function
Synopsis

1 #include <ctype.h>
int toupper(int c);

Description
2 The toupper function converts a lowercase letter to a corresponding uppercase letter.

§ 7.4.2.2 Library 165

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 If the argument is a character for which islower is true and there are one or more corresponding

characters, as specified by the current locale, for which isupper is true, the toupper function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

166 Library § 7.4.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.5 Errors <errno.h>
1 The header <errno.h> defines several macros, all relating to the reporting of error conditions.

2 The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

errno

which expands to a modifiable lvalue217) that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

3 The value of errno in the initial thread is zero at program startup (the initial value of errno in other
threads is an indeterminate value), but is never set to zero by any library function.218) The value of
errno may be set to nonzero by a library function call whether or not there is an error, provided the
use of errno is not documented in the description of the function in this document.

4 Additional macro definitions, beginning with E and a digit or E and an uppercase letter,219) may also
be specified by the implementation.

217)The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting from a function
call (for example,*errno()).
218)Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it

before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.
219)See "future library directions" (7.31.3).

§ 7.5 Library 167

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.6 Floating-point environment <fenv.h>
1 The header <fenv.h> defines several macros, and declares types and functions that provide access to

the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.220)

A floating-point status flag is a system variable whose value is set (but never cleared) when a floating-
point exception is raised, which occurs as a side effect of exceptional floating-point arithmetic to
provide auxiliary information.221) A floating-point control mode is a system variable whose value may
be set by the user to affect the subsequent behavior of floating-point arithmetic.

2 A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point en-
vironment includes the dynamic floating-point control modes and the floating-point status flags.

3 The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it at the time of creation.

4 Certain programming conventions support the intended model of use for the dynamic floating-point
environment:222)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

5 The feature test macro __STDC_VERSION_FENV_H__ expands to the token yyyymmL.

6 The type

fenv_t

represents the entire dynamic floating-point environment.

7 The type

femode_t

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

8 The type

fexcept_t

represents the floating-point status flags collectively, including any status the implementation
associates with the flags.

9 Each of the macros

220)This header is designed to support the floating-point exception status flags and rounding-direction control modes
required by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability
among all systems.
221)A floating-point status flag is not an object and can be set more than once within an expression.
222)With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).

The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

168 Library § 7.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by means of
the functions in 7.6.4.223) Additional implementation-defined floating-point exceptions, with
macro definitions beginning with FE_ and an uppercase letter,224) may also be specified by the
implementation. The defined macros expand to integer constant expressions with values such that
bitwise ORs of all combinations of the macros result in distinct values, and furthermore, bitwise
ANDs of all combinations of the macros result in zero.225)

10 Decimal floating-point operations and IEC 60559 binary floating-point operations (Annex F) access
the same floating-point exception status flags.

11 The macro

FE_DFL_MODE

represents the default state for the collection of dynamic floating-point control modes sup-
ported by the implementation – and has type "pointer to const-qualified femode_t". Additional
implementation-defined states for the dynamic mode collection, with macro definitions beginning
with FE_ and an uppercase letter, and having type "pointer to const-qualified femode_t", may also
be specified by the implementation.

12 The macro

FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the implementation. If no
such macros are defined, FE_ALL_EXCEPT shall be defined as 0.

13 Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented rounding
direction by means of the fegetround and fesetround functions. Additional implementation-
defined rounding directions, with macro definitions beginning with FE_ and an uppercase letter,226)

may also be specified by the implementation.227)

14 If the implementation supports decimal floating types, each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD

223)The implementation supports a floating-point exception if there are circumstances where a call to at least one of the
functions in 7.6.4, using the macro as the appropriate argument, will succeed. It is not necessary for all the functions to
succeed all the time.
224)See "future library directions" (7.31.4).
225)The macros are typically distinct powers of two.
226)See "future library directions" (7.31.4).
227)Even though the rounding direction macros might expand to constants corresponding to the values of FLT_ROUNDS, they

are not required to do so.

§ 7.6 Library 169

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

is defined for use with the fe_dec_getround and fe_dec_setround functions for getting and
setting the dynamic rounding direction mode, and with the FENV_DEC_ROUND rounding control
pragma (7.6.3) for specifying a constant rounding direction, for decimal floating-point operations.
The decimal rounding direction affects all (inexact) operations that produce a result of decimal
floating type and all operations that produce an integer or character sequence result and have an
operand of decimal floating type, unless stated otherwise. The macros expand to integer constant
expressions whose values are distinct nonnegative values.

15 During translation, constant rounding direction modes for decimal floating-point arithmetic are
in effect where specified. Elsewhere, during translation the decimal rounding direction mode is
FE_DEC_TONEAREST.

16 At program startup the dynamic rounding direction mode for decimal floating-point arithmetic is
initialized to FE_DEC_TONEAREST.

17 The macro

FE_DFL_ENV

represents the default dynamic floating-point environment — the one installed at program startup
— and has type "pointer to const-qualified fenv_t". It can be used as an argument to <fenv.h>
functions that manage the dynamic floating-point environment.

18 Additional implementation-defined environments, with macro definitions beginning with FE_ and
an uppercase letter,228) and having type "pointer to const-qualified fenv_t", may also be specified
by the implementation.

7.6.1 The FENV_ACCESS pragma
Synopsis

1 #include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description
2 The FENV_ACCESS pragma provides a means to inform the implementation when a program might

access the floating-point environment to test floating-point status flags or run under non-default
floating-point control modes.229) The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma
is encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FENV_ACCESS pragma is encountered (including
within a nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. If part of a
program tests floating-point status flags or establishes non-default floating-point mode settings
using any means other than the FENV_ROUND pragmas, but was translated with the state for the
FENV_ACCESS pragma "off", the behavior is undefined. The default state ("on" or "off") for the
pragma is implementation-defined. (When execution passes from a part of the program translated
with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on", the state of the floating-point
status flags is unspecified and the floating-point control modes have their default settings.)

3 EXAMPLE

#include <fenv.h>
void f(double x)

228)See "future library directions" (7.31.4).
229)The purpose of the FENV_ACCESS pragma is to allow certain optimizations that could subvert flag tests and mode changes

(e.g., global common subexpression elimination, code motion, and constant folding). In general, if the state of FENV_ACCESS
is "off", the translator can assume that the flags are not tested, and that default modes are in effect, except where specified
otherwise by an FENV_ROUND pragma.

170 Library § 7.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

{
#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... */
g(x + 1);
h(x + 1);
/* ... */

}

4 If the function g might depend on status flags set as a side effect of the first x + 1, or if the second x + 1 might depend on
control modes set as a side effect of the call to function g, then the program has to contain an appropriately placed invocation
of #pragma STDC FENV_ACCESS ON as shown.230)

7.6.2 The FENV_ROUND pragma
Synopsis

1 #include <fenv.h>
#pragma STDC FENV_ROUND direction
#pragma STDC FENV_ROUND FE_DYNAMIC

Description
2 The FENV_ROUND pragma provides a means to specify a constant rounding direction for floating-

point operations for standard floating types within a translation unit or compound statement. The
pragma shall occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until another FENV_ROUND pragma is encountered, or until the end of the
translation unit. When inside a compound statement, the pragma takes effect from its occurrence
until another FENV_ROUND pragma is encountered (including within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the static rounding
mode is restored to its condition just before the compound statement. If this pragma is used in any
other context, its behavior is undefined.

3 direction shall be one of the names of the supported rounding direction macros for operations for
standard floating types (7.6), or FE_DYNAMIC. If any other value is specified, the behavior is unde-
fined. If no FENV_ROUND pragma is in effect, or the specified constant rounding mode is FE_DYNAMIC,
rounding is according to the mode specified by the dynamic floating-point environment, which is the
dynamic rounding mode that was established either at thread creation or by a call to fesetround,
fesetmode, fesetenv, or feupdateenv. If the FE_DYNAMIC mode is specified and FENV_ACCESS is
"off", the translator may assume that the default rounding mode is in effect.

4 The FENV_ROUND pragma affects operations for standard floating types. Within the scope of an
FENV_ROUND pragma establishing a mode other than FE_DYNAMIC, floating-point operators, implicit
conversions (including the conversion of a value represented in a format wider than its semantic
types to its semantic type, as done by classification macros), and invocations of functions indicated
in the table below, for which macro replacement has not been suppressed (7.1.4), shall be evaluated
according to the specified constant rounding mode (as though no constant mode was specified
and the corresponding dynamic rounding mode had been established by a call to fesetround).
Invocations of functions for which macro replacement has been suppressed and invocations of
functions other than those indicated in the table below shall not be affected by constant rounding
modes – they are affected by (and affect) only the dynamic mode. Floating constants (6.4.4.2) of
a standard floating type that occur in the scope of a constant rounding mode shall be interpreted
according to that mode.

230)The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand, without the
#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is "off", just one evaluation of x + 1 would suffice.

§ 7.6.2 Library 171

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Functions affected by constant rounding modes – for standard
floating types

Header Function families
<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> cos, cospi, sin, sinpi, tan, tanpi
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh
<math.h> exp, exp10, exp10m1, exp2, exp2m1, expm1
<math.h> log, log10, log10p1, log1p, log2, log2p1, logp1
<math.h> scalbn, scalbln, ldexp
<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf, erfc
<math.h> lgamma, tgamma
<math.h> rint, nearbyint, lrint, llrint
<math.h> fdim
<math.h> fma
<math.h> fadd, dadd, fsub, dsub, fmul, dmul, fdiv, ddiv, ffma, dfma, fsqrt, dsqrt
<stdlib.h> atof, strfrom, strto
<wchar.h> wcsto
<stdio.h> printf and scanf families
<wchar.h> wprintf and wscanf families

A function family listed in the table above indicates the functions for all standard floating types,
where the function family is represented by the name of the functions without a suffix. For example,
acos indicates the functions acos, acosf, and acosl.

5 NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts:
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
... operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
... operations affected by constant rounding mode ...
// compiler inserts:
// __swapround(__savedrnd);

}

where __swapround is defined by:

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new);
return old;

}

7.6.3 The FENV_DEC_ROUND pragma
Synopsis

1 #include <fenv.h>

172 Library § 7.6.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

#ifdef __STDC_IEC_60559_DFP__

#pragma STDC FENV_DEC_ROUND dec-direction
#endif

Description
2 The FENV_DEC_ROUND pragma is a decimal floating-point analog of the FENV_ROUND pragma. If

FLT_RADIX is not 10, the FENV_DEC_ROUND pragma affects operators, functions, and floating con-
stants only for decimal floating types. The affected functions are listed in the table below. If
FLT_RADIX is 10, whether the FENV_ROUND and FENV_DEC_ROUND pragmas alter the rounding direc-
tion of both standard and decimal floating-point operations is implementation-defined. dec-direction
shall be one of the decimal rounding direction macro names (FE_DEC_DOWNWARD, FE_DEC_TONEAREST,
FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD) defined in 7.6, to specify
a constant rounding mode, or FE_DEC_DYNAMIC, to specify dynamic rounding. The corresponding
dynamic rounding mode can be established by a call to fe_dec_setround.

Functions affected by constant rounding modes – for decimal float-
ing types

Header Function families
<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> cos, cospi, sin, sinpi, tan, tanpi
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh
<math.h> exp, exp10, exp10m1, exp2, exp2m1, expm1
<math.h> log, log10, log10p1, log1p, log2, log2p1, logp1
<math.h> scalbn, scalbln, ldexp
<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf, erfc
<math.h> lgamma, tgamma
<math.h> rint, nearbyint, lrint, llrint
<math.h> quantize
<math.h> fdim
<math.h> fma
<math.h> d32add, d64add, d32sub, d64sub, d32mul, d64mul, d32div, d64div,

d32fma, d64fma, d32sqrt, d64sqrt
<stdlib.h> strfrom, strto
<wchar.h> wcsto
<stdio.h> printf and scanf families
<wchar.h> wprintf and wscanf families

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,
acos indicates the functions acosd32, acosd64, and acosd128.

7.6.4 Floating-point exceptions
1 The following functions provide access to the floating-point status flags.231) The int input argument

for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.4.1 The feclearexcept function

231)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

§ 7.6.4.1 Library 173

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <fenv.h>
int feclearexcept(int excepts);

Description
2 The feclearexcept function attempts to clear the supported floating-point exceptions represented

by its argument.

Returns
3 The feclearexcept function returns zero if the excepts argument is zero or if all the specified

exceptions were successfully cleared. Otherwise, it returns a nonzero value.

7.6.4.2 The fegetexceptflag function
Synopsis

1 #include <fenv.h>
int fegetexceptflag(fexcept_t *flagp, int excepts);

Description
2 The fegetexceptflag function attempts to store an implementation-defined representation of the

states of the floating-point status flags indicated by the argument excepts in the object pointed to
by the argument flagp.

Returns
3 The fegetexceptflag function returns zero if the representation was successfully stored. Otherwise,

it returns a nonzero value.

7.6.4.3 The feraiseexcept function
Synopsis

1 #include <fenv.h>
int feraiseexcept(int excepts);

Description
2 The feraiseexcept function attempts to raise the supported floating-point exceptions represented

by its argument.232) The order in which these floating-point exceptions are raised is unspecified,
except as stated in F.8.6. Whether the feraiseexcept function additionally raises the "inexact"
floating-point exception whenever it raises the "overflow" or "underflow" floating-point exception
is implementation-defined.

Returns
3 The feraiseexcept function returns zero if the excepts argument is zero or if all the specified

exceptions were successfully raised. Otherwise, it returns a nonzero value.

7.6.4.4 The fesetexcept function
Synopsis

1 #include <fenv.h>
int fesetexcept(int excepts);

Description
2 The fesetexcept function attempts to set the supported floating-point exception flags represented

by its argument. This function does not clear any floating-point exception flags. This function

232)The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations. Hence, enabled
traps for floating-point exceptions raised by this function are taken. The specification in F.8.6 is in the same spirit.

174 Library § 7.6.4.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

changes the state of the floating-point exception flags, but does not cause any other side effects that
might be associated with raising floating-point exceptions.233)

Returns
3 The fesetexcept function returns zero if all the specified exceptions were successfully set or if the

excepts argument is zero. Otherwise, it returns a nonzero value.

7.6.4.5 The fesetexceptflag function
Synopsis

1 #include <fenv.h>
int fesetexceptflag(const fexcept_t *flagp, int excepts);

Description
2 The fesetexceptflag function attempts to set the floating-point status flags indicated by the

argument excepts to the states stored in the object pointed to by flagp. The value of*flagp shall
have been set by a previous call to fegetexceptflag whose second argument represented at least
those floating-point exceptions represented by the argument excepts. This function does not raise
floating-point exceptions, but only sets the state of the flags.

Returns
3 The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified

flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

7.6.4.6 The fetestexceptflag function
Synopsis

1 #include <fenv.h>
int fetestexceptflag(const fexcept_t * flagp, int excepts);

Description
2 The fetestexceptflag function determines which of a specified subset of the floating-point excep-

tion flags are set in the object pointed to by flagp. The value of *flagp shall have been set by a
previous call to fegetexceptflag whose second argument represented at least those floating-point
exceptions represented by the argument excepts. The excepts argument specifies the floating-point
status flags to be queried.

Returns
3 The fetestexceptflag function returns the value of the bitwise OR of the floating-point exception

macros included in excepts corresponding to the floating-point exceptions set in*flagp .

7.6.4.7 The fetestexcept function
Synopsis

1 #include <fenv.h>
int fetestexcept(int excepts);

Description
2 The fetestexcept function determines which of a specified subset of the floating-point excep-

tion flags are currently set. The excepts argument specifies the floating-point status flags to be
queried.234)

Returns
3 The fetestexcept function returns the value of the bitwise OR of the floating-point exception

macros corresponding to the currently set floating-point exceptions included in excepts.

233)Enabled traps for floating-point exceptions are not taken.
234)This mechanism allows testing several floating-point exceptions with just one function call.

§ 7.6.4.7 Library 175

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

4 EXAMPLE Call f if "invalid" is set, then g if "overflow" is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

7.6.5 Rounding and other control modes
1 The fegetround and fesetround functions provide control of rounding direction modes. The

fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively.

7.6.5.1 The fegetmode function
Synopsis

1 #include <fenv.h>
int fegetmode(femode_t *modep);

Description
2 The fegetmode function attempts to store all the dynamic floating-point control modes in the object

pointed to by modep.

Returns
3 The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns a

nonzero value.

7.6.5.2 The fegetround function
Synopsis

1 #include <fenv.h>
int fegetround(void);

Description
2 The fegetround function gets the current value of the dynamic rounding direction mode.

Returns
3 The fegetround function returns the value of the rounding direction macro representing the current

dynamic rounding direction or a negative value if there is no such rounding direction macro or the
current dynamic rounding direction is not determinable.

7.6.5.3 The fe_dec_getround function
Synopsis

1 #include <fenv.h>
#ifdef __STDC_IEC_60559_DFP__

int fe_dec_getround(void);
#endif

176 Library § 7.6.5.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The fe_dec_getround function gets the current value of the dynamic rounding direction mode for

decimal floating-point operations.

Returns
3 The fe_dec_getround function returns the value of the rounding direction macro representing the

current dynamic rounding direction for decimal floating-point operations, or a negative value if
there is no such rounding macro or the current rounding direction is not determinable.

7.6.5.4 The fesetmode function
Synopsis

1 #include <fenv.h>
int fesetmode(const femode_t *modep);

Description
2 The fesetmode function attempts to establish the dynamic floating-point modes represented by the

object pointed to by modep. The argument modep shall point to an object set by a call to fegetmode,
or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the implementation.

Returns
The fesetmode fesetmode function returns zero if the modes were successfully established. Other-
wise, it returns a nonzero value.

7.6.5.5 The fesetround function
Synopsis

1 #include <fenv.h>
int fesetround(int round);

Description
2 The fesetround function establishes the rounding direction represented by its argument round. If

the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

Returns
3 The fesetround function returns zero if and only if the dynamic rounding direction mode was set

to the requested rounding direction.
4 EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

7.6.5.6 The fe_dec_setround function

§ 7.6.5.6 Library 177

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <fenv.h>
#ifdef __STDC_IEC_60559_DFP__

int fe_dec_setround(int round);
#endif

Description
2 The fe_dec_setround function sets the dynamic rounding direction mode for decimal floating-

point operations to be the rounding direction represented by its argument round. If the argument is
not equal to the value of a decimal rounding direction macro, the rounding direction is not changed.

3 If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is independent
of the rounding direction altered by the fe_dec_setround function; otherwise if FLT_RADIX is
10, whether the fesetround and fe_dec_setround functions alter the rounding direction of both
standard and decimal floating-point operations is implementation- defined.

Returns
4 The fe_dec_setround function returns a zero value if and only if the argument is equal to a decimal

rounding direction macro (that is, if and only if the dynamic rounding direction mode for decimal
floating-point operations was set to the requested rounding direction).

7.6.6 Environment
1 The functions in this section manage the floating-point environment — status flags and control

modes — as one entity.

7.6.6.1 The fegetenv function
Synopsis

1 #include <fenv.h>
int fegetenv(fenv_t *envp);

Description
2 The fegetenv function attempts to store the current dynamic floating-point environment in the

object pointed to by envp.

Returns
3 The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns

a nonzero value.

7.6.6.2 The feholdexcept function
Synopsis

1 #include <fenv.h>
int feholdexcept(fenv_t *envp);

Description
2 The feholdexcept function saves the current dynamic floating-point environment in the object

pointed to by envp, clears the floating-point status flags, and then installs a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.235)

Returns
3 The feholdexcept function returns zero if and only if non-stop floating-point exception handling

was successfully installed.

235)IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or aborting; if
the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept function can be
used in conjunction with the feupdateenv function to write routines that hide spurious floating-point exceptions from their
callers.

178 Library § 7.6.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.6.6.3 The fesetenv function
Synopsis

1 #include <fenv.h>
int fesetenv(const fenv_t *envp);

Description
2 The fesetenv function attempts to establish the dynamic floating-point environment represented by

the object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a dynamic floating-point environment macro. Note that fesetenv merely
installs the state of the floating-point status flags represented through its argument, and does not
raise these floating-point exceptions.

Returns
3 The fesetenv function returns zero if the environment was successfully established. Otherwise, it

returns a nonzero value.

7.6.6.4 The feupdateenv function
Synopsis

1 #include <fenv.h>
int feupdateenv(const fenv_t *envp);

Description
2 The feupdateenv function attempts to save the currently raised floating-point exceptions in its

automatic storage, install the dynamic floating-point environment represented by the object pointed
to by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

Returns
3 The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it

returns a nonzero value.
4 EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
if (feholdexcept(&save_env))

return /* indication of an environmental problem */;
// compute result
if (/* test spurious underflow */)

if (feclearexcept(FE_UNDERFLOW))
return /* indication of an environmental problem */;

if (feupdateenv(&save_env))
return /* indication of an environmental problem */;

return result;
}

§ 7.6.6.4 Library 179

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.7 Characteristics of floating types <float.h>
1 The header <float.h> defines several macros that expand to various limits and parameters of the

real floating types.

2 The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.2
and 5.2.4.2.3. A summary is given in Annex E.

180 Library § 7.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.8 Format conversion of integer types <inttypes.h>
1 The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities

provided by hosted implementations.

2 It declares functions for manipulating greatest-width integers and converting numeric character
strings to greatest-width integers, and it declares the type

imaxdiv_t

which is a structure type that is the type of the value returned by the imaxdiv function. For each
type declared in <stdint.h>, it defines corresponding macros for conversion specifiers for use with
the formatted input/output functions.236)

Forward references: integer types <stdint.h> (7.20), formatted input/output functions (7.21.6),
formatted wide character input/output functions (7.29.2).

7.8.1 Macros for format specifiers
1 Each of the following object-like macros expands to a character string literal containing a conversion

specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),237) followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.20.1. In these names, N
represents the width of the type as described in 7.20.1. For example, PRIdFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t.

2 The fprintf macros for signed integers are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

3 The fprintf macros for unsigned integers are:

PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

4 The fscanf macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

5 The fscanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

6 For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

7 EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // this type always exists
wprintf(L"The largest integer value is %020"

236)See "future library directions" (7.31.6).
237)Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format

specifiers might be required for fprintf and fscanf, even when the type is the same.

§ 7.8.1 Library 181

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

PRIxMAX "\n", i);
return 0;

}

7.8.2 Functions for greatest-width integer types
7.8.2.1 The imaxabs function
Synopsis

1 #include <inttypes.h>
intmax_t imaxabs(intmax_t j);

Description
2 The imaxabs function computes the absolute value of an integer j. If the result cannot be represented,

the behavior is undefined.238)

Returns
3 The imaxabs function returns the absolute value.

7.8.2.2 The imaxdiv function
Synopsis

1 #include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description
2 The imaxdiv function computes numer / denom and numer % denom in a single operation.

Returns
3 The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the

remainder. The structure shall contain (in either order) the members quot (the quotient) and rem
(the remainder), each of which has type intmax_t. If either part of the result cannot be represented,
the behavior is undefined.

7.8.2.3 The strtoimax and strtoumax functions
Synopsis

1 #include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base);

Description
2 The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and

strtoull functions, except that the initial portion of the string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The strtoimax and strtoumax functions return the converted value, if any. If no conversion could

be performed, zero is returned. If the correct value is outside the range of representable values,
INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the
value, if any), and the value of the macro ERANGE is stored in errno.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

7.8.2.4 The wcstoimax and wcstoumax functions

238)The absolute value of the most negative number may not be representable.

182 Library § 7.8.2.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #include <stddef.h> // for wchar_t
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

Description
2 The wcstoimax and wcstoumax functions are equivalent to the wcstol, wcstoll, wcstoul, and

wcstoull functions except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The wcstoimax function returns the converted value, if any. If no conversion could be performed,

zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX,
INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the value, if any),
and the value of the macro ERANGE is stored in errno.

Forward references: the wcstol, wcstoll, wcstoul, and wcstoull functions (7.29.4.1.3).

§ 7.8.2.4 Library 183

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.9 Alternative spellings <iso646.h>
1 The header <iso646.h> defines the following eleven macros (on the left) that expand to the corre-

sponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

184 Library § 7.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.10 Characteristics of integer types <limits.h>
1 The header <limits.h> defines several macros that expand to various limits and parameters of the

standard integer types.

2 The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.1.
A summary is given in Annex E.

§ 7.10 Library 185

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.11 Localization <locale.h>
1 The header <locale.h> declares two functions, one type, and defines several macros.

2 The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges are explained in 7.11.2.1. In the "C" locale, the members shall have the values specified in the
comments.

char *decimal_point; // "."
char *thousands_sep; // ""
char *grouping; // ""
char *mon_decimal_point; // ""
char *mon_thousands_sep; // ""
char *mon_grouping; // ""
char *positive_sign; // ""
char *negative_sign; // ""
char *currency_symbol; // ""
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char *int_curr_symbol; // ""
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

3 The macros defined are NULL (described in 7.19); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the first argu-
ment to the setlocale function.239) Additional macro definitions, beginning with the characters
LC_ and an uppercase letter,240) may also be specified by the implementation.

7.11.1 Locale control
7.11.1.1 The setlocale function
Synopsis

1 #include <locale.h>
char *setlocale(int category, const char *locale);

239)ISO/IEC 9945–2 specifies locale and charmap formats that can be used to specify locales for C.
240)See "future library directions" (7.31.7).

186 Library § 7.11.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The setlocale function selects the appropriate portion of the program’s locale as specified by

the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC_ALL for category names
the program’s entire locale; the other values for category name only a portion of the program’s
locale. LC_COLLATE affects the behavior of the strcoll and strxfrm functions. LC_CTYPE affects
the behavior of the character handling functions241) and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the localeconv function.
LC_NUMERIC affects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the nonmonetary formatting information returned by the
localeconv function. LC_TIME affects the behavior of the strftime and wcsftime functions.

3 A value of "C" for locale specifies the minimal environment for C translation; a value of "" for
locale specifies the locale-specific native environment. Other implementation-defined strings may
be passed as the second argument to setlocale.

4 At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

5 A call to the setlocale function may introduce a data race with other calls to the setlocale
function or with calls to functions that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

Returns
6 If a pointer to a string is given for locale and the selection can be honored, the setlocale function

returns a pointer to the string associated with the specified category for the new locale. If the
selection cannot be honored, the setlocale function returns a null pointer and the program’s locale
is not changed.

7 A null pointer for locale causes the setlocale function to return a pointer to the string associated
with the category for the program’s current locale; the program’s locale is not changed.242)

8 The pointer to string returned by the setlocale function is such that a subsequent call with that
string value and its associated category will restore that part of the program’s locale. The string
pointed to shall not be modified by the program. The behavior is undefined if the returned value
is used after a subsequent call to the setlocale function, or after the thread which called the
setlocale function to obtain the returned value has exited.

Forward references: formatted input/output functions (7.21.6), multibyte/wide character conver-
sion functions (7.22.7), multibyte/wide string conversion functions (7.22.8), numeric conversion
functions (7.22.1), the strcoll function (7.24.4.3), the strftime function (7.27.3.5), the strxfrm
function (7.24.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 The localeconv function
Synopsis

1 #include <locale.h>
struct lconv *localeconv(void);

Description
2 The localeconv function sets the components of an object with type struct lconv with values

appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale.
241)The only functions in 7.4 whose behavior is not affected by the current locale are isdigit and isxdigit.
242)The implementation is thus required to arrange to encode in a string the various categories due to a heterogeneous locale

when category has the value LC_ALL.

§ 7.11.2.1 Library 187

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current locale or is
of zero length. Apart from grouping and mon_grouping, the strings shall start and end in the initial
shift state. The members with type char are nonnegative numbers, any of which can be CHAR_MAX
to indicate that the value is not available in the current locale. The members include the following:

char *decimal_point

The decimal-point character used to format nonmonetary quantities.

char *thousands_sep

The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *grouping

A string whose elements indicate the size of each group of digits in formatted nonmon-
etary quantities.

char *mon_decimal_point

The decimal-point used to format monetary quantities.

char *mon_thousands_sep

The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping

A string whose elements indicate the size of each group of digits in formatted monetary
quantities.

char *positive_sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign

The string used to indicate a negative-valued formatted monetary quantity.

char *currency_symbol

The local currency symbol applicable to the current locale.

char frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a
locally formatted monetary quantity.

char p_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative locally formatted monetary quantity.

char n_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative locally formatted monetary quantity.

char p_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a nonnegative locally formatted monetary quantity.

char n_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a negative locally formatted monetary quantity.

char p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative locally
formatted monetary quantity.

188 Library § 7.11.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative locally
formatted monetary quantity.

char *int_curr_symbol

The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the
monetary quantity.

char int_frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char int_p_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
nonnegative internationally formatted monetary quantity.

char int_n_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a nonnegative internationally formatted monetary quantity.

char int_n_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a negative internationally formatted monetary quantity.

char int_p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative
internationally formatted monetary quantity.

char int_n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative interna-
tionally formatted monetary quantity.

4 The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that compose the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

5 The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space
separates the sign string from the value.

§ 7.11.2.1 Library 189

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

6 The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are inter-
preted according to the following:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.

7 The implementation shall behave as if no library function calls the localeconv function.

Returns
8 The localeconv function returns a pointer to the filled-in object. The structure pointed to by the

return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

9 EXAMPLE 1 The following table illustrates rules which might well be used by four countries to format monetary quantities.

Local format International format
Country Positive Negative Positive Negative

Country1 1.234,56 mk -1.234,56 mk FIM 1.234,56 FIM -1.234,56
Country2 L.1.234 -L.1.234 ITL 1.234 -ITL 1.234
Country3 ƒ 1.234,56 ƒ -1.234,56 NLG 1.234,56 NLG -1.234,56
Country4 SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56 CHF 1,234.56C

10 For these four countries, the respective values for the monetary members of the structure returned by localeconv could be:

Country1 Country2 Country3 Country4

mon_decimal_point "," "" "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
currency_symbol "mk" "L." "\u0192" "SFrs."
frac_digits 2 0 2 2
p_cs_precedes 0 1 1 1
n_cs_precedes 0 1 1 1
p_sep_by_space 1 0 1 0
n_sep_by_space 1 0 2 0
p_sign_posn 1 1 1 1
n_sign_posn 1 1 4 2
int_curr_symbol "FIM " "ITL " "NLG " "CHF "
int_frac_digits 2 0 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 1 1 1 1
int_n_sep_by_space 2 1 2 1
int_p_sign_posn 1 1 1 1
int_n_sign_posn 4 1 4 2

190 Library § 7.11.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

11 EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members affect the
formatted value.

p_sep_by_space
p_cs_precedes p_sign_posn 0 1 2

0 0 (1.25$) (1.25 $) (1.25$)
1 +1.25$ +1.25 $ + 1.25$
2 1.25$+ 1.25 $+ 1.25$ +
3 1.25+$ 1.25 +$ 1.25+ $
4 1.25$+ 1.25 $+ 1.25$ +

1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

§ 7.11.2.1 Library 191

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.12 Mathematics <math.h>
1 The header <math.h> declares two types and many mathematical functions and defines several

macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and l suffixes, which are corresponding functions with float and long double
parameters, return values, or both.243) Integer arithmetic functions and conversion functions are
discussed later.

2 The feature test macro __STDC_VERSION_MATH_H__ expands to the token yyyymmL.

3 The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.244)

4 The types

_Decimal32_t
_Decimal64_t

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively,
and such that _Decimal64_t is at least as wide as _Decimal32_t. If DEC_EVAL_METHOD
equals 0, _Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64, respectively; if
DEC_EVAL_METHOD equals 1, they are both _Decimal64; if DEC_EVAL_METHOD equals 2, they are
both _Decimal128; and for other values of DEC_EVAL_METHOD, they are otherwise implementation-
defined.

5 The macro

HUGE_VAL

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.245)

6 The macro

HUGE_VAL_D32

expands to a constant expression of type _Decimal32 representing positive infinity. The macros

HUGE_VAL_D64
HUGE_VAL_D128

243)Particularly on systems with wide expression evaluation, a <math.h> function might pass arguments and return values
in wider format than the synopsis prototype indicates.
244)The types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.
245)HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.

192 Library § 7.12

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

are respectively _Decimal64 and _Decimal128 analogs of HUGE_VAL_D32.

7 The macro

INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time. 246)

8 The macro

DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

9 The macro

NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

10 The macro

DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN.

11 Use of the macros INFINITY, DEC_INFINITY, NAN, and DEC_NAN in <math.h> is an obsolescent
feature. Instead, use the same macros in <float.h>.

12 The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

13 The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer
constant expressions with distinct values suitable for use as the second argument to the fromfp,
ufromfp, fromfpx, and ufromfpx functions.

14 The macro

FP_FAST_FMA

246)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

§ 7.12 Library 193

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.247) The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

15 The macros

FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64, and _Decimal128 analogs of FP_FAST_FMA.

16 Each of the macros

FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL

FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV

FP_FAST_FDIVL
FP_FAST_DDIVL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL

FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_DFMAL

is optionally defined. If defined, it indicates that the corresponding function generally executes
about as fast, or faster, than the corresponding operation or function of the argument type with
result type the same as the argument type followed by conversion to the narrower type. For
FP_FAST_FFMA, FP_FAST_FFMAL, and FP_FAST_DFMAL, the comparison is to a call to fma or fmal
followed by a conversion, not to separate multiply, add, and conversion. If defined, these macros
expand to the integer constant 1.

17 The macros

FP_FAST_D32ADDD64
FP_FAST_D32ADDD128
FP_FAST_D64ADDD128
FP_FAST_D32SUBD64
FP_FAST_D32SUBD128
FP_FAST_D64SUBD128

FP_FAST_D32MULD64
FP_FAST_D32MULD128
FP_FAST_D64MULD128
FP_FAST_D32DIVD64
FP_FAST_D32DIVD128
FP_FAST_D64DIVD128

FP_FAST_D32FMAD64
FP_FAST_D32FMAD128
FP_FAST_D64FMAD128
FP_FAST_D32SQRTD64
FP_FAST_D32SQRTD128
FP_FAST_D64SQRTD128

are analogs of FP_FAST_FADD, FP_FAST_FADDL, FP_FAST_DADDL, etc., for decimal floating types.

18 The macros

FP_ILOGB0
FP_ILOGBNAN

expand to integer constant expressions whose values are returned by ilogb(x) if x is zero or
NaN, respectively. The value of FP_ILOGB0 shall be either INT_MIN or-INT_MAX . The value of
FP_ILOGBNAN shall be either INT_MAX or INT_MIN.

19 The macros

FP_LLOGB0
FP_LLOGBNAN

247)Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware
multiply-add instruction. Software implementations are expected to be substantially slower.

194 Library § 7.12

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

expand to integer constant expressions whose values are returned by llogb(x) if x is zero or NaN, re-
spectively. The value of FP_LLOGB0 shall be LONG_MIN if the value of FP_ILOGB0 is INT_MIN, and shall
be-LONG_MAX if the value of FP_ILOGB0 is-INT_MAX . The value of FP_LLOGBNAN shall be LONG_MAX
if the value of FP_ILOGBNAN is INT_MAX, and shall be LONG_MIN if the value of FP_ILOGBNAN is
INT_MIN.

20 The macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro

math_errhandling

expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, or the
bitwise OR of both. The value of math_errhandling is constant for the duration of the program. It is
unspecified whether math_errhandling is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name math_errhandling, the
behavior is undefined. If the expression math_errhandling & MATH_ERREXCEPT can be nonzero,
the implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in
<fenv.h>.

7.12.1 Treatment of error conditions
1 The behavior of each of the functions in <math.h> is specified for all representable values of its

input arguments, except where explicitly stated otherwise. Each function shall execute as if it were a
single operation without raising SIGFPE and without generating any of the floating-point exceptions
"invalid", "divide-by-zero", or "overflow" except to reflect the result of the function.

2 For all functions, a domain error occurs if and only if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors; an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function.248) Whether a signaling NaN
input causes a domain error is implementation-defined. On a domain error, the function returns
an implementation-defined value; if the integer expression math_errhandling & MATH_ERRNO
is nonzero, the integer expression errno acquires the value EDOM; if the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero, the "invalid" floating-point exception is raised.

3 Similarly, a pole error (also known as a singularity or infinitary) occurs if and only if the mathematical
function has an exact infinite result as the finite input argument(s) are approached in the limit (for ex-
ample, log(0.0)). The description of each function lists any required pole errors; an implementation
may define additional pole errors, provided that such errors are consistent with the mathematical
definition of the function. On a pole error, the function returns an implementation-defined value;
if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT
is nonzero, the "divide-by-zero" floating-point exception is raised.

4 Likewise, a range error occurs if and only if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. The description of each
function lists any required range errors; an implementation may define additional range errors,
provided that such errors are consistent with the mathematical definition of the function and are the
result of either overflow or underflow.

5 A floating result overflows if the magnitude (absolute value) of the mathematical result is finite but
so large that the mathematical result cannot be represented without extraordinary roundoff error
in an object of the specified type. If a floating result overflows and default rounding is in effect,
then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to

248)In an implementation that supports infinities, this allows an infinity as an argument to be a domain error if the
mathematical domain of the function does not include the infinity.

§ 7.12.1 Library 195

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

the return type, with the same sign as the correct value of the function; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value
ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the "overflow"
floating-point exception is raised.

6 The result underflows if the magnitude (absolute value) of the mathematical result is nonzero and
less than the minimum normal number in the type.249) If the result underflows, the function returns
an implementation-defined value whose magnitude is no greater than the smallest normalized
positive number in the specified type; if the integer expression math_errhandling & MATH_ERRNO
is nonzero, whether errno acquires the value ERANGE is implementation-defined; if the integer
expression math_errhandling & MATH_ERREXCEPT is nonzero, whether the "underflow" floating-
point exception is raised is implementation-defined.

7 If a domain, pole, or range error occurs and the integer expression math_errhandling & MATH_ERRNO
is zero,250) then errno shall either be set to the value corresponding to the error or left unmodified. If
no such error occurs, errno shall be left unmodified regardless of the setting of math_errhandling.

7.12.2 The FP_CONTRACT pragma
Synopsis

1 #include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description
2 The FP_CONTRACT pragma can be used to allow (if the state is "on") or disallow (if the state is

"off") the implementation to contract expressions (6.5). Each pragma can occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside
a compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state ("on" or "off") for the pragma is implementation-defined.

7.12.3 Classification macros
1 In the synopses in this subclause, real-floating indicates that the argument shall be an expression of

real floating type.

7.12.3.1 The fpclassify macro
Synopsis

1 #include <math.h>
int fpclassify(real-floating x);

Description
2 The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or

into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of
the argument.251)

249)The term underflow here is intended to encompass both "gradual underflow" as in IEC 60559 and also "flush-to-zero"
underflow.
250)Math errors are being indicated by the floating-point exception flags rather than by errno.
251)Since an expression can be evaluated with more range and precision than its type has, it is important to know the type

that classification is based on. For example, a normal long double value might become subnormal when converted to
double, and zero when converted to float.

196 Library § 7.12.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The fpclassify macro returns the value of the number classification macro appropriate to the value

of its argument.

7.12.3.2 The iscanonical macro
Synopsis

1 #include <math.h>
int iscanonical(real-floating x);

Description
2 The iscanonical macro determines whether its argument value is canonical (5.2.4.2.2). First, an

argument represented in a format wider than its semantic type is converted to its semantic type.
Then, determination is based on the type of the argument.

Returns
3 The iscanonical macro returns a nonzero value if and only if its argument is canonical.

7.12.3.3 The isfinite macro
Synopsis

1 #include <math.h>
int isfinite(real-floating x);

Description
2 The isfinite macro determines whether its argument has a finite value (zero, subnormal, or

normal, and not infinite or NaN). First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then determination is based on the type of the argument.

Returns
3 The isfinite macro returns a nonzero value if and only if its argument has a finite value.

7.12.3.4 The isinf macro
Synopsis

1 #include <math.h>
int isinf(real-floating x);

Description
2 The isinf macro determines whether its argument value is an infinity (positive or negative). First,

an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns
3 The isinf macro returns a nonzero value if and only if its argument has an infinite value.

7.12.3.5 The isnan macro
Synopsis

1 #include <math.h>
int isnan(real-floating x);

Description
2 The isnan macro determines whether its argument value is a NaN. First, an argument represented

in a format wider than its semantic type is converted to its semantic type. Then determination is

§ 7.12.3.5 Library 197

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

based on the type of the argument.252)

Returns
3 The isnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.3.6 The isnormal macro
Synopsis

1 #include <math.h>
int isnormal(real-floating x);

Description
2 The isnormal macro determines whether its argument value is normal (neither zero, subnormal,

infinite, nor NaN). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns
3 The isnormal macro returns a nonzero value if and only if its argument has a normal value.

7.12.3.7 The signbit macro
Synopsis

1 #include <math.h>
int signbit(real-floating x);

Description

2 The signbit macro determines whether the sign of its argument value is negative.253)

Returns
3 The signbit macro returns a nonzero value if and only if the sign of its argument value is negative.

7.12.3.8 The issignaling macro
Synopsis

1 #include <math.h>
int issignaling(real-floating x);

Description
2 The issignaling macro determines whether its argument value is a signaling NaN.

Returns

3 The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.254)

7.12.3.9 The issubnormal macro
Synopsis

1 #include <math.h>
int issubnormal(real-floating x);

252)For the isnan macro, the type for determination does not matter unless the implementation supports NaNs in the
evaluation type but not in the semantic type.
253)The signbit macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is unsigned, it is treated

as positive.
254)F.3 specifies that issignaling (and all the other classification macros), raise no floating-point exception if the argument

is a variable, or any other expression whose value is represented in the format of its semantic type, even if the value is a
signaling NaN.

198 Library § 7.12.3.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The issubnormal macro determines whether its argument value is subnormal. First, an argument

represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

Returns
3 The issubnormal macro returns a nonzero value if and only if its argument is subnormal.

7.12.3.10 The iszero macro
Synopsis

1 #include <math.h>
int iszero(real-floating x);

Description
2 The iszero macro determines whether its argument value is (positive, negative, or unsigned) zero.

First, an argument represented in a format wider than its semantic type is converted to its semantic
type. Then, determination is based on the type of the argument.

Returns
3 The iszero macro returns a nonzero value if and only if its argument is zero.

7.12.4 Trigonometric functions
7.12.4.1 The acos functions
Synopsis

1 #include <math.h>
double acos(double x);
float acosf(float x);
long double acosl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acosd32(_Decimal32 x);
_Decimal64 acosd64(_Decimal64 x);
_Decimal128 acosd128(_Decimal128 x);
#endif

Description
2 The acos functions compute the principal value of the arc cosine of x. A domain error occurs for

arguments not in the interval [−1,+1].

Returns
3 The acos functions return arccosx in the interval [0, π] radians.

§ 7.12.4.1 Library 199

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.12.4.2 The asin functions
Synopsis

1 #include <math.h>
double asin(double x);
float asinf(float x);
long double asinl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asind32(_Decimal32 x);
_Decimal64 asind64(_Decimal64 x);
_Decimal128 asind128(_Decimal128 x);
#endif

Description
2 The asin functions compute the principal value of the arc sine of x. A domain error occurs for

arguments not in the interval [−1,+1]. A range error occurs if nonzero x is too close to zero.

Returns
3 The asin functions return arcsinx in the interval [−π

2 ,+
π
2] radians.

7.12.4.3 The atan functions
Synopsis

1 #include <math.h>
double atan(double x);
float atanf(float x);
long double atanl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimal128 atand128(_Decimal128 x);
#endif

Description
2 The atan functions compute the principal value of the arc tangent of x. A range error occurs if

nonzero x is too close to zero.

Returns
3 The atan functions return arctanx in the interval [−π

2 ,+
π
2] radians.

7.12.4.4 The atan2 functions
Synopsis

1 #include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);
#endif

Description
2 The atan2 functions compute the value of the arc tangent of y/x, using the signs of both arguments

to determine the quadrant of the return value. A domain error may occur if both arguments are zero.
A range error occurs if x is positive and nonzero y

x is too close to zero.

200 Library § 7.12.4.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The atan2 functions return arctan y/x in the interval [−π,+π] radians.

7.12.4.5 The cos functions
Synopsis

1 #include <math.h>
double cos(double x);
float cosf(float x);
long double cosl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimal128 cosd128(_Decimal128 x);
#endif

Description
2 The cos functions compute the cosine of x (measured in radians).

Returns
3 The cos functions return cosx.

7.12.4.6 The sin functions
Synopsis

1 #include <math.h>
double sin(double x);
float sinf(float x);
long double sinl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimal64 x);
_Decimal128 sind128(_Decimal128 x);
#endif

Description
2 The sin functions compute the sine of x (measured in radians). A range error occurs if nonzero x is

too close to zero.

Returns
3 The sin functions return sinx.

7.12.4.7 The tan functions
Synopsis

1 #include <math.h>
double tan(double x);
float tanf(float x);
long double tanl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimal64 x);
_Decimal128 tand128(_Decimal128 x);
#endif

Description
2 The tan functions return the tangent of x (measured in radians). A range error occurs if nonzero x is

too close to zero.

§ 7.12.4.7 Library 201

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The tan functions return tanx.

7.12.4.8 The acospi functions
Synopsis

1 #include <math.h>
double acospi(double x);
float acospif(float x);
long double acospil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal64 x);
_Decimal128 acospid128(_Decimal128 x);
#endif

Description
2 The acospi functions compute the principal value of the arc cosine of x, divided by π, thus measur-

ing the angle in half-revolutions. A domain error occurs for arguments not in the interval [−1,+1].

Returns
3 The acospi functions return arccos(x)/π in the interval [0, 1].

7.12.4.9 The asinpi functions
Synopsis

1 #include <math.h>
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimal128 asinpid128(_Decimal128 x);
#endif

Description
2 The asinpi functions compute the principal value of the arc sine of x, divided by π, thus measuring

the angle in half-revolutions. A domain error occurs for arguments not in the interval [−1,+1]. A
range error occurs if nonzero x is too close to zero.

Returns
3 The asinpi functions return arcsin(x)/π in the interval [− 1

2 ,+
1
2].

7.12.4.10 The atanpi functions
Synopsis

1 #include <math.h>
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atanpid32(_Decimal32 x);
_Decimal64 atanpid64(_Decimal64 x);
_Decimal128 atanpid128(_Decimal128 x);
#endif

202 Library § 7.12.4.10

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The atanpi functions compute the principal value of the arc tangent of x, divided by π, thus

measuring the angle in half-revolutions. A range error occurs if nonzero x is too close to zero.

Returns

3 The atanpi functions return arctan(x)/π. in the interval [− 1
2 ,+

1
2].

7.12.4.11 The atan2pi functions
Synopsis

1 #include <math.h>
double atan2pi(double y, double x);
float atan2pif(float y, float x);
long double atan2pil(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2pid64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2pid128(_Decimal128 y, _Decimal128 x);
#endif

Description
2 The atan2pi functions compute the angle, measured in half-revolutions, subtended at the origin by

the point (x, y) and the positive x-axis. Thus, the atan2pi functions compute arctan(yx)/π, in the
range [−1,+1]. A domain error may occur if both arguments are zero. A range error occurs if x is
positive and nonzero y

x is too close to zero.

Returns
3 The atan2pi functions return the computed angle, in the interval [−1,+1].

7.12.4.12 The cospi functions
Synopsis

1 #include <math.h>
double cospi(double x);
float cospif(float x);
long double cospil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64 x);
_Decimal128 cospid128(_Decimal128 x);
#endif

Description
2 The cospi functions compute the cosine of π × x, thus regarding x as a measurement in half-

revolutions.

Returns
3 The cospi functions return cos(π × x).

7.12.4.13 The sinpi functions
Synopsis

1 #include <math.h>
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sinpid32(_Decimal32 x);
_Decimal64 sinpid64(_Decimal64 x);

§ 7.12.4.13 Library 203

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

_Decimal128 sinpid128(_Decimal128 x);
#endif

Description
2 The sinpi functions compute the sine of π×x, thus regarding x as a measurement in half-revolutions.

A range error occurs if nonzero x is too close to zero.

Returns
3 The sinpi functions return sin(π × x).

7.12.4.14 The tanpi functions
Synopsis

1 #include <math.h>
double tanpi(double x);
float tanpif(float x);
long double tanpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 x);
_Decimal128 tanpid128(_Decimal128 x);
#endif

Description
2 The tanpi functions compute the tagent of π × x, thus regarding x as a measurement in half-

revolutions. A range error occurs if nonzero x is too close to zero.

Returns
3 The tanpi functions return tan(π × x).

7.12.5 Hyperbolic functions
7.12.5.1 The acosh functions
Synopsis

1 #include <math.h>
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 x);
_Decimal128 acoshd128(_Decimal128 x);
#endif

Description
2 The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A domain error occurs

for arguments less than 1.

Returns
3 The acosh functions return arcoshx in the interval [0,+∞].

7.12.5.2 The asinh functions
Synopsis

1 #include <math.h>
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

204 Library § 7.12.5.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asinhd32(_Decimal32 x);
_Decimal64 asinhd64(_Decimal64 x);
_Decimal128 asinhd128(_Decimal128 x);
#endif

Description
2 The asinh functions compute the arc hyperbolic sine of x. A range error occurs if nonzero x is too

close to zero.

Returns
3 The asinh functions return arsinhx.

7.12.5.3 The atanh functions
Synopsis

1 #include <math.h>
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
#endif

Description
2 The atanh functions compute the arc hyperbolic tangent of x. A domain error occurs for arguments

not in the interval [−1,+1]. A pole error may occur if the argument equals-1 or+1 . A range error
occurs if nonzero x is too close to zero.

Returns
3 The atanh functions return artanhx.

7.12.5.4 The cosh functions
Synopsis

1 #include <math.h>
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimal128 coshd128(_Decimal128 x);
#endif

Description
2 The cosh functions compute the hyperbolic cosine of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The cosh functions return coshx.

7.12.5.5 The sinh functions
Synopsis

1 #include <math.h>

§ 7.12.5.5 Library 205

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimal128 sinhd128(_Decimal128 x);
#endif

Description
2 The sinh functions compute the hyperbolic sine of x. A range error occurs if the magnitude of finite

x is too large or if nonzero x is too close to zero.

Returns
3 The sinh functions return sinhx.

7.12.5.6 The tanh functions
Synopsis

1 #include <math.h>
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
#endif

Description
2 The tanh functions compute the hyperbolic tangent of x. A range error occurs if nonzero x is too

close to zero.

Returns
3 The tanh functions return tanhx.

7.12.6 Exponential and logarithmic functions
7.12.6.1 The exp functions
Synopsis

1 #include <math.h>
double exp(double x);
float expf(float x);
long double expl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimal64 x);
_Decimal128 expd128(_Decimal128 x);
#endif

Description
2 The exp functions compute the base-e exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp functions return ex.

7.12.6.2 The exp10 functions

206 Library § 7.12.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #include <math.h>
double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp10d32(_Decimal32 x);
_Decimal64 exp10d64(_Decimal64 x);
_Decimal128 exp10d128(_Decimal128 x);
#endif

Description
2 The exp10 functions compute the base-10 exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp10 functions return 10x.

7.12.6.3 The exp10m1 functions
Synopsis

1 #include <math.h>
double exp10m1(double x);
float exp10m1f(float x);
long double exp10m1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp10m1d32(_Decimal32 x);
_Decimal64 exp10m1d64(_Decimal64 x);
_Decimal128 exp10m1d128(_Decimal128 x);
#endif

Description
2 The exp10m1 functions compute the base-10 exponential of the argument, minus 1. A range error

occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
3 The exp10m1 functions return 10x − 1.

7.12.6.4 The exp2 functions
Synopsis

1 #include <math.h>
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp2d32(_Decimal32 x);
_Decimal64 exp2d64(_Decimal64 x);
_Decimal128 exp2d128(_Decimal128 x);
#endif

Description
2 The exp2 functions compute the base-2 exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
3 The exp2 functions return 2x.

§ 7.12.6.4 Library 207

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.12.6.5 The exp2m1 functions
Synopsis

1 #include <math.h>
double exp2m1(double x);
float exp2m1f(float x);
long double exp2m1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp2m1d32(_Decimal32 x);
_Decimal64 exp2m1d64(_Decimal64 x);
_Decimal128 exp2m1d128(_Decimal128 x);
#endif

Description
2 The exp2m1 functions compute the base-2 exponential of the argument, minus 1. A range error

occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
3 The exp2m1 functions return 2x − 1.

7.12.6.6 The expm1 functions
Synopsis

1 #include <math.h>
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expm1d32(_Decimal32 x);
_Decimal64 expm1d64(_Decimal64 x);
_Decimal128 expm1d128(_Decimal128 x);
#endif

Description
2 The expm1 functions compute the base-e exponential of the argument, minus 1. A range error occurs

if positive finite x is too large or if nonzero x is close to zero. 255)

Returns
3 The expm1 functions return ex − 1.

7.12.6.7 The frexp functions
Synopsis

1 #include <math.h>
double frexp(double value, int *p);
float frexpf(float value, int *p);
long double frexpl(long double value, int *p);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 frexpd32(_Decimal32 value, int *p);
_Decimal64 frexpd64(_Decimal64 value, int *p);
_Decimal128 frexpd128(_Decimal128 value, int *p);
#endif

Description
2 The frexp functions break a floating-point number into a normalized fraction and an integer

exponent. They store the integer in the int object pointed to by p. If the type of the function is a

255)For small magnitude x, expm1(x) is expected to be more accurate than exp(x)-1.

208 Library § 7.12.6.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

standard floating type, the exponent is an integral power of 2. If the type of the function is a decimal
floating type, the exponent is an integral power of 10.

Returns
3 If value is not a floating-point number or if the integral power is outside the range of int, the results

are unspecified. Otherwise, the frexp functions return the value x, such that x has a magnitude
in the interval [12 , 1) or zero, and value equals x × 2*p , when the type of the function is a standard
floating type; or x has a magnitude in the interval [1/10, 1) or zero, and value equals x× 10*p , when
the type of the function is a decimal floating type. If value is zero, both parts of the result are zero.

7.12.6.8 The ilogb functions
Synopsis

1 #include <math.h>
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
#ifdef __STDC_IEC_60559_DFP__

int ilogbd32(_Decimal32 x);
int ilogbd64(_Decimal64 x);
int ilogbd128(_Decimal128 x);
#endif

Description
2 The ilogb functions extract the exponent of x as a signed int value. If x is zero they compute the

value FP_ILOGB0; if x is infinite they compute the value INT_MAX; if x is a NaN they compute the
value FP_ILOGBNAN; otherwise, they are equivalent to calling the corresponding logb function and
converting the returned value to type int. A domain error or range error may occur if x is zero,
infinite, or NaN. If the correct value is outside the range of the return type, the numeric result is
unspecified and a domain error or range error may occur.

Returns
3 The ilogb functions return the exponent of x as a signed int value.

Forward references: the logb functions (7.12.6.17).

7.12.6.9 The ldexp functions
Synopsis

1 #include <math.h>
double ldexp(double x, int p);
float ldexpf(float x, int p);
long double ldexpl(long double x, int p);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimal128 ldexpd128(_Decimal128 x, int p);
#endif

Description
2 The ldexp functions multiply a floating-point number by an integral power of 2 when the type of

the function is a standard floating type, or by an integral power of 10 when the type of the function
is a decimal floating type. A range error occurs for some finite x, depending on p.

Returns
3 The ldexp functions return x× 2p when the type of the function is a standard floating type, or return

x × 10p when the type of the function is a decimal floating type.

7.12.6.10 The llogb functions

§ 7.12.6.10 Library 209

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <math.h>
long int llogb(double x);
long int llogbf(float x);
long int llogbl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int llogbd32(_Decimal32 x);
long int llogbd64(_Decimal64 x);
long int llogbd128(_Decimal128 x);
#endif

Description
2 The llogb functions extract the exponent of x as a signed long int value. If x is zero they compute

the value FP_LLOGB0; if x is infinite they compute the value LONG_MAX; if x is a NaN they compute
the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb function
and converting the returned value to type long int. A domain error or range error may occur if x is
zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric result
is unspecified.

Returns
3 The llogb functions return the exponent of x as a signed long int value.

Forward references: the logb functions (7.12.6.17).

7.12.6.11 The log functions
Synopsis

1 #include <math.h>
double log(double x);
float logf(float x);
long double logl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 logd32(_Decimal32 x);
_Decimal64 logd64(_Decimal64 x);
_Decimal128 logd128(_Decimal128 x);
#endif

Description
2 The log functions compute the base-e (natural) logarithm of x. A domain error occurs if the

argument is negative. A pole error may occur if the argument is zero.

Returns
3 The log functions return loge x.

7.12.6.12 The log10 functions
Synopsis

1 #include <math.h>
double log10(double x);
float log10f(float x);
long double log10l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log10d32(_Decimal32 x);
_Decimal64 log10d64(_Decimal64 x);
_Decimal128 log10d128(_Decimal128 x);
#endif

210 Library § 7.12.6.12

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The log10 functions compute the base-10 (common) logarithm of x. A domain error occurs if the

argument is negative. A pole error may occur if the argument is zero.

Returns
3 The log10 functions return log10 x.

7.12.6.13 The log10p1 functions
Synopsis

1 #include <math.h>
double log10p1(double x);
float log10p1f(float x);
long double log10p1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log10p1d32(_Decimal32 x);
_Decimal64 log10p1d64(_Decimal64 x);
_Decimal128 log10p1d128(_Decimal128 x);
#endif

Description
2 The log10p1 functions compute the base-10 logarithm of 1 plus the argument. A domain error

occurs if the argument is less than −1. A pole error may occur if the argument equals −1. A range
error occurs if nonzero x is too close to zero.

Returns
3 The log10p1 functions return log10(1 + x).

7.12.6.14 The log1p and logp1 functions
Synopsis

1 #include <math.h>
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double logp1(double x);
float logp1f(float x);
long double logp1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log1pd32(_Decimal32 x);
_Decimal64 log1pd64(_Decimal64 x);
_Decimal128 log1pd128(_Decimal128 x);
_Decimal32 logp1d32(_Decimal32 x);
_Decimal64 logp1d64(_Decimal64 x);
_Decimal128 logp1d128(_Decimal128 x);
#endif

Description

2 The log1p functions are equivalent to the logp1 functions.256) These functions compute the base-e
(natural) logarithm of 1 plus the argument.257) A domain error occurs if the argument is less than
−1. A pole error may occur if the argument equals −1. A range error occurs if nonzero x is too close
to zero.

Returns
3 The log1p and logp1 functions return loge(1 + x).

256)The logp1 functions are preferred for name consistency with the log10p1 and log2p1 functions.
257)For small magnitude x, logp1(x) is expected to be more accurate than log(1 + x).

§ 7.12.6.14 Library 211

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.12.6.15 The log2 functions
Synopsis

1 #include <math.h>
double log2(double x);
float log2f(float x);
long double log2l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimal64 x);
_Decimal128 log2d128(_Decimal128 x);
#endif

Description
2 The log2 functions compute the base-2 logarithm of x. A domain error occurs if the argument is less

than zero. A pole error may occur if the argument is zero.

Returns
3 The log2 functions return log2 x.

7.12.6.16 The log2p1 functions
Synopsis

1 #include <math.h>
double log2p1(double x);
float log2p1f(float x);
long double log2p1l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 log2p1d32(_Decimal32 x);
_Decimal64 log2p1d64(_Decimal64 x);
_Decimal128 log2p1d128(_Decimal128 x);
#endif

Description
2 The log2p1 functions compute the base-2 logarithm of 1 plus the argument. A domain error occurs

if the argument is less than −1. A pole error may occur if the argument equals −1. A range error
occurs if nonzero x is too close to zero.

Returns
3 The log2p1 functions return log2(1+x).

7.12.6.17 The logb functions
Synopsis

1 #include <math.h>
double logb(double x);
float logbf(float x);
long double logbl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 logbd32(_Decimal32 x);
_Decimal64 logbd64(_Decimal64 x);
_Decimal128 logbd128(_Decimal128 x);
#endif

Description
2 The logb functions extract the exponent of x, as a signed integer value in floating-point format. If x

is subnormal it is treated as though it were normalized; thus, for positive finite x,

1 ≤ x × b−logb(x) < b

212 Library § 7.12.6.17

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

where b = FLT_RADIX if the type of the function is a standard floating type, or b = 10 if the type of
the function is a decimal floating type. A domain error or pole error may occur if the argument is
zero.

Returns
3 The logb functions return the signed exponent of x.

7.12.6.18 The modf functions
Synopsis

1 #include <math.h>
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 modfd32(_Decimal32 x, _Decimal32 *iptr);
_Decimal64 modfd64(_Decimal64 x, _Decimal64 *iptr);
_Decimal128 modfd128(_Decimal128 x, _Decimal128 *iptr);
#endif

Description
2 The modf functions break the argument value into integral and fractional parts, each of which has

the same type and sign as the argument. They store the integral part (in floating-point format) in the
object pointed to by iptr.

Returns
3 The modf functions return the signed fractional part of value.

7.12.6.19 The scalbn and scalbln functions
Synopsis

1 #include <math.h>
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 scalbnd32(_Decimal32 x, int n);
_Decimal64 scalbnd64(_Decimal64 x, int n);
_Decimal128 scalbnd128(_Decimal128 x, int n);
_Decimal32 scalblnd32(_Decimal32 x, long int n);
_Decimal64 scalblnd64(_Decimal64 x, long int n);
_Decimal128 scalblnd128(_Decimal128 x, long int n);
#endif

Description
2 The scalbn and scalbln functions compute x× bn, where b = FLT_RADIX if the type of the function

is a standard floating type, or b = 10 if the type of the function is a decimal floating type. A range
error occurs for some finite x, depending on n.

Returns
3 The scalbn and scalbln functions return x × bn.

7.12.7 Power and absolute-value functions
7.12.7.1 The cbrt functions
Synopsis

1
§ 7.12.7.1 Library 213

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#include <math.h>
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal64 cbrtd64(_Decimal64 x);
_Decimal128 cbrtd128(_Decimal128 x);
#endif

Description
2 The cbrt functions compute the real cube root of x.

Returns

3 The cbrt functions return x
1
3 .

7.12.7.2 The compoundn functions
Synopsis

1 #include <stdint.h>
#include <math.h>
double compoundn(double x, intmax_t n);
float compoundnf(float x, intmax_t n);
long double compoundnl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 compoundnd32(_Decimal32 x, intmax_t n);
_Decimal64 compoundnd64(_Decimal64 x, intmax_t n);
_Decimal128 compoundnd128(_Decimal128 x, intmax_t n);
#endif

Description
2 The compoundn functions compute 1 plus x, raised to the power n. A domain error occurs if x < −1.

A range error occurs if positive finite x is too large or if x is too near but not equal to −1, depending
on n. A pole error may occur if x equals −1 and n < 0.

Returns
3 The compoundn functions return (1 + x)n.

7.12.7.3 The fabs functions
Synopsis

1 #include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fabsd32(_Decimal32 x);
_Decimal64 fabsd64(_Decimal64 x);
_Decimal128 fabsd128(_Decimal128 x);
#endif

Description
2 The fabs functions compute the absolute value of a floating-point number x.

Returns
3 The fabs functions return |x|.

7.12.7.4 The hypot functions

214 Library § 7.12.7.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
_Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The hypot functions compute the square root of the sum of the squares of x and y, without undue

overflow or underflow. A range error occurs for some finite arguments.

3

Returns

4 The hypot functions return
√
x2 + y2.

7.12.7.5 The pow functions
Synopsis

1 #include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
_Decimal64 powd64(_Decimal64 x, _Decimal64 y);
_Decimal128 powd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The pow functions compute x raised to the power y. A domain error occurs if x is finite and negative

and y is finite and not an integer value. A domain error may occur if x is zero and y is zero. A range
error occurs if the magnitude of nonzero finite x is too large or too near zero, depending on y. A
domain error or pole error may occur if x is zero and y is less than zero.

Returns
3 The pow functions return xy.

7.12.7.6 The pown functions
Synopsis

1 #include <stdint.h>
#include <math.h>
double pown(double x, intmax_t n);
float pownf(float x, intmax_t n);
long double pownl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 pownd32(_Decimal32 x, intmax_t n);
_Decimal64 pownd64(_Decimal64 x, intmax_t n);
_Decimal128 pownd128(_Decimal128 x, intmax_t n);
#endif

§ 7.12.7.6 Library 215

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description

2 The pown functions compute x raised to the nth power. A pole error may occur if x equals 0 and n < 0.
A range error occurs if the magnitude of nonzero finite x is too large or too near zero, depending on
n.

Returns
3 The pown functions return xn.

7.12.7.7 The powr functions
Synopsis

1 #include <math.h>
double powr(double y, double x);
float powrf(float y, float x);
long double powrl(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimal128 powrd128(_Decimal128 y, _Decimal128 x);
#endif

Description

2 The powr functions compute x raised to the power y as ey loge x.258) A domain error occurs if x < 0
or if x and y are both zero. A range error occurs if positive nonzero finite x is too large or too near
zero, depending on y. A pole error may occur if x equals zero and finite y < 0.

Returns

3 The powr functions return ey loge x.

7.12.7.8 The rootn functions
Synopsis

1 #include <stdint.h>
#include <math.h>
double rootn(double x, intmax_t n);
float rootnf(float x, intmax_t n);
long double rootnl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rootnd32(_Decimal32 x, intmax_t n);
_Decimal64 rootnd64(_Decimal64 x, intmax_t n);
_Decimal128 rootnd128(_Decimal128 x, intmax_t n);
#endif

Description

2 The rootn functions compute the principal nth root of x. A domain error occurs if n is 0 or if x < 0
and n is even. A range error occurs if n is −1 and the magnitude of nonzero finite x is too large or
too near zero. A pole error may occur if x equals zero and n < 0.

Returns

3 The rootn functions return x
1
n .

7.12.7.9 The rsqrt functions
Synopsis

1 #include <math.h>
double rsqrt(double x);

258)Restricting the domain to that of the formula ey loge x is intended to better meet expectations for a continuous power
function and to allow implementations with fewer tests for special cases.

216 Library § 7.12.7.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

float rsqrtf(float x);
long double rsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimal64 rsqrtd64(_Decimal64 x);
_Decimal128 rsqrtd128(_Decimal128 x);
#endif

Description
2 The rsqrt functions compute the reciprocal of the square root of the argument. A domain error

occurs if the argument is less than zero. A pole error may occur if the argument equals zero.

Returns
3 The rsqrt functions return 1√

x
.

7.12.7.10 The sqrt functions
Synopsis

1 #include <math.h>
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal128 sqrtd128(_Decimal128 x);
#endif

Description
2 The sqrt functions compute the nonnegative square root of x. A domain error occurs if the argument

is less than zero.

Returns
3 The sqrt functions return

√
x.

7.12.8 Error and gamma functions
7.12.8.1 The erf functions
Synopsis

1 #include <math.h>
double erf(double x);
float erff(float x);
long double erfl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 erfd32(_Decimal32 x);
_Decimal64 erfd64(_Decimal64 x);
_Decimal128 erfd128(_Decimal128 x);
#endif

Description
2 The erf functions compute the error function of x. A range error occurs if nonzero x is too close to

zero.

Returns

3 The erf functions return erf x = 2√
π

x∫
0

e−t2dt.

§ 7.12.8.1 Library 217

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.12.8.2 The erfc functions
Synopsis

1 #include <math.h>
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 erfcd32(_Decimal32 x);
_Decimal64 erfcd64(_Decimal64 x);
_Decimal128 erfcd128(_Decimal128 x);
#endif

Description
2 The erfc functions compute the complementary error function of x. A range error occurs if positive

finite x is too large.

Returns

3 The erfc functions return erfcx = 1− erf x = 2√
π

∞∫
x
e−t2dt.

7.12.8.3 The lgamma functions
Synopsis

1 #include <math.h>
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 lgammad32(_Decimal32 x);
_Decimal64 lgammad64(_Decimal64 x);
_Decimal128 lgammad128(_Decimal128 x);
#endif

Description
2 The lgamma functions compute the natural logarithm of the absolute value of gamma of x. A range

error occurs if positive finite x is too large. A pole error may occur if x is a negative integer or zero.

Returns
3 The lgamma functions return loge |Γ(x)|.

7.12.8.4 The tgamma functions
Synopsis

1 #include <math.h>
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tgammad32(_Decimal32 x);
_Decimal64 tgammad64(_Decimal64 x);
_Decimal128 tgammad128(_Decimal128 x);
#endif

Description
2 The tgamma functions compute the gamma function of x. A domain error or pole error may occur if

x is a negative integer or zero. A range error occurs for some negative finite x, if positive finite x is
too large, or nonzero x is too close to zero.

218 Library § 7.12.8.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The tgamma functions return Γ(x).

7.12.9 Nearest integer functions
7.12.9.1 The ceil functions
Synopsis

1 #include <math.h>
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 ceild32(_Decimal32 x);
_Decimal64 ceild64(_Decimal64 x);
_Decimal128 ceild128(_Decimal128 x);
#endif

Description
2 The ceil functions compute the smallest integer value not less than x.

Returns
3 The ceil functions return ⌈x⌉, expressed as a floating-point number.

7.12.9.2 The floor functions
Synopsis

1 #include <math.h>
double floor(double x);
float floorf(float x);
long double floorl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 floord32(_Decimal32 x);
_Decimal64 floord64(_Decimal64 x);
_Decimal128 floord128(_Decimal128 x);
#endif

Description
2 The floor functions compute the largest integer value not greater than x.

Returns
3 The floor functions return ⌊x⌋, expressed as a floating-point number.

7.12.9.3 The nearbyint functions
Synopsis

1 #include <math.h>
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nearbyintd32(_Decimal32 x);
_Decimal64 nearbyintd64(_Decimal64 x);
_Decimal128 nearbyintd128(_Decimal128 x);
#endif

Description
2 The nearbyint functions round their argument to an integer value in floating-point format, using

the current rounding direction and without raising the "inexact" floating-point exception.

§ 7.12.9.3 Library 219

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The nearbyint functions return the rounded integer value.

7.12.9.4 The rint functions
Synopsis

1 #include <math.h>
double rint(double x);
float rintf(float x);
long double rintl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rintd32(_Decimal32 x);
_Decimal64 rintd64(_Decimal64 x);
_Decimal128 rintd128(_Decimal128 x);
#endif

Description
2 The rint functions differ from the nearbyint functions (7.12.9.3) only in that the rint functions

may raise the "inexact" floating-point exception if the result differs in value from the argument.

Returns
3 The rint functions return the rounded integer value.

7.12.9.5 The lrint and llrint functions
Synopsis

1 #include <math.h>
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int lrintd32(_Decimal32 x);
long int lrintd64(_Decimal64 x);
long int lrintd128(_Decimal128 x);
long long int llrintd32(_Decimal32 x);
long long int llrintd64(_Decimal64 x);
long long int llrintd128(_Decimal128 x);
#endif

Description
2 The lrint and llrint functions round their argument to the nearest integer value, rounding

according to the current rounding direction. If the rounded value is outside the range of the return
type, the numeric result is unspecified and a domain error or range error may occur.

Returns
3 The lrint and llrint functions return the rounded integer value.

7.12.9.6 The round functions
Synopsis

1 #include <math.h>
double round(double x);
float roundf(float x);
long double roundl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 roundd32(_Decimal32 x);

220 Library § 7.12.9.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

_Decimal64 roundd64(_Decimal64 x);
_Decimal128 roundd128(_Decimal128 x);
#endif

Description
2 The round functions round their argument to the nearest integer value in floating-point format,

rounding halfway cases away from zero, regardless of the current rounding direction.

Returns
3 The round functions return the rounded integer value.

7.12.9.7 The lround and llround functions
Synopsis

1 #include <math.h>
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
#ifdef __STDC_IEC_60559_DFP__

long int lroundd32(_Decimal32 x);
long int lroundd64(_Decimal64 x);
long int lroundd128(_Decimal128 x);
long long int llroundd32(_Decimal32 x);
long long int llroundd64(_Decimal64 x);
long long int llroundd128(_Decimal128 x);
#endif

Description
2 The lround and llround functions round their argument to the nearest integer value, rounding

halfway cases away from zero, regardless of the current rounding direction. If the rounded value is
outside the range of the return type, the numeric result is unspecified and a domain error or range
error may occur.

Returns
3 The lround and llround functions return the rounded integer value.

7.12.9.8 The roundeven functions
Synopsis

1 #include <math.h>
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimal64 x);
_Decimal128 roundevend128(_Decimal128 x);
#endif

Description
2 The roundeven functions round their argument to the nearest integer value in floating-point format,

rounding halfway cases to even (that is, to the nearest value that is an even integer), regardless of
the current rounding direction.

§ 7.12.9.8 Library 221

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The roundeven functions return the rounded integer value.

7.12.9.9 The trunc functions
Synopsis

1 #include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimal128 truncd128(_Decimal128 x);
#endif

Description
2 The trunc functions round their argument to the integer value, in floating format, nearest to but no

larger in magnitude than the argument.

Returns
3 The trunc functions return the truncated integer value.

7.12.9.10 The fromfp and ufromfp functions
Synopsis

1 #include <stdint.h>
#include <math.h>
intmax_t fromfp(double x, int round, unsigned int width);
intmax_t fromfpf(float x, int round, unsigned int width);
intmax_t fromfpl(long double x, int round, unsigned int width);
uintmax_t ufromfp(double x, int round, unsigned int width);
uintmax_t ufromfpf(float x, int round, unsigned int width);
uintmax_t ufromfpl(long double x, int round, unsigned int width);
#ifdef __STDC_IEC_60559_DFP__

intmax_t fromfpd32(_Decimal32 x, int round, unsigned int width);
intmax_t fromfpd64(_Decimal64 x, int round, unsigned int width);
intmax_t fromfpd128(_Decimal128 x, int round, unsigned int width);
uintmax_t ufromfpd32(_Decimal32 x, int round, unsigned int width);
uintmax_t ufromfpd64(_Decimal64 x, int round, unsigned int width);
uintmax_t ufromfpd128(_Decimal128 x, int round, unsigned int width);
#endif

Description
2 The fromfp and ufromfp functions round x, using the math rounding direction indicated by round,

to a signed or unsigned integer, respectively. If width is nonzero and the resulting integer is within
the range

— [−2(width−1), 2(width−1) − 1], for signed

— [0, 2width − 1], for unsigned

then the functions return the integer value (represented in floating type). Otherwise, if width is
zero or x does not round to an integer within the range, the functions return a NaN (of the type of
the x argument, if available), else the value of x, and a domain error occurs. If the value of the
round argument is not equal to the value of a math rounding direction macro (7.12), the direction of
rounding is unspecified. The fromfp and ufromfp functions do not raise the "inexact" floating-point
exception.

222 Library § 7.12.9.10

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The fromfp and ufromfp functions return the rounded integer value.
4 EXAMPLE Upward rounding of double x to type int, without raising the "inexact" floating-point exception, is achieved by

(int)fromfp(x, FP_INT_UPWARD, INT_WIDTH)

5 EXAMPLE Unsigned integer wrapping is not performed in

ufromfp(-3.0, FP_INT_UPWARD, UINT_WIDTH) /* domain error */

7.12.9.11 The fromfpx and ufromfpx functions
Synopsis

1 #include <stdint.h>
#include <math.h>
intmax_t fromfpx(double x, int round, unsigned int width);
intmax_t fromfpxf(float x, int round, unsigned int width);
intmax_t fromfpxl(long double x, int round, unsigned int width);
uintmax_t ufromfpx(double x, int round, unsigned int width);
uintmax_t ufromfpxf(float x, int round, unsigned int width);
uintmax_t ufromfpxl(long double x, int round, unsigned int width);
#ifdef __STDC_IEC_60559_DFP__

intmax_t fromfpxd32(_Decimal32 x, int round, unsigned int width);
intmax_t fromfpxd64(_Decimal64 x, int round, unsigned int width);
intmax_t fromfpxd128(_Decimal128 x, int round, unsigned int width);
uintmax_t ufromfpxd32(_Decimal32 x, int round, unsigned int width);
uintmax_t ufromfpxd64(_Decimal64 x, int round, unsigned int width);
uintmax_t ufromfpxd128(_Decimal128 x, int round, unsigned int width);
#endif

Description
2 The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions, respectively,

only in that the fromfpx and ufromfpx functions raise the "inexact" floating-point exception if a
rounded result not exceeding the specified width differs in value from the argument x.

Returns
3 The fromfpx and ufromfpx functions return the rounded integer value.
4 NOTE Conversions to integer types that are not required to raise the inexact exception can be done simply by rounding to

integral value in floating type and then converting to the target integer type. For example, the conversion of long double x
to uint64_t, using upward rounding, is done by

(uint64_t)ceill(x)

7.12.10 Remainder functions
7.12.10.1 The fmod functions
Synopsis

1 #include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);
#endif

§ 7.12.10.1 Library 223

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The fmod functions compute the floating-point remainder of x/y.

Returns
3 The fmod functions return the value x − ny, for some integer n such that, if y is nonzero, the result

has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.10.2 The remainder functions
Synopsis

1 #include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
_Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
_Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);
#endif

Description

2 The remainder functions compute the remainder x REM y required by IEC 60559. 259)

Returns
3 The remainder functions return x REM y. If y is zero, whether a domain error occurs or the functions

return zero is implementation-defined.

7.12.10.3 The remquo functions
Synopsis

1 #include <math.h>
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

Description
2 The remquo functions compute the same remainder as the remainder functions. In the object pointed

to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo
2n to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer
greater than or equal to 3.

Returns
3 The remquo functions return x REM y. If y is zero, the value stored in the object pointed to by quo

is unspecified and whether a domain error occurs or the functions return zero is implementation
defined.

4 NOTE There are no decimal floating-point versions of the remquo functions.

7.12.11 Manipulation functions
7.12.11.1 The copysign functions
Synopsis

1 #include <math.h>
double copysign(double x, double y);

259)"When y ̸= 0, the remainder r = x REM y is defined regardless of the rounding mode by the mathematical relation
r = x− ny, where n is the integer nearest the exact value of x

y
; whenever |n− x

y
| = 1

2
, then n is even. If r = 0, its sign shall

be that of x." This definition is applicable for all implementations.

224 Library § 7.12.11.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

float copysignf(float x, float y);
long double copysignl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
_Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
_Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The copysign functions produce a value with the magnitude of x and the sign of y. They produce a

NaN (with the sign of y) if x is a NaN. On implementations that represent a signed zero but do not
treat negative zero consistently in arithmetic operations, the copysign functions regard the sign of
zero as positive.

Returns
3 The copysign functions return a value with the magnitude of x and the sign of y.

7.12.11.2 The nan functions
Synopsis

1 #include <math.h>
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nand32(const char *tagp);
_Decimal64 nand64(const char *tagp);
_Decimal128 nand128(const char *tagp);
#endif

Description
2 The nan, nanf, and nanl functions convert the string pointed to by tagp according to the

following rules. The call nan("n-char-sequence") is equivalent to strtod("NAN(n-char-sequence)",
(char**)NULL); the call nan("") is equivalent to strtod("NAN()",(char**)NULL). If
tagp does not point to an n-char sequence or an empty string, the call is equivalent to
strtod("NAN",(char**)NULL). Calls to nanf and nanl are equivalent to the corresponding calls
to strtof and strtold.

Returns
3 The nan functions return a quiet NaN, if available, with content indicated through tagp. If the

implementation does not support quiet NaNs, the functions return zero.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5).

7.12.11.3 The nextafter functions
Synopsis

1 #include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
_Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);
_Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);
#endif

§ 7.12.11.3 Library 225

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The nextafter functions determine the next representable value, in the type of the function, after x

in the direction of y, where x and y are first converted to the type of the function.260) The nextafter
functions return y if x equals y. A range error may occur if the magnitude of x is the largest finite
value representable in the type and the result is infinite or not representable in the type.

Returns
3 The nextafter functions return the next representable value in the specified format after x in the

direction of y.

7.12.11.4 The nexttoward functions
Synopsis

1 #include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
_Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
_Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The nexttoward functions are equivalent to the nextafter functions except that the second param-

eter has type long double or _Decimal128 and the functions return y converted to the type of the
function if x equals y.261)

7.12.11.5 The nextup functions
Synopsis

1 #include <math.h>
double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextupd32(_Decimal32 x);
_Decimal64 nextupd64(_Decimal64 x);
_Decimal128 nextupd128(_Decimal128 x);
#endif

Description
2 The nextup functions determine the next representable value, in the type of the function, greater

than x. If x is the negative number of least magnitude in the type of x, nextup(x) is-0 if the type has
signed zeros and is 0 otherwise. If x is zero, nextup(x) is the positive number of least magnitude in
the type of x. nextup(HUGE_VAL) is HUGE_VAL.

Returns
3 The nextup functions return the next representable value in the specified type greater than x.

7.12.11.6 The nextdown functions
Synopsis

1 #include <math.h>
double nextdown(double x);

260)The argument values are converted to the type of the function, even by a macro implementation of the function.
261)The result of the nexttoward functions is determined in the type of the function, without loss of range or precision in a

floating second argument.

226 Library § 7.12.11.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

float nextdownf(float x);
long double nextdownl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextdownd32(_Decimal32 x);
_Decimal64 nextdownd64(_Decimal64 x);
_Decimal128 nextdownd128(_Decimal128 x);
#endif

Description
2 The nextdown functions determine the next representable value, in the type of the function, less than

x. If x is the positive number of least magnitude in the type of x, nextdown(x) is+0 if the type has
signed zeros and is 0 otherwise. If x is zero, nextdown(x) is the negative number of least magnitude
in the type of x. nextdown(-HUGE_VAL) is-HUGE_VAL .

Returns
3 The nextdown functions return the next representable value in the specified type less than x.

7.12.11.7 The canonicalize functions
Synopsis

1 #include <math.h>
int canonicalize(double * cx, const double * x);
int canonicalizef(float * cx, const float * x);
int canonicalizel(long double * cx, const long double * x);
#ifdef __STDC_IEC_60559_DFP__

int canonicalized32(_Decimal32 cx, const _Decimal32 * x);
int canonicalized64(_Decimal64 cx, const _Decimal64 * x);
int canonicalized128(_Decimal128 cx, const _Decimal128 * x);
#endif

Description
2 The canonicalize functions attempt to produce a canonical version of the floating-point repre-

sentation in the object pointed to by the argument x, as if to a temporary object of the specified
type, and store the canonical result in the object pointed to by the argument cx.262) If the input*x
is a signaling NaN, the canonicalize functions are intended to store a canonical quiet NaN. If a
canonical result is not produced the object pointed to by cx is unchanged.

Returns
3 The canonicalize functions return zero if a canonical result is stored in the object pointed to by cx.

Otherwise they return a nonzero value.

7.12.12 Maximum, minimum, and positive difference functions
7.12.12.1 The fdim functions
Synopsis

1 #include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);
#endif

262)Arguments x and cx may point to the same object.

§ 7.12.12.1 Library 227

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The fdim functions determine the positive difference between their arguments:{

x − y if x > y

+0 if x ≤ y

A range error may occur.

Returns
3 The fdim functions return the positive difference value.

7.12.12.2 The fmax functions
Synopsis

1 #include <math.h>
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);
#endif

Description

2 The fmax functions determine the maximum numeric value of their arguments.263)

Returns
3 The fmax functions return the maximum numeric value of their arguments.

7.12.12.3 The fmin functions
Synopsis

1 #include <math.h>
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmind64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmind128(_Decimal128 x, _Decimal128 y);
#endif

Description

2 The fmin functions determine the minimum numeric value of their arguments.264)

Returns
3 The fmin functions return the minimum numeric value of their arguments.

7.12.12.4 The fmaximum functions
Synopsis

1 #include <math.h>
double fmaximum(double x, double y);
float fmaximumf(float x, float y);

263)Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other numeric, then the fmax
functions choose the numeric value. See F.10.9.2.
264)The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

228 Library § 7.12.12.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

long double fmaximuml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum functions determine the maximum value of their arguments. For these functions,+0

is considered greater than-0 . These functions differ from the fmaximum_num functions only in their
treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
3 The fmaximum functions return the maximum value of their arguments.

7.12.12.5 The fminimum functions
Synopsis

1 #include <math.h>
double fminimum(double x, double y);
float fminimumf(float x, float y);
long double fminimuml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimumd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimumd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum functions determine the minimum value of their arguments. For these functions,

-0 is considered less than+0 . These functions differ from the fminimum_num functions only in their
treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
3 The fminimum functions return the minimum value of their arguments.

7.12.12.6 The fmaximum_mag functions
Synopsis

1 #include <math.h>
double fmaximum_mag(double x, double y);
float fmaximum_magf(float x, float y);
long double fmaximum_magl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_magd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_mag functions determine the value of the argument of maximum magnitude:

x if |x| > |y|, y if |y| > |x|, and fmaximum(x, y) otherwise. These functions differ from the
fmaximum_mag_num functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
3 The fmaximum_mag functions return the value of the argument of maximum magnitude.

7.12.12.7 The fminimum_mag functions

§ 7.12.12.7 Library 229

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <math.h>
double fminimum_mag(double x, double y);
float fminimum_magf(float x, float y);
long double fminimum_magl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_magd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_magd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_magd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_mag functions determine the value of the argument of minimum magnitude:

x if |x| < |y|, y if |y| < |x|, and fminimum(x, y) otherwise. These functions differ from the
fminimum_mag_num functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
3 The fminimum_mag functions return the value of the argument of minimum magnitude.

7.12.12.8 The fmaximum_num functions
Synopsis

1 #include <math.h>
double fmaximum_num(double x, double y);
float fmaximum_numf(float x, float y);
long double fmaximum_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_num functions determine the maximum value of their numeric arguments. They

determine the number if one argument is a number and the other is a NaN. These functions differ
from the fmaximum functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
3 The fmaximum_num functions return the maximum value of their numeric arguments.

7.12.12.9 The fminimum_num functions
Synopsis

1 #include <math.h>
double fminimum_num(double x, double y);
float fminimum_numf(float x, float y);
long double fminimum_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_num functions determine the minimum value of their numeric arguments. They

determine the number if one argument is a number and the other is a NaN. These functions differ
from the fminimum functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

230 Library § 7.12.12.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The fminimum_num functions return the minimum value of their numeric arguments.

7.12.12.10 The fmaximum_mag_num functions
Synopsis

1 #include <math.h>
double fmaximum_mag_num(double x, double y);
float fmaximum_mag_numf(float x, float y);
long double fmaximum_mag_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmaximum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaximum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaximum_mag_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmaximum_mag_num functions determine the value of a numeric argument of maximum mag-

nitude. They determine the number if one argument is a number and the other is a NaN. These
functions differ from the fmaximum_mag functions only in their treatment of NaN arguments (see
F.10.9.4, F.10.9.5).

Returns
3 The fmaximum_mag_num functions return the value of a numeric argument of maximum magnitude.

7.12.12.11 The fminimum_mag_num functions
Synopsis

1 #include <math.h>
double fminimum_mag_num(double x, double y);
float fminimum_mag_numf(float x, float y);
long double fminimum_mag_numl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_mag_numd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fminimum_mag_numd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fminimum_mag_numd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fminimum_mag_num functions determine the value of a numeric argument of minimum mag-

nitude. They determine the number if one argument is a number and the other is a NaN. These
functions differ from the fminimum_mag functions only in their treatment of NaN arguments (see
F.10.9.4, F.10.9.5).

Returns
3 The fminimum_mag_num functions return the value of a numeric argument of mimum minagnitude.
4 NOTE The fmax and fmin functions are similar to the fmaximum_num and fminimum_num functions, though may differ in

which signed zero is returned when the arguments are differently signed zeros and in their treatment of signaling NaNs (see
F.10.9.5).

7.12.13 Floating multiply-add
7.12.13.1 The fma functions
Synopsis

1 #include <math.h>
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

§ 7.12.13.1 Library 231

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
_Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
#endif

Description
2 The fma functions compute (x × y) + z, rounded as one ternary operation: they compute the value

(as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error occurs for some finite arguments.

Returns
3 The fma functions return (x × y) + z, rounded as one ternary operation.

7.12.14 Functions that round result to narrower type
1 The functions in this subclause round their results to a type typically narrower265) than the parameter

types.

7.12.14.1 Add and round to narrower type
Synopsis

1 #include <math.h>
float fadd(double x, double y);
float faddl(long double x, long double y);
double daddl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32addd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32addd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the sum of x + y, rounded to the type of the function. They compute

the sum (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite
arguments.

Returns
3 These functions return the sum of x + y, rounded to the type of the function.

7.12.14.2 Subtract and round to narrower type
Synopsis

1 #include <math.h>
float fsub(double x, double y);
float fsubl(long double x, long double y);
double dsubl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32subd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32subd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64subd128(_Decimal128 x, _Decimal128 y);
#endif

265)In some cases the destination type might not be narrower than the parameter types. For example, double might not be
narrower than long double.

232 Library § 7.12.14.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 These functions compute the difference of x − y, rounded to the type of the function. They compute

the difference (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite
arguments.

Returns
3 These functions return the difference of x − y, rounded to the type of the function.

7.12.14.3 Multiply and round to narrower type
Synopsis

1 #include <math.h>
float fmul(double x, double y);
float fmull(long double x, long double y);
double dmull(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32muld64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32muld128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64muld128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the product x × y, rounded to the type of the function. They compute the

product (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for one
infinite argument and one zero argument.

Returns
3 These functions return the product of x × y, rounded to the type of the function.

7.12.14.4 Divide and round to narrower type
Synopsis

1 #include <math.h>
float fdiv(double x, double y);
float fdivl(long double x, long double y);
double ddivl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32divd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32divd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64divd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 These functions compute the quotient x ÷ y, rounded to the type of the function. They compute the

quotient (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for either
both arguments infinite or both arguments zero. A pole error occurs for a finite x and a zero y.

Returns
3 These functions return the quotient x ÷ y, rounded to the type of the function.

7.12.14.5 Floating point multiply-add and round to narrower type
Synopsis

1 #include <math.h>
float ffma(double x, double y, double z);
float ffmal(long double x, long double y, long double z);

§ 7.12.14.5 Library 233

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

double dfmal(long double x, long double y, long double z);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal32 d32fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal64 d64fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
#endif

Description
2 These functions compute (x× y) + z, rounded to the type of the function. They compute (x× y) + z

(as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error may occur for finite arguments. A domain error may occur for an infinite
argument.

Returns
3 These functions return (x × y) + z, rounded to the type of the function.

7.12.14.6 Square root rounded to narrower type
Synopsis

1 #include <math.h>
float fsqrt(double x);
float fsqrtl(long double x);
double dsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32sqrtd64(_Decimal64 x);
_Decimal32 d32sqrtd128(_Decimal128 x);
_Decimal64 d64sqrtd128(_Decimal128 x);
#endif

Description
2 These functions compute the square root of x, rounded to the type of the function. They compute the

square root (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite positive arguments. A domain error occurs if the
argument is less than zero.

Returns
3 These functions return the square root of x, rounded to the type of the function.

7.12.15 Quantum and quantum exponent functions
7.12.15.1 The quantizedN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The quantizedN functions compute, if possible, a value with the numerical value of x and the

quantum exponent of y. If the quantum exponent is being increased, the value shall be correctly
rounded; if the result does not have the same value as x, the "inexact" floating-point exception shall
be raised. If the quantum exponent is being decreased and the significand of the result has more
digits than the type would allow, the result is NaN, the "invalid" floating-point exception is raised,
and a domain error occurs. If one or both operands are NaN the result is NaN. Otherwise if only one
operand is infinite, the result is NaN, the "invalid" floating-point exception is raised, and a domain

234 Library § 7.12.15.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

error occurs. If both operands are infinite, the result is DEC_INFINITY with the sign of x, converted
to the type of the function. The quantizedN functions do not raise the "overflow" and "underflow"
floating-point exceptions.

Returns
3 The quantizedN functions return a value with the numerical value of x (except for any rounding)

and the quantum exponent of y.

7.12.15.2 The samequantumdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__
_Bool samequantumd32(_Decimal32 x, _Decimal32 y);
_Bool samequantumd64(_Decimal64 x, _Decimal64 y);
_Bool samequantumd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The samequantumdN functions determine if the quantum exponents of x and y are the same. If both

x and y are NaN, or both infinite, they have the same quantum exponents; if exactly one operand
is infinite or exactly one operand is NaN, they do not have the same quantum exponents. The
samequantumdN functions raise no floating-point exception.

Returns
3 The samequantumdN functions return nonzero (true) when x and y have the same quantum expo-

nents, zero (false) otherwise.

7.12.15.3 The quantumdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 quantumd32(_Decimal32 x);
_Decimal64 quantumd64(_Decimal64 x);
_Decimal128 quantumd128(_Decimal128 x);
#endif

Description
2 The quantumdN functions compute the quantum (5.2.4.2.3) of a finite argument. If x is infinite, the

result is +∞.

Returns
3 The quantumdN functions return the quantum of x.

7.12.15.4 The llquantexpdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

long long int llquantexpd32(_Decimal32 x);
long long int llquantexpd64(_Decimal64 x);
long long int llquantexpd128(_Decimal128 x);
#endif

Description
2 The llquantexpdN functions compute the quantum exponent (5.2.4.2.3) of a finite argument. If x is

infinite or NaN, they compute LLONG_MIN, the "invalid" floating-point exception is raised, and a

§ 7.12.15.4 Library 235

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

domain error occurs.

Returns
3 The llquantexpdN functions return the quantum exponent of x.

7.12.16 Decimal re-encoding functions
1 IEC 60559 specifies two different schemes to encode significands in the object representation of a

decimal floating-point object: one based on decimal encoding (which packs three decimal digits
into 10 bits), the other based on binary encoding (as a binary integer). An implementation may use
either of these encoding schemes for its decimal floating types. The re-encoding functions in this
subclause provide conversions between external decimal data with a given encoding scheme and
the implementation’s corresponding decimal floating type.

7.12.16.1 The encodedecdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void encodedecd32(unsigned char encptr[restrict static 4],
const _Decimal32*restrict xptr);

void encodedecd64(unsigned char encptr[restrict static 8],
const _Decimal64*restrict xptr);

void encodedecd128(unsigned char encptr[restrict static 16],
const _Decimal128*restrict xptr);

#endif

Description
2 The encodedecdN functions convert*xptr into an IEC 60559 decimalN encoding in the encoding

scheme based on decimal encoding of the significand and store the resulting encoding as an N/8
element array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes
in the array is implementation-defined. These functions preserve the value of*xptr and raise no
floating-point exceptions. If *xptr is non-canonical, these functions may or may not produce a
canonical encoding.

Returns
3 The encodedecdN functions return no value.

7.12.16.2 The decodedecdN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void decodedecd32(_Decimal32 * restrict xptr,
const unsigned char encptr[restrict static 4]);

void decodedecd64(_Decimal64 * restrict xptr,
const unsigned char encptr[restrict static 8]);

void decodedecd128(_Decimal128 * restrict xptr,
const unsigned char encptr[restrict static 16]);

#endif

Description
15

2 The decodedecdN functions interpret the N/8 element array pointed to by encptr as an IEC 60559
decimalN encoding, with 8 bits per array element, in the encoding scheme based on decimal
encoding of the significand. The order of bytes in the array is implementation-defined. These
functions convert the given encoding into a value of the decimal floating type, and store the result in
the object pointed to by xptr. These functions preserve the encoded value and raise no floating-point

236 Library § 7.12.16.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

exceptions. If the encoding is non-canonical, these functions may or may not produce a canonical
representation.

Returns
3 The decodedecdN functions return no value.

7.12.16.3 The encodebindN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void encodebind32(unsigned char encptr[restrict static 4],
const _Decimal32 * restrict xptr);

void encodebind64(unsigned char encptr[restrict static 8],
const _Decimal64 * restrict xptr);

void encodebind128(unsigned char encptr[restrict static 16],
const _Decimal128 * restrict xptr);

#endif

Description
2 The encodebindN functions convert*xptr into an IEC 60559 decimalN encoding in the encoding

scheme based on binary encoding of the significand and store the resulting encoding as an N/8
element array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes
in the array is implementation-defined. These functions preserve the value of*xptr and raise no
floating-point exceptions. If *xptr is non-canonical, these functions may or may not produce a
canonical encoding.

Returns
3 The encodebindN functions return no value.

7.12.16.4 The decodebindN functions
Synopsis

1 #include <math.h>
#ifdef __STDC_IEC_60559_DFP__

void decodebind32(_Decimal32 * restrict xptr,
const unsigned char encptr[restrict static 4]);

void decodebind64(_Decimal64 * restrict xptr,
const unsigned char encptr[restrict static 8]);

void decodebind128(_Decimal128 * restrict xptr,
const unsigned char encptr[restrict static 16]);

#endif

Description
2 The decodebindN functions interpret the N/8 element array pointed to by encptr as an IEC 60559

decimalN encoding, with 8 bits per array element, in the encoding scheme based on binary encoding
of the significand. The order of bytes in the array is implementation-defined. These functions convert
the given encoding into a value of decimal floating type, and store the result in the object pointed to
by xptr. These functions preserve the encoded value and raise no floating-point exceptions. If the
encoding is non-canonical, these functions may or may not produce a canonical representation.

Returns
3 The decodebindN functions return no value.

7.12.17 Comparison macros
1 The relational and equality operators support the usual mathematical relationships between numeric

values. For any ordered pair of numeric values exactly one of the relationships — less, greater, and
equal — is true. Relational operators may raise the "invalid" floating-point exception when argument

§ 7.12.17 Library 237

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

values are NaNs. For a NaN and a numeric value, or for two NaNs, just the unordered relationship
is true.266) Subclauses 7.12.17.1 through 7.12.17.6 provide macros that are quiet versions of the
relational operators: the macros do not raise the "invalid" floating-point exception as an effect
of quiet NaN arguments. The comparison macros facilitate writing efficient code that accounts
for quiet NaNs without suffering the "invalid" floating-point exception. In the synopses in this
subclause, real-floating indicates that the argument shall be an expression of real floating type267)

(both arguments need not have the same type).268) If either argument has decimal floating type, the
other argument shall have decimal floating type as well.

7.12.17.1 The isgreater macro
Synopsis

1 #include <math.h>
int isgreater(real-floating x, real-floating y);

Description
2 The isgreater macro determines whether its first argument is greater than its second argu-

ment. The value of isgreater(x,y) is always equal to (x)> (y); however, unlike (x)> (y),
isgreater(x,y) does not raise the "invalid" floating-point exception when x and y are unordered
and neither is a signaling NaN.

Returns
3 The isgreater macro returns the value of (x)> (y).

7.12.17.2 The isgreaterequal macro
Synopsis

1 #include <math.h>
int isgreaterequal(real-floating x, real-floating y);

Description
2 The isgreaterequal macro determines whether its first argument is greater than or equal to its

second argument. The value of isgreaterequal(x,y) is always equal to (x)>= (y); however,
unlike (x)>= (y), isgreaterequal(x,y) does not raise the "invalid" floating-point exception
when x and y are unordered and neither is a signaling NaN.

Returns
3 The isgreaterequal macro returns the value of (x)>= (y).

7.12.17.3 The isless macro
Synopsis

1 #include <math.h>
int isless(real-floating x, real-floating y);

Description
2 The isless macro determines whether its first argument is less than its second argument. The value

of isless(x,y) is always equal to (x)< (y); however, unlike (x)< (y), isless(x,y) does not
raise the "invalid" floating-point exception when x and y are unordered and neither is a signaling
NaN.

Returns
3 The isless macro returns the value of (x) < (y).

266)IEC 60559 requires that the built-in relational operators raise the "invalid" floating-point exception if the operands
compare unordered, as an error indicator for programs written without consideration of NaNs; the result in these cases is
false.
267)If any argument is of integer type, or any other type that is not a real floating type, the behavior is undefined.
268)Whether an argument represented in a format wider than its semantic type is converted to the semantic type is unspecified.

238 Library § 7.12.17.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.12.17.4 The islessequal macro
Synopsis

1 #include <math.h>
int islessequal(real-floating x, real-floating y);

Description
2 The islessequal macro determines whether its first argument is less than or equal to its sec-

ond argument. The value of islessequal(x,y) is always equal to (x)<= (y); however, unlike
(x)<= (y), islessequal(x,y) does not raise the "invalid" floating-point exception when x and y
are unordered and neither is a signaling NaN.

Returns
3 The islessequal macro returns the value of (x)<= (y).

7.12.17.5 The islessgreater macro
Synopsis

1 #include <math.h>
int islessgreater(real-floating x, real-floating y);

Description
2 The islessgreater macro determines whether its first argument is less than or greater than its

second argument. The islessgreater(x,y) macro is similar to (x)< (y)|| (x)> (y); however,
islessgreater(x,y) does not raise the "invalid" floating-point exception when x and y are un-
ordered and neither is a signaling NaN (nor does it evaluate x and y twice).

Returns
3 The islessgreater macro returns the value of (x)< (y)|| (x)> (y).

7.12.17.6 The isunordered macro
Synopsis

1 #include <math.h>
int isunordered(real-floating x, real-floating y);

Description
2 The isunordered macro determines whether its arguments are unordered. It raises no floating-point

exceptions if neither argument is a signaling NaN.

Returns
3 The isunordered macro returns 1 if its arguments are unordered and 0 otherwise.

7.12.17.7 The iseqsig macro
Synopsis

1 #include <math.h>
int iseqsig(real-floating x, real-floating y);

Description
2 The iseqsig macro determines whether its arguments are equal. If an argument is a NaN, a domain

error occurs for the macro, as if a domain error occurred for a function (7.12.1).

Returns
3 The iseqsig macro returns 1 if its arguments are equal and 0 otherwise.

§ 7.12.17.7 Library 239

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.13 Nonlocal jumps <setjmp.h>
1 The header <setjmp.h> defines the macro setjmp, and declares one function and one type, for

bypassing the normal function call and return discipline.269)

2 The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.
The environment of a call to the setjmp macro consists of information sufficient for a call to the
longjmp function to return execution to the correct block and invocation of that block, were it called
recursively. It does not include the state of the floating-point status flags, of open files, or of any
other component of the abstract machine.

3 It is unspecified whether setjmp is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual function, or a program defines an external
identifier with the name setjmp, the behavior is undefined.

7.13.1 Save calling environment
7.13.1.1 The setjmp macro
Synopsis

1 #include <setjmp.h>
int setjmp(jmp_buf env);

Description
2 The setjmp macro saves its calling environment in its jmp_buf argument for later use by the

longjmp function.

Returns
3 If the return is from a direct invocation, the setjmp macro returns the value zero. If the return is

from a call to the longjmp function, the setjmp macro returns a nonzero value.

Environmental limits
4 An invocation of the setjmp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer constant
expression, with the resulting expression being the entire controlling expression of a selection
or iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to void).

5 If the invocation appears in any other context, the behavior is undefined.

7.13.2 Restore calling environment
7.13.2.1 The longjmp function
Synopsis

1 #include <setjmp.h>
_Noreturn void longjmp(jmp_buf env, int val);

269)These functions are useful for dealing with unusual conditions encountered in a low-level function of a program.

240 Library § 7.13.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The longjmp function restores the environment saved by the most recent invocation of the setjmp

macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution270) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine271) have state,
as of the time the longjmp function was called, except that the values of objects of automatic storage
duration that are local to the function containing the invocation of the corresponding setjmp macro
that do not have volatile-qualified type and have been changed between the setjmp invocation and
longjmp call are indeterminate.

Returns
4 After longjmp is completed, thread execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // a may remain allocated
h(n);

}

void h(int n)
{

int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss

}

270)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
271)This includes, but is not limited to, the floating-point status flags and the state of open files.

§ 7.13.2.1 Library 241

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.14 Signal handling <signal.h>
1 The header <signal.h> declares a type and two functions and defines several macros, for handling

various signals (conditions that may be reported during program execution).

2 The type defined is

sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

3 The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to, and the return value of, the signal function, and whose values compare unequal to
the address of any declarable function; and the following, which expand to positive integer constant
expressions with type int and distinct values that are the signal numbers, each corresponding to
the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an invalid instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

4 An implementation need not generate any of these signals, except as a result of explicit calls to the
raise function. Additional signals and pointers to undeclarable functions, with macro definitions
beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and an uppercase
letter,272) may also be specified by the implementation. The complete set of signals, their semantics,
and their default handling is implementation-defined; all signal numbers shall be positive.

7.14.1 Specify signal handling
7.14.1.1 The signal function
Synopsis

1 #include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description
2 The signal function chooses one of three ways in which receipt of the signal number sig is to

be subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func shall point to a
function to be called when that signal occurs. An invocation of such a function because of a signal, or
(recursively) of any further functions called by that invocation (other than functions in the standard
library),273) is called a signal handler.
272)See "future library directions" (7.31.9). The names of the signal numbers reflect the following terms (respectively): abort,

floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.
273)This includes functions called indirectly via standard library functions (e.g., a SIGABRT handler called via the abort

function).

242 Library § 7.14.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3 When a signal occurs and func points to a function, it is implementation-defined whether the equiva-
lent of signal(sig, SIG_DFL); is executed or the implementation prevents some implementation-
defined set of signals (at least including sig) from occurring until the current signal handling has
completed; in the case of SIGILL, the implementation may alternatively define that no action is taken.
Then the equivalent of (*func)(sig); is executed. If and when the function returns, if the value
of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value corresponding to a
computational exception, the behavior is undefined; otherwise the program will resume execution
at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,

— the _Exit function,

— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of errno is indeterminate.274)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns
8 If the request can be honored, the signal function returns the value of func for the most recent

successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).

7.14.2 Send signal
7.14.2.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

274)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

§ 7.14.2.1 Library 243

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The raise function carries out the actions described in 7.14.1.1 for the signal sig. If a signal handler

is called, the raise function shall not return until after the signal handler does.

Returns
3 The raise function returns zero if successful, nonzero if unsuccessful.

244 Library § 7.14.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.15 Alignment <stdalign.h>
1 The header <stdalign.h> defines four macros.

2 The macro

alignas

expands to _Alignas; the macro

alignof

expands to _Alignof.

3 The remaining macros are suitable for use in #if preprocessing directives. They are

__alignas_is_defined

and

__alignof_is_defined

which both expand to the integer constant 1.

§ 7.15 Library 245

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.16 Variable arguments <stdarg.h>
1 The header <stdarg.h> declares a type and defines four macros, for advancing through a list of

arguments whose number and types are not known to the called function when it is translated.

2 A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.

3 The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the value of ap in the calling function is indeterminate and shall be passed to the
va_end macro prior to any further reference to ap.275)

7.16.1 Variable argument list access macros
1 The va_start and va_arg macros described in this subclause shall be implemented as macros,

not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function.

7.16.1.1 The va_arg macro
Synopsis

1 #include <stdarg.h>
type va_arg(va_list ap, type);

Description
2 The va_arg macro expands to an expression that has the specified type and the value of the next

argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation
of the va_arg macro modifies ap so that the values of successive arguments are returned in turn.
The behavior is undefined if there is no actual next argument. The parameter type shall be a type
name specified such that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a* to type. If type is not compatible with the type of the actual next argument
(as promoted according to the default argument promotions), the behavior is undefined, except for
the following cases:

— both types are pointers to qualified or unqualified versions of compatible types;

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to qualified or unqualified void and the other is a pointer to a qualified or
unuqualified character type.

Returns
3 The first invocation of the va_arg macro after that of the va_start macro returns the value of the

argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.
275)It is permitted to create a pointer to a va_list and pass that pointer to another function, in which case the original

function can make further use of the original list after the other function returns.

246 Library § 7.16.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.16.1.2 The va_copy macro
Synopsis

1 #include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description
2 The va_copy macro initializes dest as a copy of src, as if the va_start macro had been applied

to dest followed by the same sequence of uses of the va_arg macro as had previously been used
to reach the present state of src. Neither the va_copy nor va_start macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end macro for the same dest.

Returns
3 The va_copy macro returns no value.

7.16.1.3 The va_end macro
Synopsis

1 #include <stdarg.h>
void va_end(va_list ap);

Description
2 The va_end macro facilitates a normal return from the function whose variable argument list was

referred to by the expansion of the va_start macro, or the function containing the expansion of
the va_copy macro, that initialized the va_list ap. The va_end macro may modify ap so that it
is no longer usable (without being reinitialized by the va_start or va_copy macro). If there is no
corresponding invocation of the va_start or va_copy macro, or if the va_end macro is not invoked
before the return, the behavior is undefined.

Returns
3 The va_end macro returns no value.

7.16.1.4 The va_start macro
Synopsis

1 #include <stdarg.h>
void va_start(va_list ap, parmN);

Description
2 The va_start macro shall be invoked before any access to the unnamed arguments.

3 The va_start macro initializes ap for subsequent use by the va_arg and va_end macros. Neither the
va_start nor va_copy macro shall be invoked to reinitialize ap without an intervening invocation
of the va_end macro for the same ap.

4 The parameter parmN is the identifier of the rightmost parameter in the variable parameter list in
the function definition (the one just before the , ...). If the parameter parmN is declared with the
register storage class, with a function or array type, or with a type that is not compatible with the
type that results after application of the default argument promotions, the behavior is undefined.

Returns
5 The va_start macro returns no value.
6 EXAMPLE 1 The function f1 gathers into an array a list of arguments that are pointers to strings (but not more than MAXARGS

arguments), then passes the array as a single argument to function f2. The number of pointers is specified by the first
argument to f1.

§ 7.16.1.4 Library 247

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 is required to have visible the definition of the function or a declaration such as

void f1(int, ...);

7 EXAMPLE 2 The function f3 is similar, but saves the status of the variable argument list after the indicated number of
arguments; after f2 has been called once with the whole list, the trailing part of the list is gathered again and passed to
function f4.

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{

va_list ap, ap_save;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, f4_after);
while (ptr_no < n_ptrs) {

array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)

va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

// Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

}

248 Library § 7.16.1.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.17 Atomics <stdatomic.h>
7.17.1 Introduction

1 The header <stdatomic.h> defines several macros and declares several types and functions for
performing atomic operations on data shared between threads.276)

2 Implementations that define the macro __STDC_NO_ATOMICS__ need not provide this header nor
support any of its facilities.

3 The macros defined are the atomic lock-free macros

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE

which expand to constant expressions suitable for use in #if preprocessing directives and which
indicate the lock-free property of the corresponding atomic types (both signed and unsigned); and

ATOMIC_FLAG_INIT

which expands to an initializer for an object of type atomic_flag.

4 The types include

memory_order

which is an enumerated type whose enumerators identify memory ordering constraints;

atomic_flag

which is a structure type representing a lock-free, primitive atomic flag; and several atomic analogs
of integer types.

5 In the following synopses:

— An A refers to an atomic type.

— A C refers to its corresponding non-atomic type.

— An M refers to the type of the other argument for arithmetic operations. For atomic integer
types, M is C. For atomic pointer types, M is ptrdiff_t.

— The functions not ending in _explicit have the same semantics as the corresponding
_explicit function with memory_order_seq_cst for the memory_order argument.

6 It is unspecified whether any generic function declared in <stdatomic.h> is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to access an actual
function, or a program defines an external identifier with the name of a generic function, the
behavior is undefined.

7 NOTE Many operations are volatile-qualified. The "volatile as device register" semantics have not changed in the standard.
This qualification means that volatility is preserved when applying these operations to volatile objects.

276)See "future library directions" (7.31.10).

§ 7.17.1 Library 249

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.17.2 Initialization
7.17.2.1 The ATOMIC_VAR_INIT macro
Synopsis

1 #include <stdatomic.h>
#define ATOMIC_VAR_INIT(C value)

Description
2 The ATOMIC_VAR_INIT macro expands to a token sequence suitable for initializing an atomic object

of a type that is initialization-compatible with value. An atomic object with automatic storage
duration that is not explicitly initialized is initially in an indeterminate state; however, the default
(zero) initialization for objects with static or thread-local storage duration is guaranteed to produce
a valid state.277)

3 Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

4 EXAMPLE

atomic_int guide = ATOMIC_VAR_INIT(42);

7.17.2.2 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

Description
2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,

while also initializing any additional state that the implementation might need to carry for the
atomic object.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

4 If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.

Returns
5 The atomic_init generic function returns no value.
6 EXAMPLE

atomic_int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency
1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-

nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration
constants are as follows:278)

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

277)See "future library directions" (7.31.10).
278)See "future library directions" (7.31.10).

250 Library § 7.17.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

2 For memory_order_relaxed, no operation orders memory.

3 For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store opera-
tion performs a release operation on the affected memory location.

4 For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a load opera-
tion performs an acquire operation on the affected memory location.

5 For memory_order_consume, a load operation performs a consume operation on the affected mem-
ory location.

6 There shall be a single total order S on all memory_order_seq_cst operations, consistent with the
"happens before" order and modification orders for all affected locations, such that each
memory_order_seq_cst operation B that loads a value from an atomic object M observes one of
the following values:

— the result of the last modification A of M that precedes B in S, if it exists, or

— if A exists, the result of some modification of M that is not memory_order_seq_cst and that
does not happen before A, or

— if A does not exist, the result of some modification of M that is not memory_order_seq_cst.

7 NOTE 1 Although it is not explicitly required that S include lock operations, it can always be extended to an order that does
include lock and unlock operations, since the ordering between those is already included in the "happens before" ordering.

8 NOTE 2 Atomic operations specifying memory_order_relaxed are relaxed only with respect to memory ordering. Imple-
mentations still guarantee that any given atomic access to a particular atomic object is indivisible with respect to all other
atomic accesses to that object.

9 For an atomic operation B that reads the value of an atomic object M , if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later mod-
ification of M in its modification order.

10 For atomic operations A and B on an atomic object M , where A modifies M and B takes its value, if
there is a memory_order_seq_cst fence X such that A is sequenced before X and B follows X in S,
then B observes either the effects of A or a later modification of M in its modification order.

11 For atomic modifications A and B of an atomic object M , B occurs later than A in the modification
order of M if:

— there is a memory_order_seq_cst fence X such that A is sequenced before X , and X precedes
B in S, or

— there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A precedes
Y in S, or

— there are memory_order_seq_cst fences X and Y such that A is sequenced before X , Y is
sequenced before B, and X precedes Y in S.

12 Atomic read-modify-write operations shall always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation.

13 An atomic store shall only store a value that has been computed from constants and program input
values by a finite sequence of program evaluations, such that each evaluation observes the values of
variables as computed by the last prior assignment in the sequence. The ordering of evaluations in
this sequence shall be such that

— If an evaluation B observes a value computed by A in a different thread, then B does not
happen before A.

— If an evaluation A is included in the sequence, then all evaluations that assign to the same
variable and happen before A are also included.

§ 7.17.3 Library 251

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

14 NOTE 3 The second requirement disallows "out-of-thin-air", or "speculative" stores of atomics when relaxed atomics are
used. Since unordered operations are involved, evaluations can appear in this sequence out of thread order. For example,
with x and y initially zero,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, 42, memory_order_relaxed);

is allowed to produce r1 == 42 && r2 == 42. The sequence of evaluations justifying this consists of:

atomic_store_explicit(&y, 42, memory_order_relaxed);
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);
r2 = atomic_load_explicit(&x, memory_order_relaxed);

On the other hand,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, r2, memory_order_relaxed);

is not allowed to produce r1 == 42 && r2 == 42, since there is no sequence of evaluations that results in the computation
of 42. In the absence of "relaxed" operations and read-modify-write operations with weaker than memory_order_acq_rel
ordering, the second requirement has no impact.

Recommended practice
15 The requirements do not forbid r1 == 42 && r2 == 42 in the following example, with x and y

initially zero:

// Thread 1:
r1 = atomic_load_explicit(&x, memory_order_relaxed);
if (r1 == 42)

atomic_store_explicit(&y, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&y, memory_order_relaxed);
if (r2 == 42)

atomic_store_explicit(&x, 42, memory_order_relaxed);

However, this is not useful behavior, and implementations should not allow it.

16 Implementations should make atomic stores visible to atomic loads within a reasonable amount of
time.

7.17.3.1 The kill_dependency macro
Synopsis

1 #include <stdatomic.h>
type kill_dependency(type y);

Description
2 The kill_dependency macro terminates a dependency chain; the argument does not carry a depen-

dency to the return value.

252 Library § 7.17.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The kill_dependency macro returns the value of y.

7.17.4 Fences
1 This subclause introduces synchronization primitives called fences. Fences can have acquire seman-

tics, release semantics, or both. A fence with acquire semantics is called an acquire fence; a fence with
release semantics is called a release fence.

2 A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y ,
both operating on some atomic object M , such that A is sequenced before X , X modifies M , Y is
sequenced before B, and Y reads the value written by X or a value written by any side effect in the
hypothetical release sequence X would head if it were a release operation.

3 A release fence A synchronizes with an atomic operation B that performs an acquire operation on an
atomic object M if there exists an atomic operation X such that A is sequenced before X , X modifies
M , and B reads the value written by X or a value written by any side effect in the hypothetical
release sequence X would head if it were a release operation.

4 An atomic operation A that is a release operation on an atomic object M synchronizes with an
acquire fence B if there exists some atomic operation X on M such that X is sequenced before B
and reads the value written by A or a value written by any side effect in the release sequence headed
by A.

7.17.4.1 The atomic_thread_fence function
Synopsis

1 #include <stdatomic.h>
void atomic_thread_fence(memory_order order);

Description
2 Depending on the value of order, this operation:

— has no effects, if order == memory_order_relaxed;

— is an acquire fence, if order == memory_order_acquire or order == memory_order_consume;

— is a release fence, if order == memory_order_release;

— is both an acquire fence and a release fence, if order == memory_order_acq_rel;

— is a sequentially consistent acquire and release fence, if order == memory_order_seq_cst.

Returns
3 The atomic_thread_fence function returns no value.

7.17.4.2 The atomic_signal_fence function
Synopsis

1 #include <stdatomic.h>
void atomic_signal_fence(memory_order order);

Description
2 Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints are

established only between a thread and a signal handler executed in the same thread.
3 NOTE 1 The atomic_signal_fence function can be used to specify the order in which actions performed by the thread

become visible to the signal handler.

4 NOTE 2 Compiler optimizations and reorderings of loads and stores are inhibited in the same way as with
atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have inserted are not
emitted.

§ 7.17.4.2 Library 253

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
5 The atomic_signal_fence function returns no value.

7.17.5 Lock-free property
1 The atomic lock-free macros indicate the lock-free property of integer and address atomic types. A

value of 0 indicates that the type is never lock-free; a value of 1 indicates that the type is sometimes
lock-free; a value of 2 indicates that the type is always lock-free.

Recommended practice
2 Operations that are lock-free should also be address-free. That is, atomic operations on the same

memory location via two different addresses will communicate atomically. The implementation
should not depend on any per-process state. This restriction enables communication via memory
mapped into a process more than once and memory shared between two processes.

7.17.5.1 The atomic_is_lock_free generic function
Synopsis

1 #include <stdatomic.h>
_Bool atomic_is_lock_free(const volatile A *obj);

Description
2 The atomic_is_lock_free generic function indicates whether or not atomic operations on objects

of the type pointed to by obj are lock-free.

Returns
3 The atomic_is_lock_free generic function returns nonzero (true) if and only if atomic operations

on objects of the type pointed to by the argument are lock-free. In any given program execution, the
result of the lock-free query shall be consistent for all pointers of the same type.279)

7.17.6 Atomic integer types
1 For each line in the following table,280) the atomic type name is declared as a type that has the same

representation and alignment requirements as the corresponding direct type.281)

Atomic type name Direct type
atomic_bool _Atomic _Bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_char16_t _Atomic char16_t
atomic_char32_t _Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t _Atomic int_least8_t
atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_least16_t _Atomic int_least16_t

279)obj can be a null pointer.
280)See "future library directions" (7.31.10).
281)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

254 Library § 7.17.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Atomic type name Direct type
atomic_uint_least16_t _Atomic uint_least16_t
atomic_int_least32_t _Atomic int_least32_t
atomic_uint_least32_t _Atomic uint_least32_t
atomic_int_least64_t _Atomic int_least64_t
atomic_uint_least64_t _Atomic uint_least64_t
atomic_int_fast8_t _Atomic int_fast8_t
atomic_uint_fast8_t _Atomic uint_fast8_t
atomic_int_fast16_t _Atomic int_fast16_t
atomic_uint_fast16_t _Atomic uint_fast16_t
atomic_int_fast32_t _Atomic int_fast32_t
atomic_uint_fast32_t _Atomic uint_fast32_t
atomic_int_fast64_t _Atomic int_fast64_t
atomic_uint_fast64_t _Atomic uint_fast64_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size_t _Atomic size_t
atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t _Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

Recommended practice
2 The representation of an atomic integer type is not required to have the same size as the correspond-

ing regular type but it should have the same size whenever possible, as it eases effort required to
port existing code.

7.17.7 Operations on atomic types
1 There are only a few kinds of operations on atomic types, though there are many instances of those

kinds. This subclause specifies each general kind.

7.17.7.1 The atomic_store generic functions
Synopsis

1 #include <stdatomic.h>
void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);

Description
2 The order argument shall not be memory_order_acquire, memory_order_consume, nor

memory_order_acq_rel. Atomically replace the value pointed to by object with the value of
desired. Memory is affected according to the value of order.

Returns
3 The atomic_store generic functions return no value.

7.17.7.2 The atomic_load generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object, memory_order order);

Description
2 The order argument shall not be memory_order_release nor memory_order_acq_rel. Memory is

affected according to the value of order.

§ 7.17.7.2 Library 255

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 Atomically returns the value pointed to by object.

7.17.7.3 The atomic_exchange generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired, memory_order order);

Description
2 Atomically replace the value pointed to by object with desired. Memory is affected according to

the value of order. These operations are read-modify-write operations (5.1.2.4).

Returns
3 Atomically returns the value pointed to by object immediately before the effects.

7.17.7.4 The atomic_compare_exchange generic functions
Synopsis

1 #include <stdatomic.h>
_Bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
_Bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);
_Bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);

Description
2 The failure argument shall not be memory_order_release nor memory_order_acq_rel. The

failure argument shall be no stronger than the success argument.

3 Atomically, compares the contents of the memory pointed to by object for equality with that
pointed to by expected, and if true, replaces the contents of the memory pointed to by object
with desired, and if false, updates the contents of the memory pointed to by expected with that
pointed to by object. Further, if the comparison is true, memory is affected according to the value
of success, and if the comparison is false, memory is affected according to the value of failure.
These operations are atomic read-modify-write operations (5.1.2.4).

4 NOTE 1 For example, the effect of atomic_compare_exchange_strong is

if (memcmp(object, expected, sizeof (*object)) == 0)
memcpy(object, &desired, sizeof (*object));

else
memcpy(expected, object, sizeof (*object));

5 A weak compare-and-exchange operation may fail spuriously. That is, even when the contents
of memory referred to by expected and object are equal, it may return zero and store back to
expected the same memory contents that were originally there.

6 NOTE 2 This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g.
load-locked store-conditional machines.

256 Library § 7.17.7.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7 EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.

Returns
8 The result of the comparison.

7.17.7.5 The atomic_fetch and modify generic functions
1 The following operations perform arithmetic and bitwise computations. All of these operations

are applicable to an object of any atomic integer type. None of these operations is applicable to
atomic_bool. The key, operator, and computation correspondence is:

key op computation
add + addition
sub - subtraction
or | bitwise inclusive or
xor ^ bitwise exclusive or
and & bitwise and

Synopsis

2 #include <stdatomic.h>
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A *object, M operand, memory_order order);

Description
3 Atomically replaces the value pointed to by object with the result of the computation applied to

the value pointed to by object and the given operand. Memory is affected according to the value
of order. These operations are atomic read-modify-write operations (5.1.2.4). For signed integer
types, arithmetic is defined to use silent wrap-around on overflow; there are no undefined results.
For address types, the result may be an undefined address, but the operations otherwise have no
undefined behavior.

Returns
4 Atomically, the value pointed to by object immediately before the effects.
5 NOTE The operation of the atomic_fetch and modify generic functions are nearly equivalent to the operation of the

corresponding op= compound assignment operators. The only differences are that the compound assignment operators are
not guaranteed to operate atomically, and the value yielded by a compound assignment operator is the updated value of the
object, whereas the value returned by the atomic_fetch and modify generic functions is the previous value of the atomic
object.

7.17.8 Atomic flag type and operations
1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock free.
3 NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free operations, so the

atomic_flag type is the minimum hardware-implemented type needed to conform to this document. The remaining types
can be emulated with atomic_flag, though with less than ideal properties.

4 The macro ATOMIC_FLAG_INIT may be used to initialize an atomic_flag to the clear state. An
atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is initially in an indeterminate
state.

5 EXAMPLE

§ 7.17.8 Library 257

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

atomic_flag guard = ATOMIC_FLAG_INIT;

7.17.8.1 The atomic_flag_test_and_set functions
Synopsis

1 #include <stdatomic.h>
_Bool atomic_flag_test_and_set(volatile atomic_flag *object);
_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 Atomically places the atomic flag pointed to by object in the set state and returns the value

corresponding to the immediately preceding state. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4).

Returns
3 The atomic_flag_test_and_set functions return the value that corresponds to the state of the

atomic flag immediately before the effects. The return value true corresponds to the set state and the
return value false corresponds to the clear state.

7.17.8.2 The atomic_flag_clear functions
Synopsis

1 #include <stdatomic.h>
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 The order argument shall not be memory_order_acquire nor memory_order_acq_rel. Atomically

places the atomic flag pointed to by object into the clear state. Memory is affected according to the
value of order.

Returns
3 The atomic_flag_clear functions return no value.

258 Library § 7.17.8.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.18 Boolean type and values <stdbool.h>
1 The header <stdbool.h> defines four macros.

2 The macro

bool

expands to _Bool.

3 The remaining three macros are suitable for use in #if preprocessing directives. They are

true

which expands to the integer constant ((_Bool)+1u),

false

which expands to the integer constant ((_Bool)+0u), and

__bool_true_false_are_defined

which expands to the integer constant 1.

4 Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros bool, true, and false.282)

282)See "future library directions" (7.31.11).

§ 7.18 Library 259

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.19 Common definitions <stddef.h>
1 The header <stddef.h> defines the following macros and declares the following types. Some are

also defined in other headers, as noted in their respective subclauses.

2 The types are

ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;

size_t

which is the unsigned integer type of the result of the sizeof operator;

max_align_t

which is an object type whose alignment is the greatest fundamental alignment; and

wchar_t

which is an integer type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall have
the code value zero. Each member of the basic character set shall have a code value equal to its
value when used as the lone character in an integer character constant if an implementation does
not define __STDC_MB_MIGHT_NEQ_WC__.

3 The macros are

NULL

which expands to an implementation-defined null pointer constant; and

offsetof(type, member-designator)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the subobject (designated by member-designator), from the beginning of any object
of type type. The type and member designator shall be such that given

static type t;

then the expression &(t. member-designator) evaluates to an address constant. If the specified type
defines a new type or if the specified member is a bit-field, the behavior is undefined.

Recommended practice
4 The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than

that of signed long int unless the implementation supports objects large enough to make this
necessary.

260 Library § 7.19

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.20 Integer types <stdint.h>
1 The header <stdint.h> declares sets of integer types having specified widths, and defines corre-

sponding sets of macros.283) It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable constants.

4 For each type described herein that the implementation provides,284) <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as "required",
but need not provide any of the others (described as "optional").

5 The feature test macro __STDC_VERSION_STDINT_H__ expands to the token yyyymmL.

7.20.1 Integer types
1 When typedef names differing only in the absence or presence of the initial u are defined, they shall

denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types
1 The typedef name intN_t designates a signed integer type with width N and no padding bits. Thus,

int8_t denotes such a signed integer type with a width of exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

3 These types are optional. However, if an implementation provides integer types with widths of 8,
16, 32, or 64 bits, and no padding bits, it shall define the corresponding typedef names.

7.20.1.2 Minimum-width integer types
1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such

that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

3 The following types are required:

283)See "future library directions" (7.31.12).
284)Some of these types might denote implementation-defined extended integer types.

§ 7.20.1.2 Library 261

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

7.20.1.3 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest285) to operate with
among all integer types that have at least the specified width.

2 The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers
1 The following type designates a signed integer type with the property that any valid pointer to void

can be converted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid pointer
to void can be converted to this type, then converted back to pointer to void, and the result will
compare equal to the original pointer:

uintptr_t

These types are optional.

7.20.1.5 Greatest-width integer types
1 The following type designates a signed integer type capable of representing any value of any signed

integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value of any
unsigned integer type:

uintmax_t

These types are required.

7.20.2 Widths of specified-width integer types
1 The following object-like macros specify the width of the types declared in <stdint.h>. Each macro

name corresponds to a similar type name in 7.20.1.

285)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.

262 Library § 7.20.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

2 Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives. Its implementation-defined value shall be equal to or greater than
the value given below, except where stated to be exactly the given value. An implementation shall
define only the macros corresponding to those typedef names it actually provides.286)

7.20.2.1 Width of exact-width integer types

1 INTN_WIDTH exactly N
UINTN_WIDTH exactly N

7.20.2.2 Width of minimum-width integer types

1 INT_LEASTN_WIDTH exactly UINT_LEASTN_WIDTH
UINT_LEASTN_WIDTH N

7.20.2.3 Width of fastest minimum-width integer types

1 INT_FASTN_WIDTH exactly UINT_FASTN_WIDTH
UINT_FASTN_WIDTH N

7.20.2.4 Width of integer types capable of holding object pointers

1 INTPTR_WIDTH exactly UINTPTR_WIDTH
UINTPTR_WIDTH 16

7.20.2.5 Width of greatest-width integer types

1 INTMAX_WIDTH exactly UINTMAX_WIDTH
UINTMAX_WIDTH 64

7.20.3 Width of other integer types
1 The following object-like macros specify the width of integer types corresponding to types defined

in other standard headers.

2 Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives. Its implementation-defined value shall be equal to or greater than the
corresponding value given below. An implementation shall define only the macros corresponding
to those typedef names it actually provides.287)

7.20.3.1 Width of ptrdiff_t

1 PTRDIFF_WIDTH 17

7.20.3.2 Width of sig_atomic_t

1 SIG_ATOMIC_WIDTH 8

7.20.3.3 Width of size_t

1 SIZE_WIDTH 16

286)The exact-width and pointer-holding integer types are optional.
287)A freestanding implementation need not provide all of these types.

§ 7.20.3.3 Library 263

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.20.3.4 Width of wchar_t

1 WCHAR_WIDTH 8

7.20.3.5 Width of wint_t

1 WINT_WIDTH 16

7.20.4 Macros for integer constants
1 The following function-like macros expand to integer constants suitable for initializing objects that

have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.20.1.2 or 7.20.1.5.

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.4.1) with a value that does not exceed the limits for the corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expression suitable for
use in #if preprocessing directives. The type of the expression shall have the same type as would
an expression of the corresponding type converted according to the integer promotions. The value
of the expression shall be that of the argument.

7.20.4.1 Macros for minimum-width integer constants
1 The macro INTN_C(value) expands to an integer constant expression corresponding to the type

int_leastN_t. The macro UINTN_C(value) expands to an integer constant expression corre-
sponding to the type uint_leastN_t. For example, if uint_least64_t is a name for the type
unsigned long long int, then UINT64_C(0x123) might expand to the integer constant 0x123ULL.

7.20.4.2 Macros for greatest-width integer constants
1 The following macro expands to an integer constant expression having the value specified by its

argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

UINTMAX_C(value)

7.20.5 Maximal and minimal values of integer types
1 For all integer types for which there is a macro with suffix _WIDTH holding the width, maximum

macros with suffix _MAX and, for all signed types, minimum macros with suffix _MIN are defined as
by 5.2.4.2. If it is unspecified if a type is signed or unsigned and the implementation has it as an
unsigned type, a minimum macro with extension _MIN, and value 0 of the corresponding type is
defined.

264 Library § 7.20.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.21 Input/output <stdio.h>
7.21.1 Introduction

1 The header <stdio.h> defines several macros, and declares three types and many functions for
performing input and output.

2 The types declared are size_t (described in 7.19);

FILE

which is an object type capable of recording all the information needed to control a stream, including
its file position indicator, a pointer to its associated buffer (if any), an error indicator that records
whether a read/write error has occurred, and an end-of-file indicator that records whether the end of
the file has been reached; and

fpos_t

which is a complete object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

3 The macros are NULL (described in 7.19);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integer constant expression that is the size of the buffer used by the setbuf
function;

EOF

which expands to an integer constant expression, with type int and a negative value, that is returned
by several functions to indicate end-of-file, that is, no more input from a stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold the longest file name string that the implementation guarantees can be opened or, if
the implementation imposes no practical limit on the length of file name strings, the recommended
size of an array intended to hold a file name string288) ;

288)Of course, file name string contents are subject to other system-specific constraints; therefore all possible strings of length
FILENAME_MAX cannot be expected to be opened successfully.

§ 7.21.1 Library 265

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

_PRINTF_NAN_LEN_MAX

which expands to an integer constant expression (suitable for use in #if preprocessing directives)
that is the maximum number of characters output for any

[-]NAN(n-char-sequence)

sequence.289) If an implementation has no support for NaNs, it shall be 0. _PRINTF_NAN_LEN_MAX
shall be less than 64;

L_tmpnam

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the tmpnam function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the fseek function;

TMP_MAX

which expands to an integer constant expression that is the minimum number of unique file names
that can be generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type "pointer to FILE" that point to the FILE objects associated, respectively,
with the standard error, input, and output streams.

4 The header <wchar.h> declares a number of functions useful for wide character input and output.
The wide character input/output functions described in that subclause provide operations analogous
to most of those described here, except that the fundamental units internal to the program are
wide characters. The external representation (in the file) is a sequence of "generalized" multibyte
characters, as described further in 7.21.3.

5 The input/output functions are given the following collective terms:

— The wide character input functions — those functions described in 7.29 that perform input
into wide characters and wide strings: fgetwc, fgetws, getwc, getwchar, fwscanf, wscanf,
vfwscanf, and vwscanf.

— The wide character output functions — those functions described in 7.29 that perform output from
wide characters and wide strings: fputwc, fputws, putwc, putwchar, fwprintf, wprintf,
vfwprintf, and vwprintf.

— The wide character input/output functions — the union of the ungetwc function, the wide charac-
ter input functions, and the wide character output functions.

— The byte input/output functions — those functions described in this subclause that perform
input/output: fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, getc, getchar,
printf, putc, putchar, puts, scanf, ungetc, vfprintf, vfscanf, vprintf, and vscanf.

Forward references: files (7.21.3), the fseek function (7.21.9.2), streams (7.21.2), the tmpnam func-
tion (7.21.4.4), <wchar.h> (7.29).
289)If the implementation only uses the [-]NAN style, then _PRINTF_NAN_LEN_MAX would have the value 4.

266 Library § 7.21.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.21.2 Streams
1 Input and output, whether to or from physical devices such as terminals and tape drives, or whether

to or from files supported on structured storage devices, are mapped into logical data streams, whose
properties are more uniform than their various inputs and outputs. Two forms of mapping are
supported, for text streams and for binary streams.290)

2 A text stream is an ordered sequence of characters composed into lines, each line consisting of
zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added, altered,
or deleted on input and output to conform to differing conventions for representing text in the host
environment. Thus, there need not be a one-to-one correspondence between the characters in a
stream and those in the external representation. Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream only if: the data consist only
of printing characters and the control characters horizontal tab and new-line; no new-line character
is immediately preceded by space characters; and the last character is a new-line character. Whether
space characters that are written out immediately before a new-line character appear when read in
is implementation-defined.

3 A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream, under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

4 Each stream has an orientation. After a stream is associated with an external file, but before any
operations are performed on it, the stream is without orientation. Once a wide character input/out-
put function has been applied to a stream without orientation, the stream becomes a wide-oriented
stream. Similarly, once a byte input/output function has been applied to a stream without orien-
tation, the stream becomes a byte-oriented stream. Only a call to the freopen function or the fwide
function can otherwise alter the orientation of a stream. (A successful call to freopen removes any
orientation.)291)

5 Byte input/output functions shall not be applied to a wide-oriented stream and wide character
input/output functions shall not be applied to a byte-oriented stream. The remaining stream
operations do not affect, and are not affected by, a stream’s orientation, except for the following
additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and
binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide character output function can overwrite
a partial multibyte character; any file contents beyond the byte(s) written are henceforth
indeterminate.

6 Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos stores a representation of the value of this mbstate_t
object as part of the value of the fpos_t object. A later successful call to fsetpos using the same
stored fpos_t value restores the value of the associated mbstate_t object as well as the position
within the controlled stream.

7 Each stream has an associated lock that is used to prevent data races when multiple threads of
execution access a stream, and to restrict the interleaving of stream operations performed by multiple
threads. Only one thread may hold this lock at a time. The lock is reentrant: a single thread may
hold the lock multiple times at a given time.

8 All functions that read, write, position, or query the position of a stream lock the stream before
accessing it. They release the lock associated with the stream when the access is complete.

290)An implementation need not distinguish between text streams and binary streams. In such an implementation, there
need be no new-line characters in a text stream nor any limit to the length of a line.
291)The three predefined streams stdin, stdout, and stderr are unoriented at program startup.

§ 7.21.2 Library 267

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Environmental limits
9 An implementation shall support text files with lines containing at least 254 characters, including

the terminating new-line character. The value of the macro BUFSIZ shall be at least 256.

Forward references: the freopen function (7.21.5.4), the fwide function (7.29.3.5), mbstate_t
(7.29.1), the fgetpos function (7.21.9.1), the fsetpos function (7.21.9.3).

7.21.3 Files
1 A stream is associated with an external file (which may be a physical device) by opening a file, which

may involve creating a new file. Creating an existing file causes its former contents to be discarded,
if necessary. If a file can support positioning requests (such as a disk file, as opposed to a terminal),
then a file position indicator associated with the stream is positioned at the start (character number
zero) of the file, unless the file is opened with append mode in which case it is implementation-
defined whether the file position indicator is initially positioned at the beginning or the end of the
file. The file position indicator is maintained by subsequent reads, writes, and positioning requests,
to facilitate an orderly progression through the file.

2 Binary files are not truncated, except as defined in 7.21.5.3. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined.

3 When a stream is unbuffered, characters are intended to appear from the source or at the destination
as soon as possible. Otherwise characters may be accumulated and transmitted to or from the host
environment as a block. When a stream is fully buffered, characters are intended to be transmitted
to or from the host environment as a block when a buffer is filled. When a stream is line buffered,
characters are intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a block to the
host environment when a buffer is filled, when input is requested on an unbuffered stream, or when
input is requested on a line buffered stream that requires the transmission of characters from the
host environment. Support for these characteristics is implementation-defined, and may be affected
via the setbuf and setvbuf functions.

4 A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length (on which
no characters have been written by an output stream) actually exists is implementation-defined.

5 The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the main function returns to its original
caller, or if the exit function is called, all open files are closed (hence all output streams are flushed)
before program termination. Other paths to program termination, such as calling the abort function,
need not close all files properly.

6 The address of the FILE object used to control a stream may be significant; a copy of a FILE object
need not serve in place of the original.

7 At program startup, three text streams are predefined and need not be opened explicitly — standard
input (for reading conventional input), standard output (for writing conventional output), and standard
error (for writing diagnostic output). As initially opened, the standard error stream is not fully
buffered; the standard input and standard output streams are fully buffered if and only if the stream
can be determined not to refer to an interactive device.

8 Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

9 Although both text and binary wide-oriented streams are conceptually sequences of wide characters,
the external file associated with a wide-oriented stream is a sequence of multibyte characters,
generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte encod-
ings valid for use internal to the program).

268 Library § 7.21.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— A file need not begin nor end in the initial shift state.292)

10 Moreover, the encodings used for multibyte characters may differ among files. Both the nature and
choice of such encodings are implementation-defined.

11 The wide character input functions read multibyte characters from the stream and convert them
to wide characters as if they were read by successive calls to the fgetwc function. Each conversion
occurs as if by a call to the mbrtowc function, with the conversion state described by the stream’s
own mbstate_t object. The byte input functions read characters from the stream as if by successive
calls to the fgetc function.

12 The wide character output functions convert wide characters to multibyte characters and write them
to the stream as if they were written by successive calls to the fputwc function. Each conversion
occurs as if by a call to the wcrtomb function, with the conversion state described by the stream’s
own mbstate_t object. The byte output functions write characters to the stream as if by successive
calls to the fputc function.

13 In some cases, some of the byte input/output functions also perform conversions between multibyte
characters and wide characters. These conversions also occur as if by calls to the mbrtowc and
wcrtomb functions.

14 An encoding error occurs if the character sequence presented to the underlying mbrtowc function
does not form a valid (generalized) multibyte character, or if the code value passed to the underlying
wcrtomb does not correspond to a valid (generalized) multibyte character. The wide character
input/output functions and the byte input/output functions store the value of the macro EILSEQ in
errno if and only if an encoding error occurs.

Environmental limits
15 The value of FOPEN_MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function (7.22.4.4), the fgetc function (7.21.7.1), the fopen function
(7.21.5.3), the fputc function (7.21.7.3), the setbuf function (7.21.5.5), the setvbuf function (7.21.5.6),
the fgetwc function (7.29.3.1), the fputwc function (7.29.3.3), conversion state (7.29.6), the mbrtowc
function (7.29.6.3.2), the wcrtomb function (7.29.6.3.3).

7.21.4 Operations on files
7.21.4.1 The remove function
Synopsis

1 #include <stdio.h>
int remove(const char *filename);

Description
2 The remove function causes the file whose name is the string pointed to by filename to be no longer

accessible by that name. A subsequent attempt to open that file using that name will fail, unless it is
created anew. If the file is open, the behavior of the remove function is implementation-defined.

Returns
3 The remove function returns zero if the operation succeeds, nonzero if it fails.

7.21.4.2 The rename function
Synopsis

1 #include <stdio.h>
int rename(const char *old, const char *new);

292)Setting the file position indicator to end-of-file, as with fseek(file, 0, SEEK_END), has undefined behavior for a
binary stream (because of possible trailing null characters) or for any stream with state-dependent encoding that does not
assuredly end in the initial shift state.

§ 7.21.4.2 Library 269

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The rename function causes the file whose name is the string pointed to by old to be henceforth

known by the name given by the string pointed to by new. The file named old is no longer accessible
by that name. If a file named by the string pointed to by new exists prior to the call to the rename
function, the behavior is implementation-defined.

Returns

3 The rename function returns zero if the operation succeeds, nonzero if it fails,293) in which case if the
file existed previously it is still known by its original name.

7.21.4.3 The tmpfile function
Synopsis

1 #include <stdio.h>
FILE *tmpfile(void);

Description
2 The tmpfile function creates a temporary binary file that is different from any other existing file

and that will automatically be removed when it is closed or at program termination. If the program
terminates abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode.

Recommended practice
3 It should be possible to open at least TMP_MAX temporary files during the lifetime of the program

(this limit may be shared with tmpnam) and there should be no limit on the number simultaneously
open other than this limit and any limit on the number of open files (FOPEN_MAX).

Returns
4 The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be

created, the tmpfile function returns a null pointer.

Forward references: the fopen function (7.21.5.3).

7.21.4.4 The tmpnam function
Synopsis

1 #include <stdio.h>
char *tmpnam(char *s);

Description
2 The tmpnam function generates a string that is a valid file name and that is not the same as the name

of an existing file.294) The function is potentially capable of generating at least TMP_MAX different
strings, but any or all of them may already be in use by existing files and thus not be suitable return
values.

3 The tmpnam function generates a different string each time it is called.

4 Calls to the tmpnam function with a null pointer argument may introduce data races with each other.
The implementation shall behave as if no library function calls the tmpnam function.

Returns
5 If no suitable string can be generated, the tmpnam function returns a null pointer. Otherwise, if

the argument is a null pointer, the tmpnam function leaves its result in an internal static object and
returns a pointer to that object (subsequent calls to the tmpnam function may modify the same object).

293)Among the reasons the implementation could cause the rename function to fail are that the file is open or that it is
necessary to copy its contents to effectuate its renaming.
294)Files created using strings generated by the tmpnam function are temporary only in the sense that their names are not

expected to collide with those generated by conventional naming rules for the implementation. It is still necessary to use the
remove function to remove such files when their use is ended, and before program termination.

270 Library § 7.21.4.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

If the argument is not a null pointer, it is assumed to point to an array of at least L_tmpnam chars;
the tmpnam function writes its result in that array and returns the argument as its value.

Environmental limits
6 The value of the macro TMP_MAX shall be at least 25.

7.21.5 File access functions
7.21.5.1 The fclose function
Synopsis

1 #include <stdio.h>
int fclose(FILE *stream);

Description
2 A successful call to the fclose function causes the stream pointed to by stream to be flushed and

the associated file to be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. Whether or not the
call succeeds, the stream is disassociated from the file and any buffer set by the setbuf or setvbuf
function is disassociated from the stream (and deallocated if it was automatically allocated).

Returns
3 The fclose function returns zero if the stream was successfully closed, or EOF if any errors were

detected.

7.21.5.2 The fflush function
Synopsis

1 #include <stdio.h>
int fflush(FILE *stream);

Description
2 If stream points to an output stream or an update stream in which the most recent operation was

not input, the fflush function causes any unwritten data for that stream to be delivered to the host
environment to be written to the file; otherwise, the behavior is undefined.

3 If stream is a null pointer, the fflush function performs this flushing action on all streams for which
the behavior is defined above.

Returns
4 The fflush function sets the error indicator for the stream and returns EOF if a write error occurs,

otherwise it returns zero.

Forward references: the fopen function (7.21.5.3).

7.21.5.3 The fopen function
Synopsis

1 #include <stdio.h>
FILE *fopen(const char * restrict filename, const char * restrict mode);

Description
2 The fopen function opens the file whose name is the string pointed to by filename, and associates

a stream with it.

3 The argument mode points to a string. If the string is one of the following, the file is open in the
indicated mode. Otherwise, the behavior is undefined.295)

295)If the string begins with one of the listed mode sequences, the implementation might choose to ignore the remaining
characters, or it might use them to select different kinds of a file (some of which might not conform to the properties in 7.21.2).

§ 7.21.5.3 Library 271

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

r open text file for reading

w truncate to zero length or create text file for writing

wx create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

wbx create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+ truncate to zero length or create text file for update

w+x create text file for update

a+ append; open or create text file for update, writing at end-of-file

r+b or rb+ open binary file for update (reading and writing)

w+b or wb+ truncate to zero length or create binary file for update

w+bx or wb+x create binary file for update

a+b or ab+ append; open or create binary file for update, writing at end-of-file

4 Opening a file with read mode (’r’ as the first character in the mode argument) fails if the file does
not exist or cannot be read.

5 Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. Otherwise, the file is created with exclusive (also known as
non-shared) access to the extent that the underlying system supports exclusive access.

6 Opening a file with append mode (’a’ as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to the fseek function. In some implementations, opening a binary file with append mode (’b’
as the second or third character in the above list of mode argument values) may initially position the
file position indicator for the stream beyond the last data written, because of null character padding.

7 When a file is opened with update mode (’+’ as the second or third character in the above list
of mode argument values), both input and output may be performed on the associated stream.
However, output shall not be directly followed by input without an intervening call to the fflush
function or to a file positioning function (fseek, fsetpos, or rewind), and input shall not be directly
followed by output without an intervening call to a file positioning function, unless the input
operation encounters end-of-file. Opening (or creating) a text file with update mode may instead
open (or create) a binary stream in some implementations.

8 When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

Returns
9 The fopen function returns a pointer to the object controlling the stream. If the open operation fails,

fopen returns a null pointer.

Forward references: file positioning functions (7.21.9).

7.21.5.4 The freopen function
Synopsis

1 #include <stdio.h>
FILE *freopen(const char * restrict filename, const char * restrict mode,

FILE * restrict stream);

272 Library § 7.21.5.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The freopen function opens the file whose name is the string pointed to by filename and associates

the stream pointed to by stream with it. The mode argument is used just as in the fopen function.296)

3 If filename is a null pointer, the freopen function attempts to change the mode of the stream to
that specified by mode, as if the name of the file currently associated with the stream had been
used. It is implementation-defined which changes of mode are permitted (if any), and under what
circumstances.

4 The freopen function first attempts to close any file that is associated with the specified stream.
Failure to close the file is ignored. The error and end-of-file indicators for the stream are cleared.

Returns
5 The freopen function returns a null pointer if the open operation fails. Otherwise, freopen returns

the value of stream.

7.21.5.5 The setbuf function
Synopsis

1 #include <stdio.h>
void setbuf(FILE * restrict stream, char * restrict buf);

Description
2 Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked

with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer), with the value
_IONBF for mode.

Returns
3 The setbuf function returns no value.

Forward references: the setvbuf function (7.21.5.6).

7.21.5.6 The setvbuf function
Synopsis

1 #include <stdio.h>
int setvbuf(FILE * restrict stream, char * restrict buf, int mode, size_t size);

Description
2 The setvbuf function may be used only after the stream pointed to by stream has been associated

with an open file and before any other operation (other than an unsuccessful call to setvbuf) is
performed on the stream. The argument mode determines how stream will be buffered, as follows:

_IOFBF causes input/output to be fully buffered;

_IOLBF causes input/output to be line buffered;

_IONBF causes input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by the
setvbuf function297) and the argument size specifies the size of the array; otherwise, size may
determine the size of a buffer allocated by the setvbuf function. The contents of the array at any
time are indeterminate.

296)The primary use of the freopen function is to change the file associated with a standard text stream (stderr, stdin,
or stdout), as those identifiers need not be modifiable lvalues to which the value returned by the fopen function could be
assigned.
297)The buffer has to have a lifetime at least as great as the open stream, so not closing the stream before a buffer that has

automatic storage duration is deallocated upon block exit results in undefined behavior.

§ 7.21.5.6 Library 273

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if

the request cannot be honored.

7.21.6 Formatted input/output functions
1 The formatted input/output functions shall behave as if there is a sequence point after the actions

associated with each specifier.298)

7.21.6.1 The fprintf function
Synopsis

1 #include <stdio.h>
int fprintf(FILE * restrict stream, const char * restrict format, ...);

Description
2 The fprintf function writes output to the stream pointed to by stream, under control of the string

pointed to by format that specifies how subsequent arguments are converted for output. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored. The
fprintf function returns when the end of the format string is encountered.

3 The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: ordinary multibyte characters (not %), which
are copied unchanged to the output stream; and conversion specifications, each of which results
in fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

4 Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer characters than the field
width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.299)

— An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x,
and X conversions, the number of digits to appear after the decimal-point character for a, A, e,
E, f, and F conversions, the maximum number of significant digits for the g and G conversions,
or the maximum number of bytes to be written for s conversions. The precision takes the form
of a period (.) followed either by an asterisk * (described later) or by an optional nonnegative
decimal integer; if only the period is specified, the precision is taken as zero. If a precision
appears with any other conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.

— A conversion specifier character that specifies the type of conversion to be applied.

5 As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

6 The flag characters and their meanings are:

298)The fprintf functions perform writes to memory for the %n specifier.
299)Note that 0 is taken as a flag, not as the beginning of a field width.

274 Library § 7.21.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a negative value is converted if this flag is not specified.)300)

space If the first character of a signed conversion is not a sign, or if a signed conversion results in
no characters, a space is prefixed to the result. If the space and + flags both appear, the space
flag is ignored.

The result is converted to an "alternative form". For o conversion, it increases the precision, if
and only if necessary, to force the first digit of the result to be a zero (if the value and precision
are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X)
prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of converting a floating-point
number always contains a decimal-point character, even if no digits follow it. (Normally, a
decimal-point character appears in the result of these conversions only if a digit follows it.)
For g and G conversions, trailing zeros are not removed from the result. For other conversions,
the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width rather than performing space padding,
except when converting an infinity or NaN. If the 0 and - flags both appear, the 0 flag is
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is ignored.
For other conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted accord-
ing to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; that a following n conversion specifier applies to
a pointer to a long int argument; that a following c conversion specifier applies to
a wint_t argument; that a following s conversion specifier applies to a pointer to a
wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

ll (ell-ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a following n con-
version specifier applies to a pointer to a long long int argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

300)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

§ 7.21.6.1 Library 275

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 argument.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no characters.

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

f,F A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value is rounded
to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]nan or [-]nan(n-char-sequence) — which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.301)

e,E A double argument representing a floating-point number is converted in the style
[-]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

g,G A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted

301)When applied to infinite and NaN values, the -, +, and space flag characters have their usual meaning; the # and 0 flag
characters have no effect.

276 Library § 7.21.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X :

if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).

otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion
of the result and the decimal-point character is removed if there is no fractional portion
remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

a,A A double argument representing a floating-point number is converted in the style
[-]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
character302) and the number of hexadecimal digits after it is equal to the precision; if the
precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power
of 2, then the precision is sufficient to distinguish303) values of type double, except that
trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and
P instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the
exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier. If an H, D, or DD modifier is present and the precision is missing, then
for a decimal floating type argument represented by a triple of integers (s, c, q), where n is
the number of significant digits in the coefficient c,

— if −(n + 5) ≤ q ≤ 0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to −q,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n− 1, with the exceptions that if c = 0 then the digit-sequence
in the exponent-part shall have the value q (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as
large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the
precision were missing. If the precision P is present (and nonzero) and less than the
precision p of the decimal floating type, the conversion first obtains an intermediate result
as follows, where n is the number of significant digits in the coefficient:

302)Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so that subsequent
digits align to nibble (4-bit) boundaries. This implementation choice affects numerical values printed with a precision P
that is insufficient to represent all values exactly. Implementations with different conventions about the most significant
hexadecimal digit will round at different places, affecting the numerical value of the hexadecimal result. For example,
possible printed output for the code

#include <stdio.h>
...
double x = 123.0;
printf("%.1a", x);

include "0x1.fp+6 " and "0xf.6p+3 " whose numerical values are 124 and 123, respectively. Portable code seeking identical
numerical results on different platforms should avoid precisions P that require rounding.
303)The formatting precision P is sufficient to distinguish values of the source type if 16P > bp where b (not a power of 2)

and p are the base and precision of the source type (5.2.4.2.2). A smaller P might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point character.

§ 7.21.6.1 Library 277

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— If n ≤ P , set the intermediate result to the input.
— If n > P , round the input value, according to the current rounding direction for

decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P -digit integer coefficient when in the form
(s, c, q).

Convert the intermediate result in the manner described above for the case where the
precision is missing.

c If no l length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.

If an l length modifier is present, the wint_t argument is converted as if by an ls
conversion specification with no precision and an argument that points to storage suitably
sized for at least two wchar_t elements, the first element containing the wint_t argument
to the lc conversion specification and the second a null wide character.

s If no l length modifier is present, the argument shall be a pointer to storage of character
type.304) Characters from the storage are written up to (but not including) the terminating
null character. If the precision is specified, no more than that many bytes are written. If
the precision is not specified or is greater than the size of the storage, the storage shall
contain a null character.

If an l length modifier is present, the argument shall be a pointer to storage of wchar_t
type. Wide characters from the storage are converted to multibyte characters (each as if
by a call to the wcrtomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted) up to and including
a terminating null wide character. The resulting multibyte characters are written up to
(but not including) the terminating null character (byte). If no precision is specified, the
storage shall contain a null wide character. If a precision is specified, no more than that
many bytes are written (including shift sequences, if any), and the storage shall contain
a null wide character if, to equal the multibyte character sequence length given by the
precision, the function would need to access a wide character one past the end of the array.
In no case is a partial multibyte character written.305)

p The argument shall be a pointer to void or a pointer to a character type. The value of the
pointer is converted to a sequence of printing characters, in an implementation-defined
manner.

n The argument shall be a pointer to signed integer whose type is specified by the length
modifiers, if any, for the conversion specification, or shall be int if no length modifiers are
specified for the conversion specification. The number of characters written to the output
stream so far by this call to fprintf is stored into the integer object pointed to by the
argument. No argument is converted, but one is consumed. If the conversion specification
includes any flags, a field width, or a precision, the behavior is undefined.

% A % character is written. No argument is converted. The complete conversion specification
shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.306) fprintf shall behave as if it
uses va_arg with a type argument naming the type resulting from applying the default argument
promotions to the type corresponding to the conversion specification and then converting the result
ofthe va_arg expansion to the type corresponding to the conversion specification.307)

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.
304)No special provisions are made for multibyte characters.
305)Redundant shift sequences can result if multibyte characters have a state-dependent encoding.
306)See "future library directions" (7.31.13).
307)The behavior is undefined when the types differ as specified for va_arg 7.16.1.1.

278 Library § 7.21.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Recommended practice
12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable

in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

13 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.308) If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
M significant digits; the value of the resultant decimal string D should satisfy L ≤ D ≤ U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

Returns
14 The fprintf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred.

Environmental limits
15 The number of characters that can be produced by any single conversion shall be at least 4095.
16 EXAMPLE 1 To print a date and time in the form "Sunday, July 3, 10:02" followed by π to five decimal places:

#include <math.h>
#include <stdio.h>
/* ... */
char *weekday, *month; // pointers to strings
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

17 EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the members of the extended
character set that consist of more than one byte each consist of exactly two bytes, the first of which is denoted here by a □
and the second by an uppercase letter.

18 Given the following wide string with length seven,

static wchar_t wstr[] = L"□X□Yabc□Z□W";

the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%13ls|\n", wstr);
fprintf(stdout, "|%-13.9ls|\n", wstr);
fprintf(stdout, "|%13.10ls|\n", wstr);
fprintf(stdout, "|%13.11ls|\n", wstr);
fprintf(stdout, "|%13.15ls|\n", &wstr[2]);
fprintf(stdout, "|%13lc|\n", (wint_t) wstr[5]);

will print the following seven lines:

|1234567890123|
| □X□Yabc□Z□W|
|□X□Yabc□Z |
| □X□Yabc□Z|
| □X□Yabc□Z□W|
| abc□Z□W|
| □Z|

308)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.
The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

§ 7.21.6.1 Library 279

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

19 EXAMPLE 3 Following are representations of _Decimal64 arguments as triples (s, c, q) and the corresponding character
sequences fprintf produces with "%Da":

(+1, 123, 0) 123
(−1, 123, 0) -123
(+1, 123,−2) 1.23
(+1, 123, 1) 1.23e+3
(−1, 123, 1) -1.23e+3
(+1, 123,−8) 0.00000123
(+1, 123,−9) 1.23e-7
(+1, 120,−8) 0.00000120
(+1, 120,−9) 1.20e-7
(+1, 1234567890123456, 0) 1234567890123456
(+1, 1234567890123456, 1) 1.234567890123456e+16
(+1, 1234567890123456,−1) 123456789012345.6
(+1, 1234567890123456,−21) 0.000001234567890123456
(+1, 1234567890123456,−22) 1.234567890123456e-7
(+1, 0, 0) 0
(−1, 0, 0) -0
(+1, 0,−6) 0.000000
(+1, 0,−7) 0e-7
(+1, 0, 2) 0e+2
(+1, 5,−6) 0.000005
(+1, 50,−7) 0.0000050
(+1, 5,−7) 5e-7

To illustrate the effects of a precision specification, the sequence:

_Decimal32 x = 6543.00DF; // (+1, 654300, -2)
fprintf(stdout, "%Ha\n", x);
fprintf(stdout, "%.6Ha\n", x);
fprintf(stdout, "%.5Ha\n", x);
fprintf(stdout, "%.4Ha\n", x);
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.0Ha\n", x);

assuming default rounding, results in:

6543.00
6543.00
6543.0
6543
6.54e+3
6.5e+3
7e+3
6543.00

To illustrate the effects of the exponent range, the sequence:

_Decimal32 x = 9543210e87DF; // (+1, 9543210, 87)
_Decimal32 y = 9500000e90DF; // (+1, 9500000, 90)
fprintf(stdout, "%.6Ha\n", x);
fprintf(stdout, "%.5Ha\n", x);
fprintf(stdout, "%.4Ha\n", x);
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.1Ha\n", y);

assuming default rounding, results in:

280 Library § 7.21.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

9.54321e+93
9.5432e+93
9.543e+93
9.54e+93
9.5e+93
1e+94
1e+97

To further illustrate the effects of the exponent range, the sequence:

_Decimal32 x = 9512345e90DF; // (+1, 9512345, 90)
_Decimal32 y = 9512345e86DF; // (+1, 9512345, 86)
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.2Ha\n", y);

assuming default rounding, results in:

9.51e+96
9.5e+96
1e+97
9.5e+92

Forward references: conversion state (7.29.6), the wcrtomb function (7.29.6.3.3).

7.21.6.2 The fscanf function
Synopsis

1 #include <stdio.h>
int fscanf(FILE * restrict stream, const char * restrict format, ...);

Description
2 The fscanf function reads input from the stream pointed to by stream, under control of the string

pointed to by format that specifies the admissible input sequences and how they are to be converted
for assignment, using subsequent arguments as pointers to the objects to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments are evaluated (as always) but are
otherwise ignored.

3 The format shall be a multibyte character sequence, beginning and ending in its initial shift state.The
format is composed of zero or more directives: one or more white-space characters, an ordinary
multibyte character (neither % nor a white-space character), or a conversion specification. Each
conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— An optional assignment-suppressing character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conversion specifier character that specifies the type of conversion to be applied.

4 The fscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed below), the function returns. Failures are described as
input failures (due to the occurrence of an encoding error or the unavailability of input characters),
or matching failures (due to inappropriate input).

5 A directive composed of white-space character(s) is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. The directive
never fails.

§ 7.21.6.2 Library 281

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

6 A directive that is an ordinary multibyte character is executed by reading the next characters of the
stream. If any of those characters differ from the ones composing the directive,the directive fails and
the differing and subsequent characters remain unread. Similarly, if end-of-file, an encoding error,
or a read error prevents a character from being read, the directive fails.

7 A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

8 Input white-space characters are skipped, unless the specification includes a [, c, or n specifier.309)

9 An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest sequence of input characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.310) The first character, if any,
after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

10 Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object
pointed to by the first argument following the format argument that has not already received a
conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to
wchar_t.

ll (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

309)These white-space characters are not counted against a specified field width.
310)fscanf pushes back at most one input character onto the input stream. Therefore, some sequences that are acceptable to
strtod, strtol, etc., are unacceptable to fscanf.

282 Library § 7.21.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal128.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer
to a type determined by the length modifiers, if any, or specified by the conversion specifier. The
conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
int.

i Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 0 for the base argument. Unless a length
modifier is specified, the corresponding argument shall be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 8 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the strtod function. Unless a length
modifier is specified, the corresponding argument shall be a pointer to float.

c Matches a sequence of characters of exactly the number specified by the field width (1 if
no field width is present in the directive).311)

If no l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage large enough to accept the
sequence. No null character is added.

If an l length modifier is present, the input shall be a sequence of multibyte characters that
begins in the initial shift state. Each multibyte character in the sequence is converted to a
wide character as if by a call to the mbrtowc function, with the conversion state described
by an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to storage of wchar_t large enough to
accept the resulting sequence of wide characters.No null wide character is added.

s Matches a sequence of non-white-space characters.311)

If no l length modifier is present, the corresponding argument shall be a pointer to storage
of large enough to accept the sequence and a terminating null character, which will be
added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide

311)No special provisions are made for multibyte characters in the matching rules used by the c, s, and [conversion specifiers
— the extent of the input field is determined on a byte-by-byte basis. The resulting field is nevertheless a sequence of multibyte
characters that begins in the initial shift state.

§ 7.21.6.2 Library 283

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to char, signed char, unsigned char,
or void that points to storage of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

[Matches a nonempty sequence of characters from a set of expected characters (the
scanset).311)

If no l length modifier is present, the corresponding argument shall be a pointer to storage
of a character type large enough to accept the sequence and a terminating null character,
which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to char, signed char, unsigned char,
or void that points to storage of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

The conversion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]). The characters between the brackets (the
scanlist) compose the scanset, unless the character after the left bracket is a circumflex (^),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with [] or [^], the
right bracket character is in the scanlist and the next following right bracket character is
the matching right bracket that ends the specification; otherwise the first following right
bracket character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a ^, nor the last character,
the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer of void. The input item is
converted to a pointer value in an implementation-defined manner. If the input item is a
value converted earlier during the same program execution, the pointer that results shall
compare equal to that value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer of a signed integer
type. The number of characters read from the input stream so far by this call to the fscanf
function is stored into the integer object pointed to by the argument. Execution of a %n
directive does not increment the assignment count returned at the completion of execution
of the fscanf function. No argument is converted, but one is consumed. If the conversion
specification includes an assignment-suppressing character or a field width, the behavior
is undefined.

% Matches a single % character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.312)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white-space characters(including new-line characters) are left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly determinable
other than via the %n directive.

312)See "future library directions" (7.31.13).

284 Library § 7.21.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
16 The fscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

17 EXAMPLE 1 The call:

#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

18 EXAMPLE 2 The call:

#include <stdio.h>
/* ... */
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and will assign to name the sequence 56\0. The next
character read from the input stream will be a.

19 EXAMPLE 3 To accept repeatedly from stdin a quantity, a unit of measure, and an item name:

#include <stdio.h>
/* ... */
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);
fscanf(stdin,"%*[^\n]");

} while (!feof(stdin) && !ferror(stdin));

20 If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
10.0LBS of
dirt
100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
count = 3;
quant = -12.8; strcpy(units, "degrees");
count = 2; // "C" fails to match "o"
count = 0; // "l" fails to match "%f"
quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;
count = 0; // "100e" fails to match "%f"
count = EOF;

21 EXAMPLE 4 In:

§ 7.21.6.2 Library 285

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#include <stdio.h>
/* ... */
int d1, d2, n1, n2, i;
i = sscanf("123", "%d%n%n%d", &d1, &n1, &n2, &d2);

the value 123 is assigned to d1 and the value 3 to n1. Because %n can never get an input failure, the value of 3 is also assigned
to n2. The value of d2 is not affected. The value 1 is assigned to i.

22 EXAMPLE 5 The call:

#include <stdio.h>
/* ... */
int n, i;
n = sscanf("foo %bar 42", "foo%%bar%d", &i);

will assign to n the value 1 and to i the value 42 because input white-space characters are skipped for both the % and d
conversion specifiers.

23 EXAMPLE 6 In these examples, multibyte characters do have a state-dependent encoding, and the members of the extended
character set that consist of more than one byte each consist of exactly two bytes, the first of which is denoted here by a □
and the second by an uppercase letter, but are only recognized as such when in the alternate shift state. The shift sequences
are denoted by ↑ and ↓, in which the first causes entry into the alternate shift state.

24 After the call:

#include <stdio.h>
/* ... */
char str[50];
fscanf(stdin, "a%s", str);

with the input line:

a↑□X□Y↓ bc

str will contain ↑□X□Y↓\\0 assuming that none of the bytes of the shift sequences (or of the multibyte characters, in the
more general case) appears to be a single-byte white-space character.

25 In contrast, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a%ls", wstr);

with the same input line, wstr will contain the two wide characters that correspond to □X and □Y and a terminating null
wide character.

26 However, the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a↑□X↓%ls", wstr);

with the same input line will return zero due to a matching failure against the ↓ sequence in the format string.

27 Assuming that the first byte of the multibyte character □X is the same as the first byte of the multibyte character □Y, after the
call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a↑□Y↓%ls", wstr);

286 Library § 7.21.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

with the same input line, zero will again be returned, but stdin will be left with a partially consumed multibyte character.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5), the strtol, strtoll,
strtoul, and strtoull functions (7.22.1.7), conversion state (7.29.6), the wcrtomb function
(7.29.6.3.3).

7.21.6.3 The printf function
Synopsis

1 #include <stdio.h>
int printf(const char * restrict format, ...);

Description
2 The printf function is equivalent to fprintf with the argument stdout interposed before the

arguments to printf.

Returns
3 The printf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred.

7.21.6.4 The scanf function
Synopsis

1 #include <stdio.h>
int scanf(const char * restrict format, ...);

Description
2 The scanf function is equivalent to fscanf with the argument stdin interposed before the argu-

ments to scanf.

Returns
3 The scanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.5 The snprintf function
Synopsis

1 #include <stdio.h>
int snprintf(char * restrict s, size_t n, const char * restrict format, ...);

Description
2 The snprintf function is equivalent to fprintf, except that the output is written into an array

(specified by argument s) rather than to a stream. If n is zero, nothing is written, and s may be a
null pointer. Otherwise, output characters beyond the n-1st are discarded rather than being written
to the array, and a null character is written at the end of the characters actually written into the array.
If copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The snprintf function returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is both nonnegative and less than n.

7.21.6.6 The sprintf function
Synopsis

1

§ 7.21.6.6 Library 287

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#include <stdio.h>
int sprintf(char * restrict s, const char * restrict format, ...);

Description
2 The sprintf function is equivalent to fprintf, except that the output is written into an array

(specified by the argument s) rather than to a stream. A null character is written at the end of the
characters written; it is not counted as part of the returned value. If copying takes place between
objects that overlap, the behavior is undefined.

Returns
3 The sprintf function returns the number of characters written in the array, not counting the

terminating null character, or a negative value if an encoding error occurred.

7.21.6.7 The sscanf function
Synopsis

1 #include <stdio.h>
int sscanf(const char * restrict s, const char * restrict format, ...);

Description
2 The sscanf function is equivalent to fscanf, except that input is obtained from a string (specified

by the argument s) rather than from a stream. Reaching the end of the string is equivalent to
encountering end-of-file for the fscanf function. If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3 The sscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the sscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.8 The vfprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * restrict stream, const char * restrict format, va_list arg);

Description
2 The vfprintf function is equivalent to fprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfprintf function does not invoke the va_end macro.313)

Returns
3 The vfprintf function returns the number of characters transmitted, or a negative value if an

output or encoding error occurred.
4 EXAMPLE The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)
{

va_list args;

313)As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and vsscanf invoke the va_arg macro,
the value of arg after the return is indeterminate.

288 Library § 7.21.6.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

va_start(args, format);
// print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
// print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

7.21.6.9 The vfscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);

Description
2 The vfscanf function is equivalent to fscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end macro.313)

Returns
3 The vfscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vfscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.10 The vprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vprintf(const char * restrict format, va_list arg);

Description
2 The vprintf function is equivalent to printf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vprintf function does not invoke the va_end macro.313)

Returns
3 The vprintf function returns the number of characters transmitted, or a negative value if an output

or encoding error occurred.

7.21.6.11 The vscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vscanf(const char * restrict format, va_list arg);

Description
2 The vscanf function is equivalent to scanf, with the variable argument list replaced by arg, which

shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The
vscanf function does not invoke the va_end macro.313)

Returns
3 The vscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vscanf function returns the number of input

§ 7.21.6.11 Library 289

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.12 The vsnprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsnprintf(char * restrict s, size_t n, const char * restrict format, va_list

arg);

Description
2 The vsnprintf function is equivalent to snprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsnprintf function does not invoke the va_end macro.313) If copying takes place between
objects that overlap, the behavior is undefined.

Returns
3 The vsnprintf function returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is both nonnegative and less than n.

7.21.6.13 The vsprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsprintf(char * restrict s, const char * restrict format, va_list arg);

Description
2 The vsprintf function is equivalent to sprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsprintf function does not invoke the va_end macro.313) If copying takes place between objects
that overlap, the behavior is undefined.

Returns
3 The vsprintf function returns the number of characters written in the array, not counting the

terminating null character, or a negative value if an encoding error occurred.

7.21.6.14 The vsscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsscanf(const char * restrict s, const char * restrict format, va_list arg);

Description
2 The vsscanf function is equivalent to sscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf function does not invoke the va_end macro.313)

Returns
3 The vsscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vsscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

290 Library § 7.21.6.14

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.21.7 Character input/output functions
7.21.7.1 The fgetc function
Synopsis

1 #include <stdio.h>
int fgetc(FILE *stream);

Description
2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next character

is present, the fgetc function obtains that character as an unsigned char converted to an int and
advances the associated file position indicator for the stream (if defined).

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetc function returns EOF. Otherwise, the fgetc function
returns the next character from the input stream pointed to by stream. If a read error occurs, the
error indicator for the stream is set and the fgetc function returns EOF.314)

7.21.7.2 The fgets function
Synopsis

1 #include <stdio.h>
char *fgets(char * restrict s, int n, FILE * restrict stream);

Description
2 The fgets function reads at most one less than the number of characters specified by n from the

stream pointed to by stream into the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array.

Returns
3 The fgets function returns s if successful. If end-of-file is encountered and no characters have been

read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read error occurs during the operation, the array contents are indeterminate and a null pointer is
returned.

7.21.7.3 The fputc function
Synopsis

1 #include <stdio.h>
int fputc(int c, FILE *stream);

Description
2 The fputc function writes the character specified by c (converted to an unsigned char) to the

output stream pointed to by stream, at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to
the output stream.

Returns
3 The fputc function returns the character written. If a write error occurs, the error indicator for the

stream is set and fputc returns EOF.

7.21.7.4 The fputs function

314)An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

§ 7.21.7.4 Library 291

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <stdio.h>
int fputs(const char * restrict s, FILE * restrict stream);

Description
2 The fputs function writes the string pointed to by s to the stream pointed to by stream. The

terminating null character is not written.

Returns
3 The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.21.7.5 The getc function
Synopsis

1 #include <stdio.h>
int getc(FILE *stream);

Description
2 The getc function is equivalent to fgetc, except that if it is implemented as a macro, it may evaluate

stream more than once, so the argument should never be an expression with side effects.

Returns
3 The getc function returns the next character from the input stream pointed to by stream. If the

stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF. If a read
error occurs, the error indicator for the stream is set and getc returns EOF.

7.21.7.6 The getchar function
Synopsis

1 #include <stdio.h>
int getchar(void);

Description
2 The getchar function is equivalent to getc with the argument stdin.

Returns
3 The getchar function returns the next character from the input stream pointed to by stdin. If the

stream is at end-of-file, the end-of-file indicator for the stream is set and getchar returns EOF. If a
read error occurs, the error indicator for the stream is set and getchar returns EOF.

7.21.7.7 The putc function
Synopsis

1 #include <stdio.h>
int putc(int c, FILE *stream);

Description
2 The putc function is equivalent to fputc, except that if it is implemented as a macro, it may evaluate

stream more than once, so that argument should never be an expression with side effects.

Returns
3 The putc function returns the character written. If a write error occurs, the error indicator for the

stream is set and putc returns EOF.

7.21.7.8 The putchar function

292 Library § 7.21.7.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #include <stdio.h>
int putchar(int c);

Description
2 The putchar function is equivalent to putc with the second argument stdout.

Returns
3 The putchar function returns the character written. If a write error occurs, the error indicator for

the stream is set and putchar returns EOF.

§ 7.21.7.8 Library 293

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.21.7.9 The puts function
Synopsis

1 #include <stdio.h>
int puts(const char *s);

Description
2 The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends

a new-line character to the output. The terminating null character is not written.

Returns
3 The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.21.7.10 The ungetc function
Synopsis

1 #include <stdio.h>
int ungetc(int c, FILE *stream);

Description
2 The ungetc function pushes the character specified by c (converted to an unsigned char) back

onto the input stream pointed to by stream. Pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind) discards
any pushed-back characters for the stream. The external storage corresponding to the stream is
unchanged.

3 One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
may fail.

4 If the value of c equals that of the macro EOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.315) For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is
decremented by each successful call to the ungetc function; if its value was zero before a call, it is
indeterminate after the call.316)

Returns
6 The ungetc function returns the character pushed back after conversion, or EOF if the operation

fails.

Forward references: file positioning functions (7.21.9).

7.21.8 Direct input/output functions
7.21.8.1 The fread function
Synopsis

1 #include <stdio.h>
size_t fread(void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);

315)Note that a file positioning function could further modify the file position indicator after discarding any pushed-back
characters.
316)See "future library directions" (7.31.13).

294 Library § 7.21.8.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is

specified by size, from the stream pointed to by stream. For each object, size calls are made to
the fgetc function and the results stored, in the order read, in an array of unsigned char exactly
overlaying the object. The file position indicator for the stream (if defined) is advanced by the
number of characters successfully read. If an error occurs, the resulting value of the file position
indicator for the stream is indeterminate. If a partial element is read, its value is indeterminate.

Returns
3 The fread function returns the number of elements successfully read, which may be less than nmemb

if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

7.21.8.2 The fwrite function
Synopsis

1 #include <stdio.h>
size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);

Description
2 The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is

specified by size, to the stream pointed to by stream. For each object, size calls are made to the
fputc function, taking the values (in order) from an array of unsigned char exactly overlaying the
object. The file position indicator for the stream (if defined) is advanced by the number of characters
successfully written. If an error occurs, the resulting value of the file position indicator for the stream
is indeterminate.

Returns
3 The fwrite function returns the number of elements successfully written, which will be less than

nmemb only if a write error is encountered. If size or nmemb is zero, fwrite returns zero and the
state of the stream remains unchanged.

7.21.9 File positioning functions
7.21.9.1 The fgetpos function
Synopsis

1 #include <stdio.h>
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);

Description
2 The fgetpos function stores the current values of the parse state (if any) and file position indicator

for the stream pointed to by stream in the object pointed to by pos. The values stored contain
unspecified information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns
3 If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero

and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.21.9.3).

§ 7.21.9.1 Library 295

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.21.9.2 The fseek function
Synopsis

1 #include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description
2 The fseek function sets the file position indicator for the stream pointed to by stream. If a read or

write error occurs, the error indicator for the stream is set and fseek fails.

3 For a binary stream, the new position, measured in characters from the beginning of the file, is
obtained by adding offset to the position specified by whence. The specified position is the
beginning of the file if whence is SEEK_SET, the current value of the file position indicator if
SEEK_CUR, or end-of-file if SEEK_END. A binary stream need not meaningfully support fseek calls
with a whence value of SEEK_END.

4 For a text stream, either offset shall be zero, or offset shall be a value returned by an earlier
successful call to the ftell function on a stream associated with the same file and whence shall be
SEEK_SET.

5 After determining the new position, a successful call to the fseek function undoes any effects of the
ungetc function on the stream, clears the end-of-file indicator for the stream, and then establishes
the new position. After a successful fseek call, the next operation on an update stream may be
either input or output.

Returns
6 The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.21.9.4).

7.21.9.3 The fsetpos function
Synopsis

1 #include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description
2 The fsetpos function sets the mbstate_t object (if any) and file position indicator for the stream

pointed to by stream according to the value of the object pointed to by pos, which shall be a value
obtained from an earlier successful call to the fgetpos function on a stream associated with the
same file. If a read or write error occurs, the error indicator for the stream is set and fsetpos fails.

3 A successful call to the fsetpos function undoes any effects of the ungetc function on the stream,
clears the end-of-file indicator for the stream, and then establishes the new parse state and position.
After a successful fsetpos call, the next operation on an update stream may be either input or
output.

Returns
4 If successful, the fsetpos function returns zero; on failure, the fsetpos function returns nonzero

and stores an implementation-defined positive value in errno.

7.21.9.4 The ftell function
Synopsis

1 #include <stdio.h>
long int ftell(FILE *stream);

Description
2 The ftell function obtains the current value of the file position indicator for the stream pointed to

by stream. For a binary stream, the value is the number of characters from the beginning of the file.

296 Library § 7.21.9.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

For a text stream, its file position indicator contains unspecified information, usable by the fseek
function for returning the file position indicator for the stream to its position at the time of the ftell
call; the difference between two such return values is not necessarily a meaningful measure of the
number of characters written or read.

Returns
3 If successful, the ftell function returns the current value of the file position indicator for the stream.

On failure, the ftell function returns −1L and stores an implementation-defined positive value in
errno.

7.21.9.5 The rewind function
Synopsis

1 #include <stdio.h>
void rewind(FILE *stream);

Description
2 The rewind function sets the file position indicator for the stream pointed to by stream to the

beginning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns
3 The rewind function returns no value.

7.21.10 Error-handling functions
7.21.10.1 The clearerr function
Synopsis

1 #include <stdio.h>
void clearerr(FILE *stream);

Description
2 The clearerr function clears the end-of-file and error indicators for the stream pointed to by

stream.

Returns
3 The clearerr function returns no value.

7.21.10.2 The feof function
Synopsis

1 #include <stdio.h>
int feof(FILE *stream);

Description
2 The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns
3 The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

§ 7.21.10.2 Library 297

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.21.10.3 The ferror function
Synopsis

1 #include <stdio.h>
int ferror(FILE *stream);

Description
2 The ferror function tests the error indicator for the stream pointed to by stream.

Returns
3 The ferror function returns nonzero if and only if the error indicator is set for stream.

7.21.10.4 The perror function
Synopsis

1 #include <stdio.h>
void perror(const char *s);

Description
2 The perror function maps the error number in the integer expression errno to an error message.

It writes a sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s followed by a
colon (:) and a space; then an appropriate error message string followed by a new-line character.
The contents of the error message strings are the same as those returned by the strerror function
with argument errno.

Returns
3 The perror function returns no value.

Forward references: the strerror function (7.24.6.2).

298 Library § 7.21.10.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.22 General utilities <stdlib.h>
1 The header <stdlib.h> declares five types and several functions of general utility, and defines

several macros.317)

2 The feature test macro __STDC_VERSION_STDLIB_H__ expands to the token yyyymmL.

3 The types declared are size_t and wchar_t (both described in 7.19),

div_t

which is a structure type that is the type of the value returned by the div function,

ldiv_t

which is a structure type that is the type of the value returned by the ldiv function, and

lldiv_t

which is a structure type that is the type of the value returned by the lldiv function.

4 The macros defined are NULL (described in 7.19);

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of
bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX.

7.22.1 Numeric conversion functions
1 The functions atof, atoi, atol, and atoll need not affect the value of the integer expression errno

on an error. If the value of the result cannot be represented, the behavior is undefined.

7.22.1.1 The atof function
Synopsis

1 #include <stdlib.h>
double atof(const char *nptr);

Description
2 The atof function converts the initial portion of the string pointed to by nptr to double representa-

tion. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)

317)See "future library directions" (7.31.14).

§ 7.22.1.1 Library 299

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5).

7.22.1.2 The atoi, atol, and atoll functions
Synopsis

1 #include <stdlib.h>
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);

Description
2 The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to

int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, (char **)NULL, 10)
atol: strtol(nptr, (char **)NULL, 10)
atoll: strtoll(nptr, (char **)NULL, 10)

Returns
3 The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

7.22.1.3 The strfromd, strfromf, and strfroml functions
Synopsis

1 #include <stdlib.h>
int strfromd(char *restrict s, size_t n, const char *restrict format, double fp);
int strfromf(char *restrict s, size_t n, const char *restrict format, float fp);
int strfroml(char *restrict s, size_t n, const char *restrict format, long double fp);

Description
2 The strfromd, strfromf, and strfroml functions are equivalent to snprintf(s, n, format, fp)

(7.21.6.5), except that the format string shall only contain the character %, an optional precision that
does not contain an asterisk *, and one of the conversion specifiers a, A, e, E, f, F, g, or G, which
applies to the type (double, float, or long double) indicated by the function suffix (rather than by
a length modifier).

Returns
The strfromd, strfromf, and strfroml functions return the number of characters that would have
been written had n been sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned value is less than n.

7.22.1.4 The strfromdN functions
Synopsis

1 #include <stdlib.h>
#ifdef __STDC_IEC_60559_DFP__

int strfromd32(char*restrict s, size_t n, const char*restrict format, _Decimal32 fp);
int strfromd64(char*restrict s, size_t n, const char*restrict format, _Decimal64 fp);
int strfromd128(char*restrict s, size_t n, const char*restrict format, _Decimal128 fp);
#endif

300 Library § 7.22.1.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The strfromdN functions are equivalent to snprintf(s, n, format, fp) (7.21.6.5), except the

format string contains only the character %, an optional precision that does not contain an asterisk *,
and one of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (_Decimal32,
_Decimal64, or _Decimal128) indicated by the function suffix (rather than by a length modifier).
Use of these functions with any other format string results in undefined behavior.

Returns
3 The strfromdN functions return the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character. Thus, the null-terminated output has
been completely written if and only if the returned value is less than n.

7.22.1.5 The strtod, strtof, and strtold functions
Synopsis

1 #include <stdlib.h>
double strtod(const char *restrict nptr, char **restrict endptr);
float strtof(const char *restrict nptr, char **restrict endptr);
long double strtold(const char *restrict nptr, char **restrict endptr);

Description
2 The strtod, strtof, and strtold functions convert the initial portion of the string pointed to by

nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling a floating-point constant or representing an infinity or NaN; and a final string
of one or more unrecognized characters, including the terminating null character of the input string.
Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.4.2;

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.4.2;

— INF or INFINITY, ignoring case

— NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.4.2, except that the decimal-point character is used
in place of a period, and that if neither an exponent part nor a decimal-point character appears in
a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence

§ 7.22.1.5 Library 301

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

is interpreted as negated.318) A character sequence INF or INFINITY is interpreted as an infinity,
if representable in the return type, else like a floating constant that is too large for the range of the
return type. A character sequence NAN or NAN(n-char-sequenceopt) is interpreted as a quiet NaN, if
supported in the return type, else like a subject sequence part that does not have the expected form;
the meaning of the n-char sequence is implementation-defined.319) A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

5 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting
from the conversion is correctly rounded.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Recommended practice
8 If the subject sequence has the hexadecimal form, FLT_RADIX is not a power of 2, and the result is

not exactly representable, the result should be one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

9 If the subject sequence has the decimal form and at most M significant digits, where M is the
maximum value of the T_DECIMAL_DIGmacros (defined in <float.h>), the result should be correctly
rounded. If the subject sequence D has the decimal form and more than M significant digits, consider
the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the
values of L, D, and U satisfy L ≤ D ≤ U. The result should be one of the (equal or adjacent) values
that would be obtained by correctly rounding L and U according to the current rounding direction,
with the extra stipulation that the error with respect to D should have a correct sign for the current
rounding direction.320)

Returns
10 The functions return the converted value, if any. If no conversion could be performed, zero is

returned. If the correct value overflows and default rounding is in effect (7.12.1), plus or minus
HUGE_VAL, HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of the value),
and the value of the macro ERANGE is stored in errno. If the result underflows (7.12.1), the functions
return a value whose magnitude is no greater than the smallest normalized positive number in the
return type; whether errno acquires the value ERANGE is implementation-defined.

7.22.1.6 The strtodN functions
Synopsis

1 #include <stdlib.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 strtod32(const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64(const char * restrict nptr,char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr,char ** restrict endptr);
#endif

Description
2 The strtodN functions convert the initial portion of the string pointed to by nptr to decimal floating

type representation. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters; a subject sequence resembling a floating constant or
representing an infinity or NaN; and a final string of one or more unrecognized characters, including

318)It is unspecified whether a minus-signed sequence is converted to a negative number directly or by negating the value
resulting from converting the corresponding unsigned sequence (see F.5); the two methods could yield different results if
rounding is toward positive or negative infinity. In either case, the functions honor the sign of zero if floating-point arithmetic
supports signed zeros.
319)An implementation can use the n-char sequence to determine extra information to be represented in the NaN’s significand.
320)M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly

round to adjacent values.

302 Library § 7.22.1.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

the terminating null character of the input string. Then, they attempt to convert the subject sequence
to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.4.2

— INF or INFINITY, ignoring case

— NAN or NAN(d-char-sequenceopt), ignoring case in the NAN part, where:

d-char-sequence:
digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.4.2, including correct rounding and determination of
the coefficient c and the quantum exponent q, with the following exceptions:

— It is not a hexadecimal floating number.

— The decimal-point character is used in place of a period.

— If neither an exponent part nor a decimal-point character appears in a decimal floating-point
number, an exponent part of the appropriate type with value zero is assumed to follow the
last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated (before
rounding) and the sign s is set to −1, else s is set to 1. A character sequence INF or INFINITY is
interpreted as an infinity. A character sequence NAN or NAN(d-char-sequenceopt), is interpreted as a
quiet NaN; the meaning of the d-char sequence is implementation-defined.321) A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

5 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

6 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
7 The strtodN functions return the correctly rounded converted value, if any. If no conversion could

be performed, the value of the triple (+1, 0, 0) is returned. If the correct value overflows, the value
of the macro ERANGE is stored in errno. If the result underflows (7.12.1), whether errno acquires the
value ERANGE is implementation-defined.

8 EXAMPLE Following are subject sequences of the decimal form and the resulting triples (s, c, q) produced by strtod64.
Note that for _Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range is −398 ≤ q ≤
369.

321)An implementation may use the d-char sequence to determine extra information to be represented in the NaN’s
significand.

§ 7.22.1.6 Library 303

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

"0" (+1, 0, 0)
"0.00" (+1, 0,−2)
"123" (+1, 123, 0)
"-123" (−1, 123, 0)
"1.23E3" (+1, 123, 1)
"1.23E+3" (+1, 123, 1)
"12.3E+7" (+1, 123, 6)
"12.0" (+1, 120,−1)
"12.3" (+1, 123,−1)
"0.00123" (+1, 123,−5)
"-1.23E-12" (−1, 123,−14)
"1234.5E-4" (+1, 12345,−5)
"-0" (−1, 0, 0)
"-0.00" (−1, 0,−2)
"0E+7" (+1, 0, 7)
"-0E-7" (−1, 0,−7)
"12345678901234567890" (+1, 1234567890123457, 4) or (+1, 1234567890123456, 4) depending on rounding

mode
"1234E-400" (+1, 12,−398) or (+1, 13,−398) depending on rounding mode
"1234E-402" (+1, 0,−398) or (+1, 1,−398) depending on rounding mode
"1000." (+1, 1000, 0)
".0001" (+1, 1,−4)
"1000.e0" (+1, 1000, 0)
".0001e0" (+1, 1,−4)
"1000.0" (+1, 10000,−1)
"0.0001" (+1, 1,−4)
"1000.00" (+1, 100000,−2)
"00.0001" (+1, 1,−4)
"001000." (+1, 1000, 0)
"001000.0" (+1, 10000,−1)
"001000.00" (+1, 100000,−2)
"00.00" (+1, 0,−2)
"00." (+1, 0, 0)
".00" (+1, 0,−2)
"00.00e-5" (+1, 0,−7)
"00.e-5" (+1, 0,−5)
".00e-5" (+1, 0,−7)
"0x1.8p+4" (+1, 0, 0), and a pointer to "x1.8p+4" is stored in the object pointed to by endptr,

provided endptr is not a null pointer
"infinite" infinity, and a pointer to "inite" is stored in the object pointed to by endptr, provided

endptr is not a null pointer

7.22.1.7 The strtol, strtoll, strtoul, and strtoull functions
Synopsis

1 #include <stdlib.h>
long int strtol(const char *restrict nptr, char **restrict endptr, int base);
long long int strtoll(const char *restrict nptr, char **restrict endptr, int base);
unsigned long int strtoul(const char *restrict nptr, char **restrict endptr, int base);
unsigned long long int strtoull(const char *restrict nptr, char **restrict endptr, int

base);

Description
2 The strtol, strtoll, strtoul, and strtoull functions convert the initial portion of

the string pointed to by nptr to long int, long long int, unsigned long int, and
unsigned long long int representation, respectively. First, they decompose the input
string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the terminating null character of the
input string. Then, they attempt to convert the subject sequence to an integer, and return the result.

3 If the value of base is zero, the expected form of the subject sequence is that of an integer constant as
described in 6.4.4.1, optionally preceded by a plus or minus sign, but not including an integer suffix.
If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base, optionally

304 Library § 7.22.1.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

preceded by a plus or minus sign, but not including an integer suffix. The letters from a (or A)
through z (or Z) are ascribed the values 10 through 35; only letters and digits whose ascribed values
are less than that of base are permitted. If the value of base is 16, the characters 0x or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is empty or consists entirely of white-space characters, or if the first
non-white-space character is other than a sign or a permissible letter or digit.

5 If the subject sequence has the expected form and the value of base is zero, the sequence of characters
starting with the first digit is interpreted as an integer constant according to the rules of 6.4.4.1. If
the subject sequence has the expected form and the value of base is between 2 and 36, it is used as
the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated (in the return type). A
pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
8 The strtol, strtoll, strtoul, and strtoull functions return the converted value, if any. If

no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or ULLONG_MAX is
returned (according to the return type and sign of the value, if any), and the value of the macro
ERANGE is stored in errno.

7.22.2 Pseudo-random sequence generation functions
7.22.2.1 The rand function
Synopsis

1 #include <stdlib.h>
int rand(void);

Description
2 The rand function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX

inclusive.

3 The rand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the rand
function.

Recommended practice
4 There are no guarantees as to the quality of the random sequence produced and some implementa-

tions are known to produce sequences with distressingly non-random low-order bits. Applications
with particular requirements should use a generator that is known to be sufficient for their needs.

Returns
5 The rand function returns a pseudo-random integer.

Environmental limits
6 The value of the RAND_MAX macro shall be at least 32767.

7.22.2.2 The srand function
Synopsis

1 #include <stdlib.h>

§ 7.22.2.2 Library 305

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

void srand(unsigned int seed);

Description
2 The srand function uses the argument as a seed for a new sequence of pseudo-random numbers

to be returned by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand
have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

3 The srand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the srand
function.

Returns
4 The srand function returns no value.
5 EXAMPLE The following functions define a portable implementation of rand and srand.

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.22.3 Memory management functions
1 The order and contiguity of storage allocated by successive calls to the aligned_alloc, calloc,

malloc, and realloc functions is unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it may be assigned to a pointer to any type of object with a fundamental
alignment requirement and size less than or equal to the size requested. It may then be used to
access such an object or an array of such objects in the space allocated (until the space is explicitly
deallocated). The lifetime of an allocated object extends from the allocation until the deallocation.
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned to indicate an error, or the behavior is as if
the size were some nonzero value, except that the returned pointer shall not be used to access an
object.

2 For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations accessible through their arguments and not other
static duration storage. These functions may, however, visibly modify the storage that they allocate
or deallocate. Calls to these functions that allocate or deallocate a particular region of memory
shall occur in a single total order, and each such deallocation call shall synchronize with the next
allocation (if any) in this order.

7.22.3.1 The aligned_alloc function
Synopsis

1 #include <stdlib.h>
void *aligned_alloc(size_t alignment, size_t size);

306 Library § 7.22.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The aligned_alloc function allocates space for an object whose alignment is specified by

alignment, whose size is specified by size, and whose value is indeterminate. If the value of
alignment is not a valid alignment supported by the implementation the function shall fail by
returning a null pointer.

Returns
3 The aligned_alloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.2 The calloc function
Synopsis

1 #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
2 The calloc function allocates space for an array of nmemb objects, each of whose size is size. The

space is initialized to all bits zero.322)

Returns
3 The calloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.3 The free function
Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description
2 The free function causes the space pointed to by ptr to be deallocated, that is, made available

for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by a memory management function, or if the space has been
deallocated by a call to free or realloc, the behavior is undefined.

Returns
3 The free function returns no value.

7.22.3.4 The malloc function
Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description
2 The malloc function allocates space for an object whose size is specified by size and whose value

is indeterminate.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.5 The realloc function
Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

322)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

§ 7.22.3.5 Library 307

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The realloc function deallocates the old object pointed to by ptr and returns a pointer to a new

object that has the size specified by size. The contents of the new object shall be the same as that of
the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the new
object beyond the size of the old object have indeterminate values.

3 If ptr is a null pointer, the realloc function behaves like the malloc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by a memory management function, or
if the space has been deallocated by a call to the free or realloc function, or if the size is zero, the
behavior is undefined. If memory for the new object is not allocated, the old object is not deallocated
and its value is unchanged.

Returns
4 The realloc function returns a pointer to the new object (which may have the same value as a

pointer to the old object), or a null pointer if the new object has not been allocated.

7.22.4 Communication with the environment
7.22.4.1 The abort function
Synopsis

1 #include <stdlib.h>
_Noreturn void abort(void);

Description
2 The abort function causes abnormal program termination to occur, unless the signal SIGABRT is

being caught and the signal handler does not return. Whether open streams with unwritten buffered
data are flushed, open streams are closed, or temporary files are removed is implementation-
defined. An implementation-defined form of the status unsuccessful termination is returned to the
host environment by means of the function call raise(SIGABRT).

Returns
3 The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

1 #include <stdlib.h>
int atexit(void (*func)(void));

Description
2 The atexit function registers the function pointed to by func, to be called without arguments at

normal program termination.323) It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the at_quick_exit function (7.22.4.3), the exit function (7.22.4.4).

7.22.4.3 The at_quick_exit function
Synopsis

1 #include <stdlib.h>

323)The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call
both registration functions with the same argument.

308 Library § 7.22.4.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

int at_quick_exit(void (*func)(void));

Description
2 The at_quick_exit function registers the function pointed to by func, to be called without argu-

ments should quick_exit be called.324) It is unspecified whether a call to the at_quick_exit
function that does not happen before the quick_exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the quick_exit function (7.22.4.7).

7.22.4.4 The exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void exit(int status);

Description
2 The exit function causes normal program termination to occur. No functions registered by the

at_quick_exit function are called. If a program calls the exit function more than once, or calls the
quick_exit function in addition to the exit function, the behavior is undefined.

3 First, all functions registered by the atexit function are called, in the reverse order of their registra-
tion,325) except that a function is called after any previously registered functions that had already
been called at the time it was registered. If, during the call to any such function, a call to the longjmp
function is made that would terminate the call to the registered function, the behavior is undefined.

4 Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

5 Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
6 The exit function cannot return to its caller.

7.22.4.5 The _Exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void _Exit(int status);

Description
2 The _Exit function causes normal program termination to occur and control to be returned to the

host environment. No functions registered by the atexit function, the at_quick_exit function,
or signal handlers registered by the signal function are called. The status returned to the host
environment is determined in the same way as for the exit function (7.22.4.4). Whether open
streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined.

324)The at_quick_exit function registrations are distinct from the atexit registrations, so applications might need to call
both registration functions with the same argument.
325)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

§ 7.22.4.5 Library 309

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The _Exit function cannot return to its caller.

7.22.4.6 The getenv function
Synopsis

1 #include <stdlib.h>
char *getenv(const char *name);

Description
2 The getenv function searches an environment list, provided by the host environment, for a string that

matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function need not avoid data races
with other threads of execution that modify the environment list.326)

3 The implementation shall behave as if no library function calls the getenv function.

Returns
4 The getenv function returns a pointer to a string associated with the matched list member. The

string pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.22.4.7 The quick_exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void quick_exit(int status);

Description
2 The quick_exit function causes normal program termination to occur. No functions registered by

the atexit function or signal handlers registered by the signal function are called. If a program calls
the quick_exit function more than once, or calls the exit function in addition to the quick_exit
function, the behavior is undefined. If a signal is raised while the quick_exit function is executing,
the behavior is undefined.

3 The quick_exit function first calls all functions registered by the at_quick_exit function, in the
reverse order of their registration,327) except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such
function, a call to the longjmp function is made that would terminate the call to the registered
function, the behavior is undefined.

4 Then control is returned to the host environment by means of the function call _Exit(status).

Returns
5 The quick_exit function cannot return to its caller.

7.22.4.8 The system function
Synopsis

1 #include <stdlib.h>
int system(const char *string);

Description
2 If string is a null pointer, the system function determines whether the host environment has a

command processor. If string is not a null pointer, the system function passes the string pointed to

326)Many implementations provide non-standard functions that modify the environment list.
327)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

310 Library § 7.22.4.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

by string to that command processor to be executed in a manner which the implementation shall
document; this might then cause the program calling system to behave in a non-conforming manner
or to terminate.

Returns
3 If the argument is a null pointer, the system function returns nonzero only if a command processor

is available. If the argument is not a null pointer, and the system function does return, it returns an
implementation-defined value.

7.22.5 Searching and sorting utilities
1 These utilities make use of a comparison function to search or sort arrays of unspecified type. Where

an argument declared as size_t nmemb specifies the length of the array for a function, nmemb can
have the value zero on a call to that function; the comparison function is not called, a search finds no
matching element, and sorting performs no rearrangement. Pointer arguments on such a call shall
still have valid values, as described in 7.1.4.

2 The implementation shall ensure that the second argument of the comparison function (when called
from bsearch), or both arguments (when called from qsort), are pointers to elements of the array.328)

The first argument when called from bsearch shall equal key.

3 The comparison function shall not alter the contents of the array. The implementation may reorder
elements of the array between calls to the comparison function, but shall not alter the contents of
any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions in the array)
are passed more than once to the comparison function, the results shall be consistent with one
another. That is, for qsort they shall define a total ordering on the array, and for bsearch the same
object shall always compare the same way with the key.

5 A sequence point occurs immediately before and immediately after each call to the comparison
function, and also between any call to the comparison function and any movement of the objects
passed as arguments to that call.

7.22.5.1 The bsearch function
Synopsis

1 #include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
2 The bsearch function searches an array of nmemb objects, the initial element of which is pointed to

by base, for an element that matches the object pointed to by key. The size of each element of the
array is specified by size.

3 The comparison function pointed to by compar is called with two arguments that point to the key
object and to an array element, in that order. The function shall return an integer less than, equal to,
or greater than zero if the key object is considered, respectively, to be less than, to match, or to be
greater than the array element. The array shall consist of: all the elements that compare less than, all
the elements that compare equal to, and all the elements that compare greater than the key object, in
that order.329)

328)That is, if the value passed is p, then the following expressions are always nonzero:

((char *)p - (char *)base) % size == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

329)In practice, the entire array is sorted according to the comparison function.

§ 7.22.5.1 Library 311

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
4 The bsearch function returns a pointer to a matching element of the array, or a null pointer if no

match is found. If two elements compare as equal, which element is matched is unspecified.

312 Library § 7.22.5.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.22.5.2 The qsort function
Synopsis

1 #include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
2 The qsort function sorts an array of nmemb objects, the initial element of which is pointed to by

base. The size of each object is specified by size.

3 The contents of the array are sorted into ascending order according to a comparison function pointed
to by compar, which is called with two arguments that point to the objects being compared. The
function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

4 If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns
5 The qsort function returns no value.

7.22.6 Integer arithmetic functions
7.22.6.1 The abs, labs, and llabs functions
Synopsis

1 #include <stdlib.h>
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);

Description
2 The abs, labs, and llabs functions compute the absolute value of an integer j. If the result cannot

be represented, the behavior is undefined.330)

Returns
3 The abs, labs, and llabs, functions return the absolute value.

7.22.6.2 The div, ldiv, and lldiv functions
Synopsis

1 #include <stdlib.h>
div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv_t lldiv(long long int numer, long long int denom);

Description
2 The div, ldiv, and lldiv, functions compute numer/denom and numer%denom in a single operation.

Returns
3 The div, ldiv, and lldiv functions return a structure of type div_t, ldiv_t, and lldiv_t, respec-

tively, comprising both the quotient and the remainder. The structures shall contain (in either order)
the members quot (the quotient) and rem (the remainder), each of which has the same type as
the arguments numer and denom. If either part of the result cannot be represented, the behavior is
undefined.

330)The absolute value of the most negative number may not be representable.

§ 7.22.6.2 Library 313

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.22.7 Multibyte/wide character conversion functions
1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current

locale. For a state-dependent encoding, each of the mbtowc and wctomb functions is placed into its
initial conversion state prior to the first call to the function and can be returned to that state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. It is
implementation-defined whether internal conversion state has thread storage duration, and whether
a newly created thread has the same state as the current thread at the time of creation, or the initial
conversion state. A call with s as a null pointer causes these functions to return a nonzero value if
encodings have state dependency, and zero otherwise.

Changing the LC_CTYPE category causes the conversion state of the mbtowc and wctomb functions to
be indeterminate.

7.22.7.1 The mblen function
Synopsis

1 #include <stdlib.h>
int mblen(const char *s, size_t n);

Description
2 If s is not a null pointer, the mblen function determines the number of bytes contained in the

multibyte character pointed to by s. Except that the conversion state of the mbtowc function is not
affected, it is equivalent to

mbtowc((wchar_t *)0, (const char *)0, 0);
mbtowc((wchar_t *)0, s, n);

Returns
3 If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns-1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.22.7.2).

7.22.7.2 The mbtowc function
Synopsis

1 #include <stdlib.h>
int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);

Description
2 If s is not a null pointer, the mbtowc function inspects at most n bytes beginning with the byte

pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the function is left in the initial conversion state.

3 The implementation shall behave as if no library function calls the mbtowc function.

Returns
4 If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mbtowc function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the converted multibyte character (if the next n or fewer bytes form a valid

314 Library § 7.22.7.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

multibyte character), or returns-1 (if they do not form a valid multibyte character).

5 In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

7.22.7.3 The wctomb function
Synopsis

1 #include <stdlib.h>
int wctomb(char *s, wchar_t wc);

Description
2 The wctomb function determines the number of bytes needed to represent the multibyte character

corresponding to the wide character given by wc (including any shift sequences), and stores the
multibyte character representation in the array whose first element is pointed to by s (if s is not a
null pointer). At most MB_CUR_MAX characters are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state, and the function is
left in the initial conversion state.

3 The implementation shall behave as if no library function calls the wctomb function.

Returns
4 If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
wctomb function returns-1 if the value of wc does not correspond to a valid multibyte character, or
returns the number of bytes that are contained in the multibyte character corresponding to the value
of wc.

5 In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

7.22.8 Multibyte/wide string conversion functions
1 The behavior of the multibyte string functions is affected by the LC_CTYPE category of the current

locale.

7.22.8.1 The mbstowcs function
Synopsis

1 #include <stdlib.h>
size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);

Description
2 The mbstowcs function converts a sequence of multibyte characters that begins in the initial shift

state from the array pointed to by s into a sequence of corresponding wide characters and stores not
more than n wide characters into the array pointed to by pwcs. No multibyte characters that follow
a null character (which is converted into a null wide character) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the conversion
state of the mbtowc function is not affected.

3 No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behavior is undefined.

Returns
4 If an invalid multibyte character is encountered, the mbstowcs function returns (size_t)(-1).

Otherwise, the mbstowcs function returns the number of array elements modified, not including a
terminating null wide character, if any.331)

331)The array will not be null-terminated if the value returned is n.

§ 7.22.8.1 Library 315

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.22.8.2 The wcstombs function
Synopsis

1 #include <stdlib.h>
size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);

Description
2 The wcstombs function converts a sequence of wide characters from the array pointed to by pwcs

into a sequence of corresponding multibyte characters that begins in the initial shift state, and stores
these multibyte characters into the array pointed to by s, stopping if a multibyte character would
exceed the limit of n total bytes or if a null character is stored. Each wide character is converted
as if by a call to the wctomb function, except that the conversion state of the wctomb function is not
affected.

3 No more than n bytes will be modified in the array pointed to by s. If copying takes place between
objects that overlap, the behavior is undefined.

Returns
4 If a wide character is encountered that does not correspond to a valid multibyte character, the

wcstombs function returns (size_t)(-1). Otherwise, the wcstombs function returns the number
of bytes modified, not including a terminating null character, if any.331)

316 Library § 7.22.8.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.23 _Noreturn <stdnoreturn.h>
1 The header <stdnoreturn.h> defines the macro

noreturn

which expands to _Noreturn.

§ 7.23 Library 317

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.24 String handling <string.h>

7.24.1 String function conventions
1 The header <string.h> declares one type and several functions, and defines one macro useful

for manipulating arrays of character type and other objects treated as arrays of character type.332)

The type is size_t and the macro is NULL (both described in 7.19). Various methods are used for
determining the lengths of the arrays, but in all cases a char * or void * argument points to the
initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,
the behavior is undefined.

2 Where an argument declared as size_t n specifies the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a
particular function in this subclause, pointer arguments on such a call shall still have valid values, as
described in 7.1.4. On such a call, a function that locates a character finds no occurrence, a function
that compares two character sequences returns zero, and a function that copies characters copies
zero characters.

3 For all functions in this subclause, each character shall be interpreted as if it had the type
unsigned char (and therefore every possible object representation is valid and has a different
value).

7.24.2 Copying functions
7.24.2.1 The memcpy function
Synopsis

1 #include <string.h>
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

Description
2 The memcpy function copies n characters from the object pointed to by s2 into the object pointed to

by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The memcpy function returns the value of s1.

7.24.2.2 The memccpy function
Synopsis

1 #include <string.h>
void *memccpy(void * restrict s1, const void * restrict s2, int c, size_t n);

Description
2 The memccpy function copies characters from the object pointed to by s2 into the object pointed to

by s1, stopping after the first occurrence of character c (converted to an unsigned char) is copied,
or after n characters are copied, whichever comes first. If copying takes place between objects that
overlap, the behavior is undefined.

Returns
3 The memccpy function returns a pointer to the character after the copy of c in s1, or a null pointer if

c was not found in the first n characters of s2.

7.24.2.3 The memmove function
Synopsis

1 #include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

332)See "future library directions" (7.31.15).

318 Library § 7.24.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The memmove function copies n characters from the object pointed to by s2 into the object pointed to

by s1. Copying takes place as if the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the objects pointed to by s1 and s2, and
then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
3 The memmove function returns the value of s1.

7.24.2.4 The strcpy function
Synopsis

1 #include <string.h>
char *strcpy(char * restrict s1, const char * restrict s2);

Description
2 The strcpy function copies the string pointed to by s2 (including the terminating null character)

into the array pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
3 The strcpy function returns the value of s1.

7.24.2.5 The strncpy function
Synopsis

1 #include <string.h>
char *strncpy(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strncpy function copies not more than n characters (characters that follow a null character are

not copied) from the array pointed to by s2 to the array pointed to by s1.333) If copying takes place
between objects that overlap, the behavior is undefined.

3 If the array pointed to by s2 is a string that is shorter than n characters, null characters are appended
to the copy in the array pointed to by s1, until n characters in all have been written.

Returns
4 The strncpy function returns the value of s1.

7.24.3 Concatenation functions
7.24.3.1 The strcat function
Synopsis

1 #include <string.h>
char *strcat(char * restrict s1, const char * restrict s2);

Description
2 The strcat function appends a copy of the string pointed to by s2 (including the terminating null

character) to the end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
3 The strcat function returns the value of s1.

333)Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will not be null-
terminated.

§ 7.24.3.1 Library 319

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.24.3.2 The strncat function
Synopsis

1 #include <string.h>
char *strncat(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strncat function appends not more than n characters (a null character and characters that

follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.334) If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3 The strncat function returns the value of s1.

Forward references: the strlen function (7.24.6.3).

7.24.4 Comparison functions
1 The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp

is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.24.4.1 The memcmp function
Synopsis

1 #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
2 The memcmp function compares the first n characters of the object pointed to by s1 to the first n

characters of the object pointed to by s2.335)

Returns
3 The memcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.24.4.2 The strcmp function
Synopsis

1 #include <string.h>
int strcmp(const char *s1, const char *s2);

Description
2 The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

Returns
3 The strcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

7.24.4.3 The strcoll function
Synopsis

1 #include <string.h>
int strcoll(const char *s1, const char *s2);

334)Thus, the maximum number of characters that can end up in the array pointed to by s1 is strlen(s1)+n+1.
335)The contents of "holes" used as padding for purposes of alignment within structure objects are indeterminate. Strings

shorter than their allocated space and unions can also cause problems in comparison.

320 Library § 7.24.4.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both

interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns
3 The strcoll function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when both
are interpreted as appropriate to the current locale.

7.24.4.4 The strncmp function
Synopsis

1 #include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Description
2 The strncmp function compares not more than n characters (characters that follow a null character

are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The strncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.24.4.5 The strxfrm function
Synopsis

1 #include <string.h>
size_t strxfrm(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strxfrm function transforms the string pointed to by s2 and places the resulting string into

the array pointed to by s1. The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns
3 The strxfrm function returns the length of the transformed string (not including the terminating

null character). If the value returned is n or more, the contents of the array pointed to by s1 are
indeterminate.

4 EXAMPLE The value of the following expression is the size of the array needed to hold the transformation of the string
pointed to by s.

1 + strxfrm(NULL, s, 0)

7.24.5 Search functions
7.24.5.1 The memchr function
Synopsis

1 #include <string.h>
void *memchr(const void *s, int c, size_t n);

§ 7.24.5.1 Library 321

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The memchr function locates the first occurrence of c (converted to an unsigned char) in the initial

n characters (each interpreted as unsigned char) of the object pointed to by s. The implementation
shall behave as if it reads the characters sequentially and stops as soon as a matching character is
found.

Returns
3 The memchr function returns a pointer to the located character, or a null pointer if the character does

not occur in the object.

7.24.5.2 The strchr function
Synopsis

1 #include <string.h>
char *strchr(const char *s, int c);

Description
2 The strchr function locates the first occurrence of c (converted to a char) in the string pointed to

by s. The terminating null character is considered to be part of the string.

Returns
3 The strchr function returns a pointer to the located character, or a null pointer if the character does

not occur in the string.

7.24.5.3 The strcspn function
Synopsis

1 #include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description
2 The strcspn function computes the length of the maximum initial segment of the string pointed to

by s1 which consists entirely of characters not from the string pointed to by s2.

Returns
3 The strcspn function returns the length of the segment.

7.24.5.4 The strpbrk function
Synopsis

1 #include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description
2 The strpbrk function locates the first occurrence in the string pointed to by s1 of any character

from the string pointed to by s2.

Returns
3 The strpbrk function returns a pointer to the character, or a null pointer if no character from s2

occurs in s1.

7.24.5.5 The strrchr function
Synopsis

1 #include <string.h>
char *strrchr(const char *s, int c);

322 Library § 7.24.5.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The strrchr function locates the last occurrence of c (converted to a char) in the string pointed to

by s. The terminating null character is considered to be part of the string.

Returns
3 The strrchr function returns a pointer to the character, or a null pointer if c does not occur in the

string.

7.24.5.6 The strspn function
Synopsis

1 #include <string.h>
size_t strspn(const char *s1, const char *s2);

Description
2 The strspn function computes the length of the maximum initial segment of the string pointed to

by s1 which consists entirely of characters from the string pointed to by s2.

Returns
3 The strspn function returns the length of the segment.

7.24.5.7 The strstr function
Synopsis

1 #include <string.h>
char *strstr(const char *s1, const char *s2);

Description
2 The strstr function locates the first occurrence in the string pointed to by s1 of the sequence of

characters (excluding the terminating null character) in the string pointed to by s2.

Returns
3 The strstr function returns a pointer to the located string, or a null pointer if the string is not found.

If s2 points to a string with zero length, the function returns s1.

7.24.5.8 The strtok function
Synopsis

1 #include <string.h>
char *strtok(char * restrict s1, const char * restrict s2);

Description
2 A sequence of calls to the strtok function breaks the string pointed to by s1 into a sequence of

tokens, each of which is delimited by a character from the string pointed to by s2. The first call
in the sequence has a non-null first argument; subsequent calls in the sequence have a null first
argument. If any of the subsequent calls in the sequence is made by a different thread than the first,
the behavior is undefined. The separator string pointed to by s2 may be different from call to call.

3 The first call in the sequence searches the string pointed to by s1 for the first character that is not
contained in the current separator string pointed to by s2. If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok function returns a null pointer. If such a
character is found, it is the start of the first token.

4 The strtok function then searches from there for a character that is contained in the current separator
string. If no such character is found, the current token extends to the end of the string pointed to by
s1, and subsequent searches for a token will return a null pointer. If such a character is found, it is
overwritten by a null character, which terminates the current token. The strtok function saves a
pointer to the following character, from which the next search for a token will start.

§ 7.24.5.8 Library 323

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

5 Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

6 The strtok function is not required to avoid data races with other calls to the strtok function.336)

The implementation shall behave as if no library function calls the strtok function.

Returns
7 The strtok function returns a pointer to the first character of a token, or a null pointer if there is no

token.
8 EXAMPLE

#include <string.h>
static char str[] = "?a???b,,,#c";
char *t;

t = strtok(str, "?"); // t points to the token "a"
t = strtok(NULL, ","); // t points to the token "??b"
t = strtok(NULL, "#,"); // t points to the token "c"
t = strtok(NULL, "?"); // t is a null pointer

Forward references: The strtok_s function (K.3.7.3.1).

7.24.6 Miscellaneous functions
7.24.6.1 The memset function
Synopsis

1 #include <string.h>
void *memset(void *s, int c, size_t n);

Description
2 The memset function copies the value of c (converted to an unsigned char) into each of the first n

characters of the object pointed to by s.

Returns
3 The memset function returns the value of s.

7.24.6.2 The strerror function
Synopsis

1 #include <string.h>
char *strerror(int errnum);

Description
2 The strerror function maps the number in errnum to a message string. Typically, the values for

errnum come from errno, but strerror shall map any value of type int to a message.

3 The strerror function is not required to avoid data races with other calls to the strerror func-
tion.337) The implementation shall behave as if no library function calls the strerror function.

Returns
4 The strerror function returns a pointer to the string, the contents of which are locale-specific. The

array pointed to shall not be modified by the program. The behavior is undefined if the returned
value is used after a subsequent call to the strerror function, or after the thread which called the
function to obtain the returned value has exited.

Forward references: The strerror_s function (K.3.7.4.2).

336)The strtok_s function can be used instead to avoid data races.
337)The strerror_s function can be used instead to avoid data races.

324 Library § 7.24.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.24.6.3 The strlen function
Synopsis

1 #include <string.h>
size_t strlen(const char *s);

Description
2 The strlen function computes the length of the string pointed to by s.

Returns
3 The strlen function returns the number of characters that precede the terminating null character.

7.24.6.4 The strdup function
Synopsis

1 #include <string.h>
char *strdup(const char *s);

Description
2 The strdup function creates a copy of the string pointed to by s in a space allocated as if by a call to

malloc.

Returns
3 The strdup function returns a pointer to the first character of the duplicate string. The returned

pointer can be passed to free. If no space can be allocated the strdup function returns a null pointer.

7.24.6.5 The strndup function
Synopsis

1 #include <string.h>
char *strndup(const char *s, size_t size);

Description
2 The strndup function creates a string initialized with no more than size initial characters of the

array pointed to by s and up to the first null character, whichever comes first, in a space allocated
as if by a call to malloc. If the array pointed to by s does not contain a null within the first size
characters, a null is appended to the copy of the array.

Returns
3 The strndup function returns a pointer to the first character of the created string. The returned

pointer can be passed to free. If no space can be allocated the strndup function returns a null
pointer.

§ 7.24.6.5 Library 325

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.25 Type-generic math <tgmath.h>
1 The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several

type-generic macros.

2 The feature test macro __STDC_VERSION_TGMATH_H__ expands to the token yyyymmL.

3 This clause specifies a many-to-one correspondence of functions in <math.h> and <complex.h> with
type-generic macros.338) Use of a type-generic macro invokes a corresponding function whose type is
determined by the types of the arguments for particular parameters called the generic parameters.339)

4 Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function,
except the functions that round result to narrower type (7.12.14) (which are covered below) and
modf,

there is a corresponding type-generic macro. The parameters whose corresponding real type is
double in the function synopsis are generic parameters.

5 Some of the <math.h> functions for decimal floating types have no unsuffixed counterpart. Of these
functions with a d64 suffix, some have one or more parameters whose type is _Decimal64. For each
such function, except decodedecd64, encodedecd64, decodebind64, and encodebind64, there is a
corresponding type-generic macro. The parameters whose real type is _Decimal64 in the function
synopsis are generic parameters.

6 If arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal floating
type, the behavior is undefined.

7 Except for the macros for functions that round result to a narrower type (7.12.14), use of a type-
generic macro invokes a function whose generic parameters have the corresponding real type
determined by the types of the arguments for the generic parameters as follows:

— Arguments of integer type are regarded as having type _Decimal64 if any argument has
decimal floating type, and as having type double otherwise.

— If the function has exactly one generic parameter, the type determined is the corresponding
real type of the argument for the generic parameter.

— If the function has exactly two generic parameters, the type determined is the corresponding
real type determined by the usual arithmetic conversions (6.3.1.8) applied to the arguments for
the generic parameters.

— If the function has more than two generic parameters, the type determined is the corresponding
real type determined by repeatedly applying the usual arithmetic conversions, first to the first
two arguments for generic parameters, then to that result type and the next argument for a
generic parameter, and so forth until the usual arithmetic conversions have been applied to
the last argument for a generic parameter.

If neither <math.h> and <complex.h> define a function whose generic parameters have the deter-
mined corresponding real type, the behavior is undefined.

8 For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a c prefix, the corresponding type-generic macro (for both functions) has the
same name as the function in <math.h>. The corresponding type-generic macro for fabs and cabs
is fabs.

338)Like other function-like macros in standard libraries, each type-generic macro can be suppressed to make available the
corresponding ordinary function.
339)If the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is

undefined.

326 Library § 7.25

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

9 For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

acospi
asinpi
atan2pi
atan2
atanpi
cbrt
ceil
compoundn
copysign
cospi
erfc
erf
exp10m1
exp10
exp2m1

exp2
expm1
fdim
floor
fmax
fmaximum
fmaximum_mag
fmaximum_num
fmaximum_mag_num
fma
fmin
fminimum
fminimum_mag
fminimum_num
fminimum_mag_num

fmod
frexp
fromfpx
fromfp
hypot
ilogb
ldexp
lgamma
llogb
llrint
llround
log10p1
log10
log1p
log2p1

log2
logb
logp1
lrint
lround
nearbyint
nextafter
nextdown
nexttoward
nextup
pown
powr
remainder
remquo
rint

rootn
roundeven
round
rsqrt
scalbln
scalbn
sinpi
tanpi
tgamma
trunc
ufromfpx
ufromfp

If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro is
undefined.

10 For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

carg cimag conj cproj creal

Use of the macro with any argument of standard floating or complex type invokes a complex
function. Use of the macro with an argument of decimal floating type is undefined.

11 The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any suffix from the function names. Thus, the macros with f or d prefix are:

§ 7.25 Library 327

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

fadd
dadd

fsub
dsub

fmul
dmul

fdiv
ddiv

ffma
dfma

fsqrt
dsqrt

and the macros with d32 or d64 prefix are:

d32add
d64add

d32sub
d64sub

d32mul
d64mul

d32div
d64div

d32fma
d64fma

d32sqrt
d64sqrt

All arguments shall be real. If the macro prefix is f or d, use of an argument of decimal floating
type is undefined. If the macro prefix is d32 or d64, use of an argument of standard floating type is
undefined. The function invoked is determined as follows:

— If any argument has type _Decimal128, or if the macro prefix is d64, the function invoked has
the name of the macro, with a d128 suffix.

— Otherwise, if the macro prefix is d32, the function invoked has the name of the macro, with a
d64 suffix.

— Otherwise, if any argument has type long double, or if the macro prefix is d, the function
invoked has the name of the macro, with an l suffix.

— Otherwise, the function invoked has the name of the macro (with no suffix).

12 For each d64-suffixed function in <math.h>, except decodedecd64, encodedecd64, decodebind64,
and encodebind64, that does not have an unsuffixed counterpart, the corresponding type-generic
macro has the name of the function, but without the suffix. These type-generic macros are:

<math.h> type-generic
function macro
quantizedN quantize
samequantumdN samequantum
quantumdN quantum
llquantexpdN llquantexp

Use of the macro with an argument of standard floating or complex type or with only integer type
arguments is undefined.

13 A type-generic macro corresponding to a function indicated in the table in 7.6.2 is affected by
constant rounding modes (7.6.4).

14 NOTE The type-generic macro definition in the example in 6.5.1.1 does not conform to this specification. A conforming
macro could be implemented as follows:

#define cbrt(X) \
_Generic((X), \

long double: _Roundwise_cbrtl, \
default: _Roundwise_cbrt, \
float: _Roundwise_cbrtf \

)(X)

where where _Roundwise_cbrtl, _Roundwise_cbrt, and _Roundwise_cbrtf are pointers to functions that are equivalent
to cbrtl, cbrt, and cbrtf, respectively, but that are guaranteed to be affected by constant rounding modes (7.6.2).

328 Library § 7.25

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

15 EXAMPLE With the declarations

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32;
_Decimal64 d64;
_Decimal128 d128;
#endif

functions invoked by use of type-generic macros are shown in the following table:

macro use invocation
exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n), the function
nextafter(d, f) nextafter(d, f), the function
nexttoward(f, ld) nexttowardf(f, ld)
copysign(n, ld) copysignl(n, ld)
ceil(fc) undefined
rint(dc) undefined
fmax(ldc, ld) undefined
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
fabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)
fsub(f, ld) fsubl(f, ld)
fdiv(d, n) fdiv(d, n), the function
dfma(f, d, ld) dfmal(f, d, ld)
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined
exp(d64) expd64(d64)
sqrt(d32) sqrtd32(d32)
fmax(d64, d128) fmaxd128(d64, d128)
pow(d32, n) powd64(d32, n)
remainder(d64, d) undefined
creal(d64) undefined
remquo(d32, d32, &n) undefined
llquantexp(d) undefined
quantize(dc) undefined
samequantum(n, n) undefined
d32sub(d32, d128) d32subd128(d32, d128)
d32div(d64, n) d32divd64(d64, n)
d64fma(d32, d64, d128) d64fmad128(d32, d64, d128)
d64add(d32, d32) d64addd128(d32, d32)
d64sqrt(d) undefined
dadd(n, d64) undefined

§ 7.25 Library 329

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.26 Threads <threads.h>
7.26.1 Introduction

1 The header <threads.h> includes the header <time.h>, defines macros, and declares types, enu-
meration constants, and functions that support multiple threads of execution.340)

2 Implementations that define the macro __STDC_NO_THREADS__ need not provide this header nor
support any of its facilities.

3 The macros are

thread_local

which expands to the keyword _Thread_local;

ONCE_FLAG_INIT

which expands to a value that can be used to initialize an object of type once_flag; and

TSS_DTOR_ITERATIONS

which expands to an integer constant expression representing the maximum number of times that
destructors will be called when a thread terminates.

4 The types are

cnd_t

which is a complete object type that holds an identifier for a condition variable;

thrd_t

which is a complete object type that holds an identifier for a thread;

tss_t

which is a complete object type that holds an identifier for a thread-specific storage pointer;

mtx_t

which is a complete object type that holds an identifier for a mutex;

tss_dtor_t

which is the function pointer type void (*)(void*), used for a destructor for a thread-specific
storage pointer;

thrd_start_t

which is the function pointer type int (*)(void*) that is passed to thrd_create to create a new
thread; and

once_flag

which is a complete object type that holds a flag for use by call_once.

5 The enumeration constants are

mtx_plain

340)See "future library directions" (7.31.17).

330 Library § 7.26.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

which is passed to mtx_init to create a mutex object that does not support timeout;

mtx_recursive

which is passed to mtx_init to create a mutex object that supports recursive locking;

mtx_timed

which is passed to mtx_init to create a mutex object that supports timeout;

thrd_timedout

which is returned by a timed wait function to indicate that the time specified in the call was reached
without acquiring the requested resource;

thrd_success

which is returned by a function to indicate that the requested operation succeeded;

thrd_busy

which is returned by a function to indicate that the requested operation failed because a resource
requested by a test and return function is already in use;

thrd_error

which is returned by a function to indicate that the requested operation failed; and

thrd_nomem

which is returned by a function to indicate that the requested operation failed because it was unable
to allocate memory.

Forward references: date and time (7.27).

7.26.2 Initialization functions
7.26.2.1 The call_once function
Synopsis

1 #include <threads.h>
void call_once(once_flag *flag, void (*func)(void));

Description
2 The call_once function uses the once_flag pointed to by flag to ensure that func is called exactly

once, the first time the call_once function is called with that value of flag. Completion of an
effective call to the call_once function synchronizes with all subsequent calls to the call_once
function with the same value of flag.

Returns
3 The call_once function returns no value.

7.26.3 Condition variable functions
7.26.3.1 The cnd_broadcast function
Synopsis

1 #include <threads.h>
int cnd_broadcast(cnd_t *cond);

§ 7.26.3.1 Library 331

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The cnd_broadcast function unblocks all of the threads that are blocked on the condition variable

pointed to by cond at the time of the call. If no threads are blocked on the condition variable pointed
to by cond at the time of the call, the function does nothing.

Returns
3 The cnd_broadcast function returns thrd_success on success, or thrd_error if the request could

not be honored.

7.26.3.2 The cnd_destroy function
Synopsis

1 #include <threads.h>
void cnd_destroy(cnd_t *cond);

Description
2 The cnd_destroy function releases all resources used by the condition variable pointed to by cond.

The cnd_destroy function requires that no threads be blocked waiting for the condition variable
pointed to by cond.

Returns
3 The cnd_destroy function returns no value.

7.26.3.3 The cnd_init function
Synopsis

1 #include <threads.h>
int cnd_init(cnd_t *cond);

Description
2 The cnd_init function creates a condition variable. If it succeeds it sets the variable pointed to by

cond to a value that uniquely identifies the newly created condition variable. A thread that calls
cnd_wait on a newly created condition variable will block.

Returns
3 The cnd_init function returns thrd_success on success, or thrd_nomem if no memory could be

allocated for the newly created condition, or thrd_error if the request could not be honored.

7.26.3.4 The cnd_signal function
Synopsis

1 #include <threads.h>
int cnd_signal(cnd_t *cond);

Description
2 The cnd_signal function unblocks one of the threads that are blocked on the condition variable

pointed to by cond at the time of the call. If no threads are blocked on the condition variable at the
time of the call, the function does nothing and returns success.

Returns
3 The cnd_signal function returns thrd_success on success or thrd_error if the request could not

be honored.

7.26.3.5 The cnd_timedwait function
Synopsis

1 #include <threads.h>
int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,

const struct timespec *restrict ts);

332 Library § 7.26.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The cnd_timedwait function atomically unlocks the mutex pointed to by mtx and blocks until the

condition variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or
until after the TIME_UTC-based calendar time pointed to by ts, or until it is unblocked due to an
unspecified reason. When the calling thread becomes unblocked it locks the variable pointed to by
mtx before it returns. The cnd_timedwait function requires that the mutex pointed to by mtx be
locked by the calling thread.

Returns
3 The cnd_timedwait function returns thrd_success upon success, or thrd_timedout if the time

specified in the call was reached without acquiring the requested resource, or thrd_error if the
request could not be honored.

7.26.3.6 The cnd_wait function
Synopsis

1 #include <threads.h>
int cnd_wait(cnd_t *cond, mtx_t *mtx);

Description
2 The cnd_wait function atomically unlocks the mutex pointed to by mtx and blocks until the condi-

tion variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or until it
is unblocked due to an unspecified reason. When the calling thread becomes unblocked it locks the
mutex pointed to by mtx before it returns. The cnd_wait function requires that the mutex pointed
to by mtx be locked by the calling thread.

Returns
3 The cnd_wait function returns thrd_success on success or thrd_error if the request could not be

honored.

7.26.4 Mutex functions
1 For purposes of determining the existence of a data race, lock and unlock operations behave as

atomic operations. All lock and unlock operations on a particular mutex occur in some particular
total order.

2 NOTE This total order can be viewed as the modification order of the mutex.

7.26.4.1 The mtx_destroy function
Synopsis

1 #include <threads.h>
void mtx_destroy(mtx_t *mtx);

Description
2 The mtx_destroy function releases any resources used by the mutex pointed to by mtx. No threads

can be blocked waiting for the mutex pointed to by mtx.

Returns
3 The mtx_destroy function returns no value.

7.26.4.2 The mtx_init function
Synopsis

1 #include <threads.h>
int mtx_init(mtx_t *mtx, int type);

§ 7.26.4.2 Library 333

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The mtx_init function creates a mutex object with properties indicated by type, which shall have

one of these values:

mtx_plain for a simple non-recursive mutex,

mtx_timed for a non-recursive mutex that supports timeout,

mtx_plain | mtx_recursive for a simple recursive mutex, or

mtx_timed | mtx_recursive for a recursive mutex that supports timeout.

3 If the mtx_init function succeeds, it sets the mutex pointed to by mtx to a value that uniquely
identifies the newly created mutex.

Returns
4 The mtx_init function returns thrd_success on success, or thrd_error if the request could not

be honored.

7.26.4.3 The mtx_lock function
Synopsis

1 #include <threads.h>
int mtx_lock(mtx_t *mtx);

Description
2 The mtx_lock function blocks until it locks the mutex pointed to by mtx. If the mutex is non-

recursive, it shall not be locked by the calling thread. Prior calls to mtx_unlock on the same mutex
synchronize with this operation.

Returns
3 The mtx_lock function returns thrd_success on success, or thrd_error if the request could not

be honored.

7.26.4.4 The mtx_timedlock function
Synopsis

1 #include <threads.h>
int mtx_timedlock(mtx_t *restrict mtx, const struct timespec *restrict ts);

Description
2 The mtx_timedlock function endeavors to block until it locks the mutex pointed to by mtx or

until after the TIME_UTC-based calendar time pointed to by ts. The specified mutex shall support
timeout. If the operation succeeds, prior calls to mtx_unlock on the same mutex synchronize with
this operation.

Returns
3 The mtx_timedlock function returns thrd_success on success, or thrd_timedout if the time

specified was reached without acquiring the requested resource, or thrd_error if the request could
not be honored.

7.26.4.5 The mtx_trylock function
Synopsis

1 #include <threads.h>
int mtx_trylock(mtx_t *mtx);

334 Library § 7.26.4.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The mtx_trylock function endeavors to lock the mutex pointed to by mtx. If the mutex is already

locked, the function returns without blocking. If the operation succeeds, prior calls to mtx_unlock
on the same mutex synchronize with this operation.

Returns
3 The mtx_trylock function returns thrd_success on success, or thrd_busy if the resource requested

is already in use, or thrd_error if the request could not be honored. mtx_trylock may spuriously
fail to lock an unused resource, in which case it returns thrd_busy.

7.26.4.6 The mtx_unlock function
Synopsis

1 #include <threads.h>
int mtx_unlock(mtx_t *mtx);

Description
2 The mtx_unlock function unlocks the mutex pointed to by mtx. The mutex pointed to by mtx shall

be locked by the calling thread.

Returns
3 The mtx_unlock function returns thrd_success on success or thrd_error if the request could not

be honored.

7.26.5 Thread functions
7.26.5.1 The thrd_create function
Synopsis

1 #include <threads.h>
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

Description
2 The thrd_create function creates a new thread executing func(arg). If the thrd_create function

succeeds, it sets the object pointed to by thr to the identifier of the newly created thread. (A thread’s
identifier may be reused for a different thread once the original thread has exited and either been
detached or joined to another thread.) The completion of the thrd_create function synchronizes
with the beginning of the execution of the new thread.

3 Returning from func has the same behavior as invoking thrd_exit with the value returned from
func.

Returns
4 The thrd_create function returns thrd_success on success, or thrd_nomem if no memory could

be allocated for the thread requested, or thrd_error if the request could not be honored.

7.26.5.2 The thrd_current function
Synopsis

1 #include <threads.h>
thrd_t thrd_current(void);

Description
2 The thrd_current function identifies the thread that called it.

Returns
3 The thrd_current function returns the identifier of the thread that called it.

§ 7.26.5.2 Library 335

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.26.5.3 The thrd_detach function
Synopsis

1 #include <threads.h>
int thrd_detach(thrd_t thr);

Description
2 The thrd_detach function tells the operating system to dispose of any resources allocated to the

thread identified by thr when that thread terminates. The thread identified by thr shall not have
been previously detached or joined with another thread.

Returns
3 The thrd_detach function returns thrd_success on success or thrd_error if the request could

not be honored.

7.26.5.4 The thrd_equal function
Synopsis

1 #include <threads.h>
int thrd_equal(thrd_t thr0, thrd_t thr1);

Description
2 The thrd_equal function will determine whether the thread identified by thr0 refers to the thread

identified by thr1.

Returns
3 The thrd_equal function returns zero if the thread thr0 and the thread thr1 refer to different

threads. Otherwise the thrd_equal function returns a nonzero value.

7.26.5.5 The thrd_exit function
Synopsis

1 #include <threads.h>
_Noreturn void thrd_exit(int res);

Description
2 For every thread-specific storage key which was created with a non-null destructor and for which

the value is non-null, thrd_exit sets the value associated with the key to a null pointer value and
then invokes the destructor with its previous value. The order in which destructors are invoked is
unspecified.

3 If after this process there remain keys with both non-null destructors and values, the implementation
repeats this process up to TSS_DTOR_ITERATIONS times.

4 Following this, the thrd_exit function terminates execution of the calling thread and sets its result
code to res.

5 The program terminates normally after the last thread has been terminated. The behavior is as if the
program called the exit function with the status EXIT_SUCCESS at thread termination time.

Returns
6 The thrd_exit function returns no value.

7.26.5.6 The thrd_join function
Synopsis

1 #include <threads.h>
int thrd_join(thrd_t thr, int *res);

336 Library § 7.26.5.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The thrd_join function joins the thread identified by thr with the current thread by blocking until

the other thread has terminated. If the parameter res is not a null pointer, it stores the thread’s result
code in the integer pointed to by res. The termination of the other thread synchronizes with the
completion of the thrd_join function. The thread identified by thr shall not have been previously
detached or joined with another thread.

Returns
3 The thrd_join function returns thrd_success on success or thrd_error if the request could not

be honored.

7.26.5.7 The thrd_sleep function
Synopsis

1 #include <threads.h>
int thrd_sleep(const struct timespec *duration, struct timespec *remaining);

Description
2 The thrd_sleep function suspends execution of the calling thread until either the interval specified

by duration has elapsed or a signal which is not being ignored is received. If interrupted by a signal
and the remaining argument is not null, the amount of time remaining (the requested interval
minus the time actually slept) is stored in the interval it points to. The duration and remaining
arguments may point to the same object.

3 The suspension time may be longer than requested because the interval is rounded up to an integer
multiple of the sleep resolution or because of the scheduling of other activity by the system. But,
except for the case of being interrupted by a signal, the suspension time will not be less than that
specified, as measured by the system clock TIME_UTC.

Returns
4 The thrd_sleep function returns zero if the requested time has elapsed, −1 if it has been interrupted

by a signal, or a negative value (which may also be −1) if it fails.

7.26.5.8 The thrd_yield function
Synopsis

1 #include <threads.h>
void thrd_yield(void);

Description
2 The thrd_yield function endeavors to permit other threads to run, even if the current thread would

ordinarily continue to run.

Returns
3 The thrd_yield function returns no value.

7.26.6 Thread-specific storage functions
7.26.6.1 The tss_create function
Synopsis

1 #include <threads.h>
int tss_create(tss_t *key, tss_dtor_t dtor);

Description
2 The tss_create function creates a thread-specific storage pointer with destructor dtor, which may

be null.

§ 7.26.6.1 Library 337

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 A null pointer value is associated with the newly created key in all existing threads. Upon subsequent
thread creation, the value associated with all keys is initialized to a null pointer value in the new
thread.

4 Destructors associated with thread-specific storage are not invoked at program termination.

5 The tss_create function shall not be called from within a destructor.

Returns
6 If the tss_create function is successful, it sets the thread-specific storage pointed to by key to a

value that uniquely identifies the newly created pointer and returns thrd_success; otherwise,
thrd_error is returned and the thread-specific storage pointed to by key is set to an indeterminate
value.

7.26.6.2 The tss_delete function
Synopsis

1 #include <threads.h>
void tss_delete(tss_t key);

Description
2 The tss_delete function releases any resources used by the thread-specific storage identified by

key. The tss_delete function shall only be called with a value for key that was returned by a call
to tss_create before the thread commenced executing destructors.

3 If tss_delete is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

4 Calling tss_delete will not result in the invocation of any destructors.

Returns
5 The tss_delete function returns no value.

7.26.6.3 The tss_get function
Synopsis

1 #include <threads.h>
void *tss_get(tss_t key);

Description
2 The tss_get function returns the value for the current thread held in the thread-specific storage

identified by key. The tss_get function shall only be called with a value for key that was returned
by a call to tss_create before the thread commenced executing destructors.

Returns
3 The tss_get function returns the value for the current thread if successful, or zero if unsuccessful.

7.26.6.4 The tss_set function
Synopsis

1 #include <threads.h>
int tss_set(tss_t key, void *val);

Description
2 The tss_set function sets the value for the current thread held in the thread-specific storage

identified by key to val. The tss_set function shall only be called with a value for key that was
returned by a call to tss_create before the thread commenced executing destructors.

3 This action will not invoke the destructor associated with the key on the value being replaced.

338 Library § 7.26.6.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
4 The tss_set function returns thrd_success on success or thrd_error if the request could not be

honored.

§ 7.26.6.4 Library 339

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.27 Date and time <time.h>

7.27.1 Components of time
1 The header <time.h> defines several macros, and declares types and functions for manipulating

time. Many functions deal with a calendar time that represents the current date (according to the
Gregorian calendar) and time. Some functions deal with local time, which is the calendar time
expressed for some specific time zone, and with Daylight Saving Time, which is a temporary change
in the algorithm for determining local time. The local time zone and Daylight Saving Time are
implementation-defined.

2 The feature test macro __STDC_VERSION_TIME_H__ expands to the token yyyymmL. The other macros
defined are NULL (described in 7.19);

CLOCKS_PER_SEC

which expands to an expression with type clock_t (described below) that is the number per second
of the value returned by the clock function; and

TIME_UTC

which expands to an integer constant greater than 0 that designates the UTC time base. Additional
time base macro definitions, beginning with TIME_ and an uppercase letter, may also be specified by
the implementation.341)

3 The types declared are size_t (described in 7.19);

clock_t

and

time_t

which are real types capable of representing times;

struct timespec

which holds an interval specified in seconds and nanoseconds (which may represent a calendar time
based on a particular epoch); and

struct tm

which holds the components of a calendar time, called the broken-down time.

4 The range and precision of times representable in clock_t and time_t are implementation-defined.
The timespec structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.342)

time_t tv_sec; // whole seconds -- ≥ 0
long tv_nsec; // nanoseconds -- [0, 999999999]

The tm structure shall contain at least the following members, in any order. The semantics of the
members and their normal ranges are expressed in the comments.343)

int tm_sec; // seconds after the minute -- [0, 60]
int tm_min; // minutes after the hour -- [0, 59]

341)See future library directions (7.31). Implementations can define additional time bases, but are only required to support a
real time clock based on UTC.
342)The tv_sec member is a linear count of seconds and might not have the normal semantics of a time_t.
343)The range [0, 60] for tm_sec allows for a positive leap second.

340 Library § 7.27.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

int tm_hour; // hours since midnight -- [0, 23]
int tm_mday; // day of the month -- [1, 31]
int tm_mon; // months since January -- [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday -- [0, 6]
int tm_yday; // days since January 1 -- [0, 365]
int tm_isdst; // Daylight Saving Time flag

The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving Time
is not in effect, and negative if the information is not available.

7.27.2 Time manipulation functions
7.27.2.1 The clock function
Synopsis

1 #include <time.h>
clock_t clock(void);

Description
2 The clock function determines the processor time used.

Returns
3 The clock function returns the implementation’s best approximation to the processor time used

by the program since the beginning of an implementation-defined era related only to the program
invocation. To determine the time in seconds, the value returned by the clock function should be
divided by the value of the macro CLOCKS_PER_SEC. If the processor time used is not available, the
function returns the value (clock_t)(−1). If the value cannot be represented, the function returns
an unspecified value.344)

7.27.2.2 The difftime function
Synopsis

1 #include <time.h>
double difftime(time_t time1, time_t time0);

Description
2 The difftime function computes the difference between two calendar times: time1 - time0.

Returns
3 The difftime function returns the difference expressed in seconds as a double.

7.27.2.3 The mktime function
Synopsis

1 #include <time.h>
time_t mktime(struct tm *timeptr);

Description
2 The mktime function converts the broken-down time, expressed as local time, in the structure

pointed to by timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not restricted to the ranges
indicated above.345) On successful completion, the values of the tm_wday and tm_yday components

344)This could be due to overflow of the clock_t type.
345)Thus, a positive or zero value for tm_isdst causes the mktime function to presume initially that Daylight Saving Time,

respectively, is or is not in effect for the specified time. A negative value causes it to attempt to determine whether Daylight
Saving Time is in effect for the specified time.

§ 7.27.2.3 Library 341

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

of the structure are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to the ranges indicated above; the final value of tm_mday
is not set until tm_mon and tm_year are determined.

Returns
3 The mktime function returns the specified calendar time encoded as a value of type time_t. If the

calendar time cannot be represented, the function returns the value (time_t)(−1).
4 EXAMPLE What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};
struct tm time_str;
/* ... */

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
if (mktime(&time_str) == (time_t)(-1))

time_str.tm_wday = 7;
printf("%s\n", wday[time_str.tm_wday]);

7.27.2.4 The time function
Synopsis

1 #include <time.h>
time_t time(time_t *timer);

Description
2 The time function determines the current calendar time. The encoding of the value is unspecified.

Returns
3 The time function returns the implementation’s best approximation to the current calendar time.

The value (time_t)(−1) is returned if the calendar time is not available. If timer is not a null
pointer, the return value is also assigned to the object it points to.

7.27.2.5 The timespec_get function
Synopsis

1 #include <time.h>
int timespec_get(struct timespec *ts, int base);

Description
2 The timespec_get function sets the interval pointed to by ts to hold the current calendar time

based on the specified time base.

3 If base is TIME_UTC, the tv_sec member is set to the number of seconds since an implementation
defined epoch, truncated to a whole value and the tv_nsec member is set to the integral number of
nanoseconds, rounded to the resolution of the system clock.346)

346)Although a struct timespec object describes times with nanosecond resolution, the available resolution is system
dependent and could even be greater than 1 second.

342 Library § 7.27.2.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
4 If the timespec_get function is successful it returns the nonzero value base; otherwise, it returns

zero.

7.27.2.6 The timespec_getres function
Synopsis

1 #include <time.h>
int timespec_getres(struct timespec *ts ,int base);

Description
2 If ts is non-null and base is supported by the timespec_get function, the timespec_getres

function returns the resolution of the time provided by the timespec_get function for base
in the timespec structure pointed to by ts. For each supported base, multiple calls to the
timespec_getres function during the same program execution shall have identical results.

Returns
3 If the value base is supported by the timespec_get function, the timespec_getres function returns

the nonzero value base; otherwise, it returns zero.

7.27.3 Time conversion functions
1 Functions with a _r suffix place the result of the conversion into the buffer referred by buf and

return that pointer. These functions and the function strftime shall not be subject to data races,
unless the time or calendar state is changed in a multi-thread execution.347)

2 Functions asctime, ctime, gmtime, and localtime are the same as their counterparts suffixed with
_r. these functions use a pointer to an object and return it: one or two broken-down time structures
races with each other. Accessing the returned pointer after the thread that called the function that
returned it has exited results in undefined behavior.

7.27.3.1 The asctime functions
Synopsis

1 #include <time.h>
char *asctime(const struct tm *timeptr);
char *asctime_r(const struct tm *timeptr, char *buf);

Description
2 The asctime functions convert the broken-down time in the structure pointed to by timeptr into a

string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctime_r(const struct tm *timeptr, char *buf)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

347)This does not mean that these functions may not read global state that describes the time and calendar settings of the
execution, such as the LC_TIME locale or the implementation defined specification of the local time zone. Only the setting of
that state by setlocale or by means of implementation-defined functions may constitute races.

§ 7.27.3.1 Library 343

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

snprintf(buf, 26, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return buf;
}

3 If any of the members of the broken-down time contain values that are outside their normal
ranges,348) the behavior of the asctime functions is undefined. Likewise, if the calculated year
exceeds four digits or is less than the year 1000, the behavior is undefined. The buf parameter for
asctime_r shall point to a buffer of at least 26 bytes.

Returns
4 The asctime functions return a pointer to the string.

7.27.3.2 The ctime functions
Synopsis

1 #include <time.h>
char *ctime(const time_t *timer);
char *ctime_r(const time_t *timer, char *buf);

Description
2 The ctime functions convert the calendar time pointed to by timer to local time in the form of a

string. They are equivalent to

asctime(localtime_r(timer, (struct tm[1]){ 0 }))

and

asctime_r(localtime_r(timer, (struct tm[1]){ 0 }), buf)

The buf parameter for ctime_r shall point to a buffer of at least 26 bytes.

Returns
3 The ctime functions return the pointer returned by the asctime functions with that broken-down

time as argument.

Forward references: the localtime functions (7.27.3.4).

7.27.3.3 The gmtime functions
Synopsis

1 #include <time.h>
struct tm *gmtime(const time_t *timer);
struct tm *gmtime_r(const time_t *timer, struct tm *buf);

Description
2 The gmtime functions convert the calendar time pointed to by timer into a broken-down time,

expressed as UTC.

Returns
3 The gmtime functions return a pointer to the broken-down time, or a null pointer if the specified

time cannot be converted to UTC.

348)See 7.27.1.

344 Library § 7.27.3.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.27.3.4 The localtime functions
Synopsis

1 #include <time.h>
struct tm *localtime(const time_t *timer);
struct tm *localtime_r(const time_t *timer, struct tm *buf);

Description
2 The localtime functions converts the calendar time pointed to by timer into a broken-down time,

expressed as local time.

Returns
3 The localtime functions return a pointer to the broken-down time, or a null pointer if the specified

time cannot be converted to local time.

7.27.3.5 The strftime function
Synopsis

1 #include <time.h>
size_t strftime(char * restrict s, size_t maxsize, const char * restrict format,

const struct tm * restrict timeptr);

Description
2 The strftime function places characters into the array pointed to by s as controlled by the string

pointed to by format. The format shall be a multibyte character sequence, beginning and ending in
its initial shift state. The format string consists of zero or more conversion specifiers and ordinary
multibyte characters. A conversion specifier consists of a % character, possibly followed by an E or O
modifier character (described below), followed by a character that determines the behavior of the
conversion specifier. All ordinary multibyte characters (including the terminating null character) are
copied unchanged into the array. If copying takes place between objects that overlap, the behavior is
undefined. No more than maxsize characters are placed into the array.

3 Each conversion specifier shall be replaced by appropriate characters as described in the following
list. The appropriate characters shall be determined using the LC_TIME category of the current
locale and by the values of zero or more members of the broken-down time structure pointed to
by timeptr, as specified in brackets in the description. If any of the specified values is outside the
normal range, the characters stored are unspecified.

%a is replaced by the locale’s abbreviated weekday name. [tm_wday]

%A is replaced by the locale’s full weekday name. [tm_wday]

%b is replaced by the locale’s abbreviated month name. [tm_mon]

%B is replaced by the locale’s full month name. [tm_mon]

%c is replaced by the locale’s appropriate date and time representation. [all specified in 7.27.1]

%C is replaced by the year divided by 100 and truncated to an integer, as a decimal number (00–99).
[tm_year]

%d is replaced by the day of the month as a decimal number (01–31). [tm_mday]

%D is equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year]

%e is replaced by the day of the month as a decimal number (1–31); a single digit is preceded by a
space. [tm_mday]

%F is equivalent to "%Y-%m-%d" (the ISO 8601 date format). [tm_year, tm_mon, tm_mday]

%g is replaced by the last 2 digits of the week-based year (see below) as a decimal number (00–99).
[tm_year, tm_wday, tm_yday]

%G is replaced by the week-based year (see below) as a decimal number (e.g., 1997). [tm_year,
tm_wday, tm_yday]

§ 7.27.3.5 Library 345

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

%h is equivalent to "%b". [tm_mon]

%H is replaced by the hour (24-hour clock) as a decimal number (00–23). [tm_hour]

%I is replaced by the hour (12-hour clock) as a decimal number (01–12). [tm_hour]

%j is replaced by the day of the year as a decimal number (001–366). [tm_yday]

%m is replaced by the month as a decimal number (01–12). [tm_mon]

%M is replaced by the minute as a decimal number (00–59). [tm_min]

%n is replaced by a new-line character.

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-hour
clock. [tm_hour]

%r is replaced by the locale’s 12-hour clock time. [tm_hour, tm_min, tm_sec]

%R is equivalent to "%H:%M". [tm_hour, tm_min]

%S is replaced by the second as a decimal number (00–60). [tm_sec]

%t is replaced by a horizontal-tab character.

%T is equivalent to "%H:%M:%S" (the ISO 8601 time format). [tm_hour, tm_min, tm_sec]

%u is replaced by the ISO 8601 weekday as a decimal number (1–7), where Monday is 1. [tm_wday]

%U is replaced by the week number of the year (the first Sunday as the first day of week 1) as a
decimal number (00–53). [tm_year, tm_wday, tm_yday]

%V is replaced by the ISO 8601 week number (see below) as a decimal number (01–53). [tm_year,
tm_wday, tm_yday]

%w is replaced by the weekday as a decimal number (0–6), where Sunday is 0. [tm_wday]

%W is replaced by the week number of the year (the first Monday as the first day of week 1) as a
decimal number (00–53). [tm_year, tm_wday, tm_yday]

%x is replaced by the locale’s appropriate date representation. [all specified in 7.27.1]

%X is replaced by the locale’s appropriate time representation. [all specified in 7.27.1]

%y is replaced by the last 2 digits of the year as a decimal number (00–99). [tm_year]

%Y is replaced by the year as a decimal number (e.g., 1997). [tm_year]

%z is replaced by the offset from UTC in the ISO 8601 format "-0430" (meaning 4 hours 30
minutes behind UTC, west of Greenwich), or by no characters if no time zone is determinable.
[tm_isdst]

%Z is replaced by the locale’s time zone name or abbreviation, or by no characters if no time zone is
determinable. [tm_isdst]

%% is replaced by %.

4 Some conversion specifiers can be modified by the inclusion of an E or O modifier character to
indicate an alternative format or specification. If the alternative format or specification does not
exist for the current locale, the modifier is ignored.

%Ec is replaced by the locale’s alternative date and time representation.

%EC is replaced by the name of the base year (period) in the locale’s alternative representation.

%Ex is replaced by the locale’s alternative date representation.

%EX is replaced by the locale’s alternative time representation.

%Ey is replaced by the offset from %EC (year only) in the locale’s alternative representation.

%EY is replaced by the locale’s full alternative year representation.

%Ob is replaced by the locale’s abbreviated alternative month name.

%OB is replaced by the locale’s alternative appropriate full month name.

%Od is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading zeros, or with leading spaces if there is no alternative symbol for zero).

346 Library § 7.27.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

%Oe is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading spaces).

%OH is replaced by the hour (24-hour clock), using the locale’s alternative numeric symbols.

%OI is replaced by the hour (12-hour clock), using the locale’s alternative numeric symbols.

%Om is replaced by the month, using the locale’s alternative numeric symbols.

%OM is replaced by the minutes, using the locale’s alternative numeric symbols.

%OS is replaced by the seconds, using the locale’s alternative numeric symbols.

%Ou is replaced by the ISO 8601 weekday as a number in the locale’s alternative representation,
where Monday is 1.

%OU is replaced by the week number, using the locale’s alternative numeric symbols.

%OV is replaced by the ISO 8601 week number, using the locale’s alternative numeric symbols.

%Ow is replaced by the weekday as a number, using the locale’s alternative numeric symbols.

%OW is replaced by the week number of the year, using the locale’s alternative numeric symbols.

%Oy is replaced by the last 2 digits of the year, using the locale’s alternative numeric symbols.

5 %g, %G, and %V give values according to the ISO 8601 week-based year. In this system, weeks begin
on a Monday and week 1 of the year is the week that includes January 4th, which is also the week
that includes the first Thursday of the year, and is also the first week that contains at least four days
in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the
last week of the preceding year; thus, for Saturday 2nd January 1999, %G is replaced by 1998 and %V
is replaced by 53. If December 29th, 30th, or 31st is a Monday, it and any following days are part of
week 1 of the following year. Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V
is replaced by 01.

6 If a conversion specifier is not one of the above, the behavior is undefined.

7 In the "C" locale, the E and O modifiers are ignored and the replacement strings for the following
specifiers are:

%a the first three characters of %A.

%A one of "Sunday", "Monday", . . . , "Saturday".

%b the first three characters of %B.

%B one of "January", "February", . . . , "December".

%c equivalent to "%a %b %e %T %Y".

%p one of "AM" or "PM".

%r equivalent to "%I:%M:%S %p".

%x equivalent to "%m/%d/%y".

%X equivalent to %T.

%Z implementation-defined.

Returns
8 If the total number of resulting characters including the terminating null character is not more than

maxsize, the strftime function returns the number of characters placed into the array pointed to
by s not including the terminating null character. Otherwise, zero is returned and the contents of
the array are indeterminate.

§ 7.27.3.5 Library 347

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.28 Unicode utilities <uchar.h>
1 The header <uchar.h> declares types and functions for manipulating Unicode characters.

2 The types declared are mbstate_t (described in 7.29.1) and size_t (described in 7.19);

char16_t

which is an unsigned integer type used for 16-bit characters and is the same type as uint_least16_t
(described in 7.20.1.2); and

char32_t

which is an unsigned integer type used for 32-bit characters and is the same type as uint_least32_t
(also described in 7.20.1.2).

7.28.1 Restartable multibyte/wide character conversion functions
1 These functions have a parameter, ps, of type pointer to mbstate_t that points to an object that can

completely describe the current conversion state of the associated multibyte character sequence,
which the functions alter as necessary. If ps is a null pointer, each function uses its own internal
mbstate_t object instead, which is initialized prior to the first call to the function to the initial
conversion state; the functions are not required to avoid data races with other calls to the same
function in this case. It is implementation-defined whether the internal mbstate_t object has thread
storage duration; if it has thread storage duration, it is initialized to the initial conversion state
prior to the first call to the function on the new thread. The implementation behaves as if no library
function calls these functions with a null pointer for ps.

7.28.1.1 The mbrtoc16 function
Synopsis

1 #include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtoc16 function is equivalent to the call:

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

3 If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc16
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pc16. Subsequent calls will store successive wide characters without consuming any additional
input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns
4 The mbrtoc16 function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that complete the
multibyte character.

348 Library § 7.28.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(size_t)(−3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(−2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).349)

(size_t)(−1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the
macro EILSEQ is stored in errno, and the conversion state is unspecified.

7.28.1.2 The c16rtomb function
Synopsis

1 #include <uchar.h>
size_t c16rtomb(char * restrict s, char16_t c16, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the c16rtomb function is equivalent to the call

c16rtomb(buf, L’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the c16rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given or completed by c16 (including
any shift sequences), and stores the multibyte character representation in the array whose first
element is pointed to by s, or stores nothing if c16 does not represent a complete character. At
most MB_CUR_MAX bytes are stored. If c16 is a null wide character, a null byte is stored, preceded by
any shift sequence needed to restore the initial shift state; the resulting state described is the initial
conversion state.

Returns
4 The c16rtomb function returns the number of bytes stored in the array object (including any shift

sequences). When c16 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(−1); the conversion state is unspecified.

7.28.1.3 The mbrtoc32 function
Synopsis

1 #include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtoc32 function is equivalent to the call:

mbrtoc32(NULL, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

3 If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc32
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pc32. Subsequent calls will store successive wide characters without consuming any additional

349)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

§ 7.28.1.3 Library 349

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns
4 The mbrtoc32 function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that complete the
multibyte character.

(size_t)(−3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(−2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).350)

(size_t)(−1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the
macro EILSEQ is stored in errno, and the conversion state is unspecified.

7.28.1.4 The c32rtomb function
Synopsis

1 #include <uchar.h>
size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the c32rtomb function is equivalent to the call

c32rtomb(buf, L’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the c32rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by c32 (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If c32 is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

Returns
4 The c32rtomb function returns the number of bytes stored in the array object (including any shift

sequences). When c32 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(−1); the conversion state is unspecified.

350)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

350 Library § 7.28.1.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.29 Extended multibyte and wide character utilities <wchar.h>
7.29.1 Introduction

1 The header <wchar.h> defines four macros, and declares four data types, one tag, and many
functions.351)

2 The types declared are wchar_t and size_t (both described in 7.19);

mbstate_t

which is a complete object type other than an array type that can hold the conversion state informa-
tion necessary to convert between sequences of multibyte characters and wide characters;

wint_t

which is an integer type unchanged by default argument promotions that can hold any value
corresponding to members of the extended character set, as well as at least one value that does not
correspond to any member of the extended character set (see WEOF below);352) and

struct tm

which is declared as an incomplete structure type (the contents are described in 7.27.1).

3 The macros defined are NULL (described in 7.19); WCHAR_MIN, WCHAR_MAX, and WCHAR_WIDTH (de-
scribed in 7.20); and

WEOF

which expands to a constant expression of type wint_t whose value does not correspond to any
member of the extended character set.353) It is accepted (and returned) by several functions in
this subclause to indicate end-of-file, that is, no more input from a stream. It is also used as a wide
character value that does not correspond to any member of the extended character set.

4 The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters, or both;

— Functions that provide wide string numeric conversion;

— Functions that perform general wide string manipulation;

— Functions for wide string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and wide
character sequences.

5 Arguments to the functions in this subclause may point to arrays containing wchar_t values that do
not correspond to members of the extended character set. Such values shall be processed according
to the specified semantics, except that it is unspecified whether an encoding error occurs if such a
value appears in the format string for a function in 7.29.2 or 7.29.5 and the specified semantics do
not require that value to be processed by wcrtomb.

6 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the behavior is undefined.

7.29.2 Formatted wide character input/output functions
1 The formatted wide character input/output functions shall behave as if there is a sequence point

after the actions associated with each specifier.354)

351)See "future library directions" (7.31.18).
352)wchar_t and wint_t can be the same integer type.
353)The value of the macro WEOF can differ from that of EOF and need not be negative.
354)The fwprintf functions perform writes to memory for the %n specifier.

§ 7.29.2 Library 351

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.29.2.1 The fwprintf function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

Description
2 The fwprintf function writes output to the stream pointed to by stream, under control of the wide

string pointed to by format that specifies how subsequent arguments are converted for output. If
there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.
The fwprintf function returns when the end of the format string is encountered.

3 The format is composed of zero or more directives: ordinary wide characters (not %), which are
copied unchanged to the output stream; and conversion specifications, each of which results in
fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

4 Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer wide characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.355)

— An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal-point wide character
for a, A, e, E, f, and F conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of wide characters to be written for s conversions. The
precision takes the form of a period (.) followed either by an asterisk * (described later) or by
an optional nonnegative decimal integer; if only the period is specified, the precision is taken
as zero. If a precision appears with any other conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.

— A conversion specifier wide character that specifies the type of conversion to be applied.

5 As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

6 The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a negative value is converted if this flag is not specified.)356)

space If the first wide character of a signed conversion is not a sign, or if a signed conversion results
in no wide characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

355)Note that 0 is taken as a flag, not as the beginning of a field width.
356)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

352 Library § 7.29.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

The result is converted to an "alternative form". For o conversion, it increases the precision,
if and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of converting
a floating-point number always contains a decimal-point wide character, even if no digits
follow it. (Normally, a decimal-point wide character appears in the result of these conversions
only if a digit follows it.) For g and G conversions, trailing zeros are not removed from the
result. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width rather than performing space padding,
except when converting an infinity or NaN. If the 0 and - flags both appear, the 0 flag is
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0 flag is ignored.
For other conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted accord-
ing to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; that a following n conversion specifier applies to
a pointer to a long int argument; that a following c conversion specifier applies to
a wint_t argument; that a following s conversion specifier applies to a pointer to a
wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

ll (ell-ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a following n con-
version specifier applies to a pointer to a long long int argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 argument.

§ 7.29.2.1 Library 353

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide characters.

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no wide characters.

f,F A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point wide character
is equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point wide character appears.
If a decimal-point wide character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing
a NaN is converted in one of the styles [-]nan or [-]nan(n-wchar-sequence) — which style,
and the meaning of any n-wchar-sequence, is implementation-defined. The F conversion
specifier produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.357)

e,E A double argument representing a floating-point number is converted in the style
[-]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero)
before the decimal-point wide character and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal-point wide character appears. The value is rounded to
the appropriate number of digits. The E conversion specifier produces a number with E
instead of e introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

g,G A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X :

if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).

otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion
of the result and the decimal-point wide character is removed if there is no fractional
portion remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

357)When applied to infinite and NaN values, the -, +, and space flag wide characters have their usual meaning; the # and 0
flag wide characters have no effect.

354 Library § 7.29.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

a,A A double argument representing a floating-point number is converted in the style
[-]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
wide character358) and the number of hexadecimal digits after it is equal to the precision;
if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision is sufficient to distinguish359) values of type double, except
that trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with
X and P instead of x and p. The exponent always contains at least one digit, and only as
many more digits as necessary to represent the decimal exponent of 2. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier. If an H, D, or DD modifier is present and the precision is missing, then
for a decimal floating type argument represented by a triple of integers (s, c, q), where n is
the number of significant digits in the coefficient c,

— if −(n + 5) ≤ q ≤ 0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to −q,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n− 1, with the exceptions that if c = 0 then the digit-sequence
in the exponent-part shall have the value q (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as
large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the
precision were missing. If the precision P is present (and nonzero) and less than the
precision p of the decimal floating type, the conversion first obtains an intermediate result
as follows, where n is the number of significant digits in the coefficient:

— If n ≤ P , set the intermediate result to the input.

— If n > P , round the input value, according to the current rounding direction for
decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P -digit integer coefficient when in the form
(s, c, q).

Convert the intermediate result in the manner described above for the case where the
precision is missing.

c If no l length modifier is present, the int argument is converted to a wide character as if
by calling btowc and the resulting wide character is written.

358)Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide character so that subsequent
digits align to nibble (4-bit) boundaries. This implementation choice affects numerical values printed with a precision P
that is insufficient to represent all values exactly. Implementations with different conventions about the most significant
hexadecimal digit will round at different places, affecting the numerical value of the hexadecimal result. For example,
possible printed output for the code

#include <stdio.h>
...
double x = 123.0;
printf("%.1a", x);

include "0x1.fp+6 " and "0xf.6p+3 " whose numerical values are 124 and 123, respectively. Portable code seeking identical
numerical results on different platforms should avoid precisions P that require rounding.
359)The formatting precision P is sufficient to distinguish values of the source type if 16P > bp where b (not a power of 2)

and p are the base and precision of the source type (5.2.4.2.2). A smaller P might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point wide character.

§ 7.29.2.1 Library 355

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

If an l length modifier is present, the wint_t argument is converted to wchar_t and
written.

s If no l length modifier is present, the argument shall be a pointer to storage of character
type containing a multibyte character sequence beginning in the initial shift state. Charac-
ters from the storage are converted as if by repeated calls to the mbrtowc function, with
the conversion state described by an mbstate_t object initialized to zero before the first
multibyte character is converted, and written up to (but not including) the terminating
null wide character. If the precision is specified, no more than that many wide characters
are written. If the precision is not specified or is greater than the size of the converted
storage, the converted storage shall contain a null wide character.

If an l length modifier is present, the argument shall be a pointer to storage of wchar_t
type. Wide characters from the storage are written up to (but not including) a terminating
null wide character. If the precision is specified, no more than that many wide characters
are written. If the precision is not specified or is greater than the size of the array, the
storage shall contain a null wide character.

p The argument shall be a pointer to void or a pointer to a character type. The value of
the pointer is converted to a sequence of printing wide characters, in an implementation-
defined manner.

n The argument shall be a pointer to signed integer whose type is specified by the length
modifiers, if any, for the conversion specification, or shall be int if no length modifiers
are specified for the conversion specification. The number of wide characters written to
the output stream so far by this call to fwprintf is stored into the integer object pointed
to by the argument. No argument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is undefined.

% A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.360) fwprintf shall behave as if it
uses va_arg with a type argument naming the type resulting from applying the default argument
promotions to the type corresponding to the conversion specification and then converting the result
ofthe va_arg expansion to the type corresponding to the conversion specification.361)

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice
12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable

in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

13 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.362) If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
M significant digits; the value of the resultant decimal string D should satisfy L ≤ D ≤ U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

360)See "future library directions" (7.31.18).
361)The behavior is undefined when the types differ as specified for va_arg 7.16.1.1.
362)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.

The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

356 Library § 7.29.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
14 The fwprintf function returns the number of wide characters transmitted, or a negative value if an

output or encoding error occurred.

Environmental limits
15 The number of wide characters that can be produced by any single conversion shall be at least 4095.
16 EXAMPLE To print a date and time in the form "Sunday, July 3, 10:02" followed by π to five decimal places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
/* ... */
wchar_t *weekday, *month; // pointers to wide strings
int day, hour, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5f\n", 4 * atan(1.0));

Forward references: the btowc function (7.29.6.1.1), the mbrtowc function (7.29.6.3.2).

7.29.2.2 The fwscanf function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);

Description
2 The fwscanf function reads input from the stream pointed to by stream, under control of the wide

string pointed to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to receive the
converted input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored.

3 The format is composed of zero or more directives: one or more white-space wide characters, an
ordinary wide character (neither % nor a white-space wide character), or a conversion specification.
Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— An optional assignment-suppressing wide character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in wide
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conversion specifier wide character that specifies the type of conversion to be applied.

4 The fwscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed below), the function returns. Failures are described as
input failures (due to the occurrence of an encoding error or the unavailability of input characters),
or matching failures (due to inappropriate input).

5 A directive composed of white-space wide character(s) is executed by reading input up to the first
non-white-space wide character (which remains unread), or until no more wide characters can be
read. The directive never fails.

6 A directive that is an ordinary wide character is executed by reading the next wide character of
the stream. If that wide character differs from the directive,the directive fails and the differing and

§ 7.29.2.2 Library 357

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

subsequent wide characters remain unread. Similarly, if end-of-file, an encoding error, or a read
error prevents a wide character from being read, the directive fails.

7 A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

8 Input white-space wide characters are skipped, unless the specification includes a [, c, or n speci-
fier.363)

9 An input item is read from the stream, unless the specification includes an n specifier. An input item
is defined as the longest sequence of input wide characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.364) The first wide character, if
any, after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

10 Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
wide characters) is converted to a type appropriate to the conversion specifier. If the input item is
not a matching sequence, the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already received
a conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following c, s, or [conversion specifier applies to an argument with type pointer to
wchar_t.

ll (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

363)These white-space wide characters are not counted against a specified field width.
364)fwscanf pushes back at most one input wide character onto the input stream. Therefore, some sequences that are

acceptable to wcstod, wcstol, etc., are unacceptable to fwscanf.

358 Library § 7.29.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal128.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer
to a type determined by the length modifiers, if any, or specified by the conversion specifier. The
conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstol function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
int.

i Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the wcstol function with the value 0 for the base argument. Unless a length
modifier is specified, the corresponding argument shall be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the wcstoul function with the value 8 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstoul function with the value 10 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the wcstoul function with the value 16 for the base argument.
Unless a length modifier is specified, the corresponding argument shall be a pointer to
unsigned int.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the wcstod function. Unless a length
modifier is specified, the corresponding argument shall be a pointer to float.

c Matches a sequence of wide characters of exactly the number specified by the field width
(1 if no field width is present in the directive).

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to char, signed char, unsigned char, or
void that points to storage large enough to accept the sequence. No null character is
added.

If an l length modifier is present, the corresponding argument shall be a pointer to storage
of wchar_t large enough to accept the sequence.No null wide character is added.

s Matches a sequence of non-white-space wide characters.

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to storage of wide large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage of wchar_t large enough
to accept the sequence and the terminating null wide character, which will be added
automatically.

§ 7.29.2.2 Library 359

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

[Matches a nonempty sequence of wide characters from a set of expected characters (the
scanset).

If no l length modifier is present, characters from the input field are converted as if
by repeated calls to the wcrtomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to storage of a character type large enough to
accept the sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the corresponding argument shall be a pointer to char,
signed char, unsigned char, or void that points to storage of wchar_t large enough
to accept the sequence and the terminating null wide character, which will be added
automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket (]). The wide characters between the
brackets (the scanlist) compose the scanset, unless the wide character after the left bracket
is a circumflex (^), in which case the scanset contains all wide characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [^], the right bracket wide character is in the scanlist and
the next following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is the one
that ends the specification. If a - wide character is in the scanlist and is not the first, nor
the second where the first wide character is a ^, nor the last character, the behavior is
implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fwprintf function.
The corresponding argument shall be a pointer to a pointer of void. The input item is
converted to a pointer value in an implementation-defined manner. If the input item is a
value converted earlier during the same program execution, the pointer that results shall
compare equal to that value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer of a signed integer
type. The number of wide characters read from the input stream so far by this call to the
fwscanf function is stored into the integer object pointed to by the argument. Execution
of a %n directive does not increment the assignment count returned at the completion of
execution of the fwscanf function. No argument is converted, but one is consumed. If
the conversion specification includes an assignment-suppressing wide character or a field
width, the behavior is undefined.

% Matches a single % wide character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.365)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white-space wide characters(including new-line wide characters) are left unread unless
matched by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the %n directive.

Returns
16 The fwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

365)See "future library directions" (7.31.18).

360 Library § 7.29.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

17 EXAMPLE 1 The call:

#include <stdio.h>
#include <wchar.h>
/* ... */
int n, i; float x; wchar_t name[50];
n = fwscanf(stdin, L"%d%f%ls", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

18 EXAMPLE 2 The call:

#include <stdio.h>
#include <wchar.h>
/* ... */
int i; float x; double y;
fwscanf(stdin, L"%2d%f%*d %lf", &i, &x, &y);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip past 0123, and will assign to y the value 56.0. The next wide
character read from the input stream will be a.

Forward references: the wcstod, wcstof, and wcstold functions (7.29.4.1.1), the wcstol, wcstoll,
wcstoul, and wcstoull functions (7.29.4.1.3), the wcrtomb function (7.29.6.3.3).

7.29.2.3 The swprintf function
Synopsis

1 #include <wchar.h>
int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

...);

Description
2 The swprintf function is equivalent to fwprintf, except that the argument s specifies an array of

wide characters into which the generated output is to be written, rather than written to a stream.
No more than n wide characters are written, including a terminating null wide character, which is
always added (unless n is zero).

Returns
3 The swprintf function returns the number of wide characters written in the array, not counting the

terminating null wide character, or a negative value if an encoding error occurred or if n or more
wide characters were requested to be written.

7.29.2.4 The swscanf function
Synopsis

1 #include <wchar.h>
int swscanf(const wchar_t * restrict s, const wchar_t * restrict format, ...);

Description
2 The swscanf function is equivalent to fwscanf, except that the argument s specifies a wide string

from which the input is to be obtained, rather than from a stream. Reaching the end of the wide
string is equivalent to encountering end-of-file for the fwscanf function.

§ 7.29.2.4 Library 361

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The swscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the swscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.5 The vfwprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Description
2 The vfwprintf function is equivalent to fwprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwprintf function does not invoke the va_end macro.366)

Returns
3 The vfwprintf function returns the number of wide characters transmitted, or a negative value if

an output or encoding error occurred.
4 EXAMPLE The following shows the use of the vfwprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fwprintf(stderr, L"ERROR in %s: ", function_name);
// print out remainder of message
vfwprintf(stderr, format, args);
va_end(args);

}

7.29.2.6 The vfwscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Description
2 The vfwscanf function is equivalent to fwscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwscanf function does not invoke the va_end macro.366)

366)As the functions vfwprintf, vswprintf, vfwscanf, vwprintf, vwscanf, and vswscanf invoke the va_arg macro, the
value of arg after the return is indeterminate.

362 Library § 7.29.2.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The vfwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vfwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.7 The vswprintf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

va_list arg);

Description
2 The vswprintf function is equivalent to swprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vswprintf function does not invoke the va_end macro.366)

Returns
3 The vswprintf function returns the number of wide characters written in the array, not counting

the terminating null wide character, or a negative value if an encoding error occurred or if n or more
wide characters were requested to be generated.

7.29.2.8 The vswscanf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);

Description
2 The vswscanf function is equivalent to swscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vswscanf function does not invoke the va_end macro.366)

Returns
3 The vswscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vswscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.9 The vwprintf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwprintf(const wchar_t * restrict format, va_list arg);

Description
2 The vwprintf function is equivalent to wprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwprintf function does not invoke the va_end macro.366)

§ 7.29.2.9 Library 363

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The vwprintf function returns the number of wide characters transmitted, or a negative value if an

output or encoding error occurred.

7.29.2.10 The vwscanf function
Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwscanf(const wchar_t * restrict format, va_list arg);

Description
2 The vwscanf function is equivalent to wscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwscanf function does not invoke the va_end macro.366)

Returns
3 The vwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the vwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.11 The wprintf function
Synopsis

1 #include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);

Description
2 The wprintf function is equivalent to fwprintf with the argument stdout interposed before the

arguments to wprintf.

Returns
3 The wprintf function returns the number of wide characters transmitted, or a negative value if an

output or encoding error occurred.

7.29.2.12 The wscanf function
Synopsis

1 #include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);

Description
2 The wscanf function is equivalent to fwscanf with the argument stdin interposed before the

arguments to wscanf.

Returns
3 The wscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the wscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.3 Wide character input/output functions
7.29.3.1 The fgetwc function
Synopsis

1 #include <stdio.h>

364 Library § 7.29.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description
2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next wide

character is present, the fgetwc function obtains that wide character as a wchar_t converted to a
wint_t and advances the associated file position indicator for the stream (if defined).

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetwc function returns WEOF. Otherwise, the fgetwc function
returns the next wide character from the input stream pointed to by stream. If a read error occurs,
the error indicator for the stream is set and the fgetwc function returns WEOF. If an encoding error
occurs (including too few bytes), the error indicator for the stream is set and the value of the macro
EILSEQ is stored in errno and the fgetwc function returns WEOF.367)

7.29.3.2 The fgetws function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);

Description
2 The fgetws function reads at most one less than the number of wide characters specified by n from

the stream pointed to by stream into the array pointed to by s. No additional wide characters are
read after a new-line wide character (which is retained) or after end-of-file. A null wide character is
written immediately after the last wide character read into the array.

Returns
3 The fgetws function returns s if successful. If end-of-file is encountered and no characters have

been read into the array, the contents of the array remain unchanged and a null pointer is returned.
If a read or encoding error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

7.29.3.3 The fputwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE *stream);

Description
2 The fputwc function writes the wide character specified by c to the output stream pointed to by

stream, at the position indicated by the associated file position indicator for the stream (if defined),
and advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the output stream.

Returns
3 The fputwc function returns the wide character written. If a write error occurs, the error indicator

for the stream is set and fputwc returns WEOF. If an encoding error occurs, the value of the macro
EILSEQ is stored in errno and fputwc returns WEOF.

7.29.3.4 The fputws function

367)An end-of-file and a read error can be distinguished by use of the feof and ferror functions. Also, errno will be set to
EILSEQ by input/output functions only if an encoding error occurs.

§ 7.29.3.4 Library 365

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fputws(const wchar_t * restrict s, FILE * restrict stream);

Description
2 The fputws function writes the wide string pointed to by s to the stream pointed to by stream. The

terminating null wide character is not written.

Returns
3 The fputws function returns EOF if a write or encoding error occurs; otherwise, it returns a nonnega-

tive value.

7.29.3.5 The fwide function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Description
2 The fwide function determines the orientation of the stream pointed to by stream. If mode is greater

than zero, the function first attempts to make the stream wide oriented. If mode is less than zero,
the function first attempts to make the stream byte oriented.368) Otherwise, mode is zero and the
function does not alter the orientation of the stream.

Returns
3 The fwide function returns a value greater than zero if, after the call, the stream has wide orientation,

a value less than zero if the stream has byte orientation, or zero if the stream has no orientation.

7.29.3.6 The getwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream);

Description
2 The getwc function is equivalent to fgetwc, except that if it is implemented as a macro, it may

evaluate stream more than once, so the argument should never be an expression with side effects.

Returns
3 The getwc function returns the next wide character from the input stream pointed to by stream, or

WEOF.

7.29.3.7 The getwchar function
Synopsis

1 #include <wchar.h>
wint_t getwchar(void);

Description
2 The getwchar function is equivalent to getwc with the argument stdin.

368)If the orientation of the stream has already been determined, fwide does not change it.

366 Library § 7.29.3.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The getwchar function returns the next wide character from the input stream pointed to by stdin,

or WEOF.

7.29.3.8 The putwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *stream);

Description
2 The putwc function is equivalent to fputwc, except that if it is implemented as a macro, it may

evaluate stream more than once, so that argument should never be an expression with side effects.

Returns
3 The putwc function returns the wide character written, or WEOF.

7.29.3.9 The putwchar function
Synopsis

1 #include <wchar.h>
wint_t putwchar(wchar_t c);

Description
2 The putwchar function is equivalent to putwc with the second argument stdout.

Returns
3 The putwchar function returns the character written, or WEOF.

7.29.3.10 The ungetwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t c, FILE *stream);

Description
2 The ungetwc function pushes the wide character specified by c back onto the input stream pointed

to by stream. Pushed-back wide characters will be returned by subsequent reads on that stream
in the reverse order of their pushing. A successful intervening call (with the stream pointed to by
stream) to a file positioning function (fseek, fsetpos, or rewind) discards any pushed-back wide
characters for the stream. The external storage corresponding to the stream is unchanged.

3 One wide character of pushback is guaranteed, even if the call to the ungetwc function follows just
after a call to a formatted wide character input function fwscanf, vfwscanf, vwscanf, or wscanf. If
the ungetwc function is called too many times on the same stream without an intervening read or
file positioning operation on that stream, the operation may fail.

4 If the value of c equals that of the macro WEOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetwc function clears the end-of-file indicator for the stream. The value of
the file position indicator for the stream after reading or discarding all pushed-back wide characters
is the same as it was before the wide characters were pushed back.369) For a text or binary stream,
the value of its file position indicator after a successful call to the ungetwc function is unspecified
until all pushed-back wide characters are read or discarded.

369)Note that a file positioning function could further modify the file position indicator after discarding any pushed-back
wide characters.

§ 7.29.3.10 Library 367

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
6 The ungetwc function returns the wide character pushed back, or WEOF if the operation fails.

7.29.4 General wide string utilities
1 The header <wchar.h> declares a number of functions useful for wide string manipulation. Various

methods are used for determining the lengths of the arrays, but in all cases a wchar_t* argument
points to the initial (lowest addressed) element of the array. If an array is accessed beyond the end
of an object, the behavior is undefined.

2 Where an argument declared as size_t n determines the length of the array for a function, n can
have the value zero on a call to that function. Unless explicitly stated otherwise in the description of
a particular function in this subclause, pointer arguments on such a call shall still have valid values,
as described in 7.1.4. On such a call, a function that locates a wide character finds no occurrence, a
function that compares two wide character sequences returns zero, and a function that copies wide
characters copies zero wide characters.

7.29.4.1 Wide string numeric conversion functions
7.29.4.1.1 The wcstod, wcstof, and wcstold functions
Synopsis

1 This subclause describes wide string analogs of the strtod family of functions (7.22.1.5, 7.22.1.6).370)

#include <wchar.h>
double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstod, wcstof, and wcstold functions convert the initial portion of the wide string pointed to

by nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space wide characters,
a subject sequence resembling a floating-point constant or representing an infinity or NaN; and
a final wide string of one or more unrecognized wide characters, including the terminating null
wide character of the input wide string. Then, they attempt to convert the subject sequence to a
floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point wide character,
then an optional exponent part as defined for the corresponding single-byte characters in

370)Wide string analogs of the strfromd family of functions (7.22.1.5, 7.22.1.6) are not provided because those conversions can
be done by using mbstowcs (7.22.8.1) to convert the result of strfromd, strfromf, and similar to wide string. For example,
the following converts double d to wide string ws with at most n-1 non-null wide characters, using style g formatting, and
computes the number nc of wide characters that would have been written had n been sufficiently large, not counting the
terminating null wide character.

#include <stdlib.h>
const size_t n = 20;
double d;
//...
// convert d to single-byte character string s
char s[n];
int nc = strfromd(s, n, "%g", d);
// convert s (regarded as a multi-byte character
// string) to wide string ws
wchar_t ws[n];
(void)mbstowcs(ws, s, n);

368 Library § 7.29.4.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6.4.4.2;

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point wide character, then an optional binary exponent part as defined in 6.4.4.2;

— INF or INFINITY, or any other wide string equivalent except for case

— NAN or NAN(n-wchar-sequenceopt), or any other wide string equivalent except for case in the NAN
part, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the decimal-point wide character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.4.2, except that the decimal-point wide
character is used in place of a period, and that if neither an exponent part nor a decimal-point wide
character appears in a decimal floating-point number, or if a binary exponent part does not appear
in a hexadecimal floating-point number, an exponent part of the appropriate type with value zero is
assumed to follow the last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated.371)

A wide character sequence INF or INFINITY is interpreted as an infinity, if representable in the
return type, else like a floating constant that is too large for the range of the return type. A wide
character sequence NAN or NAN(n-wchar-sequenceopt) is interpreted as a quiet NaN, if supported in
the return type, else like a subject sequence part that does not have the expected form; the meaning
of the n-wchar sequence is implementation-defined.372)

A pointer to the final wide string is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

5 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting
from the conversion is correctly rounded.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Recommended practice
8 If the subject sequence has the hexadecimal form, FLT_RADIX is not a power of 2, and the result is

not exactly representable, the result should be one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

9 If the subject sequence has the decimal form and at most M significant digits, where M is the
maximum value of the T_DECIMAL_DIGmacros (defined in <float.h>), the result should be correctly
rounded. If the subject sequence D has the decimal form and more than M significant digits, consider

371)It is unspecified whether a minus-signed sequence is converted to a negative number directly or by negating the value
resulting from converting the corresponding unsigned sequence (see F.5); the two methods could yield different results if
rounding is toward positive or negative infinity. In either case, the functions honor the sign of zero if floating-point arithmetic
supports signed zeros.
372)An implementation can use the n-wchar sequence to determine extra information to be represented in the NaN’s

significand.

§ 7.29.4.1.1 Library 369

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the
values of L, D, and U satisfy L ≤ D ≤ U. The result should be one of the (equal or adjacent) values
that would be obtained by correctly rounding L and U according to the current rounding direction,
with the extra stipulation that the error with respect to D should have a correct sign for the current
rounding direction.373)

Returns
10 The functions return the converted value, if any. If no conversion could be performed, zero is

returned. If the correct value overflows and default rounding is in effect (7.12.1), plus or minus
HUGE_VAL, HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of the value),
and the value of the macro ERANGE is stored in errno. If the result underflows (7.12.1), the functions
return a value whose magnitude is no greater than the smallest normalized positive number in the
return type; whether errno acquires the value ERANGE is implementation-defined.

7.29.4.1.2 The wcstodN functions
Synopsis

1 #include <wchar.h>
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 wcstod32(const wchar_t * restrict nptr, char ** restrict endptr);
_Decimal64 wcstod64(const wchar_t * restrict nptr,char ** restrict endptr);
_Decimal128 wcstod128(const wchar_t * restrict nptr,char ** restrict endptr);
#endif

Description
2 The wcstodN functions convert the initial portion of the wide string pointed to by nptr to decimal

floating type representation. First, they decompose the input wide string into three parts: an initial,
possibly empty, sequence of white-space wide characters; a subject sequence resembling a floating
constant or representing an infinity or NaN; and a final wide string of one or more unrecognized
wide characters, including the terminating null wide character of the input wide string. Then, they
attempt to convert the subject sequence to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— a nonempty sequence of decimal digits optionally containing a decimal-point wide character,
then an optional exponent part as defined in 6.4.4.2

— INF or INFINITY, ignoring case

— NAN or NAN(d-wchar-sequenceopt), ignoring case in the NAN part, where:

d-wchar-sequence:
digit
nondigit
d-wchar-sequence digit
d-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of wide
characters starting with the first digit or the decimal-point wide character (whichever occurs first) is

373)M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly
round to adjacent values.

370 Library § 7.29.4.1.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

interpreted as a floating constant according to the rules of 6.4.4.2, including correct rounding and
determination of the coefficient c and the quantum exponent q, with the following exceptions:

— It is not a hexadecimal floating number.

— The decimal-point wide character is used in place of a period.

— If neither an exponent part nor a decimal-point wide character appears in a decimal floating-
point number, an exponent part of the appropriate type with value zero is assumed to follow
the last digit in the wide string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated (before
rounding) and the sign s is set to −1, else s is set to 1. A wide character sequence INF or INFINITY is
interpreted as an infinity. A wide character sequence NAN or NAN(d-wchar-sequenceopt), is interpreted
as a quiet NaN; the meaning of the d-wchar sequence is implementation-defined.374) A pointer to
the final wide string is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

5 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

6 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
7 The wcstodN functions return the correctly rounded converted value, if any. If no conversion could

be performed, the value of the triple (+1, 0, 0) is returned. If the correct value overflows, the value
of the macro ERANGE is stored in errno. If the result underflows (7.12.1), whether errno acquires the
value ERANGE is implementation-defined.

7.29.4.1.3 The wcstol, wcstoll, wcstoul, and wcstoull functions
Synopsis

1 #include <wchar.h>
long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
unsigned long int wcstoul(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);

Description
2 The wcstol, wcstoll, wcstoul, and wcstoull functions convert the initial portion of the

wide string pointed to by nptr to long int, long long int, unsigned long int, and
unsigned long long int representation, respectively. First, they decompose the input string into
three parts: an initial, possibly empty, sequence of white-space wide characters, a subject sequence
resembling an integer represented in some radix determined by the value of base, and a final wide
string of one or more unrecognized wide characters, including the terminating null wide character
of the input wide string. Then, they attempt to convert the subject sequence to an integer, and return
the result.

3 If the value of base is zero, the expected form of the subject sequence is that of an integer constant
as described for the corresponding single-byte characters in 6.4.4.1, optionally preceded by a plus or
minus sign, but not including an integer suffix. If the value of base is between 2 and 36 (inclusive),
the expected form of the subject sequence is a sequence of letters and digits representing an integer
with the radix specified by base, optionally preceded by a plus or minus sign, but not including

374)An implementation may use the d-wchar sequence to determine extra information to be represented in the NaN’s
significand.

§ 7.29.4.1.3 Library 371

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

an integer suffix. The letters from a (or A) through z (or Z) are ascribed the values 10 through 35;
only letters and digits whose ascribed values are less than that of base are permitted. If the value of
base is 16, the wide characters 0x or 0X may optionally precede the sequence of letters and digits,
following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is empty or consists entirely of white-space
wide characters, or if the first non-white-space wide character is other than a sign or a permissible
letter or digit.

5 If the subject sequence has the expected form and the value of base is zero, the sequence of wide
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.4.4.1. If the subject sequence has the expected form and the value of base is between 2 and 36, it
is used as the base for conversion, ascribing to each letter its value as given above. If the subject
sequence begins with a minus sign, the value resulting from the conversion is negated (in the return
type). A pointer to the final wide string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

6 In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns
8 The wcstol, wcstoll, wcstoul, and wcstoull functions return the converted value, if any. If

no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or ULLONG_MAX is
returned (according to the return type sign of the value, if any), and the value of the macro ERANGE
is stored in errno.

7.29.4.2 Wide string copying functions
7.29.4.2.1 The wcscpy function
Synopsis

1 #include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);

Description
2 The wcscpy function copies the wide string pointed to by s2 (including the terminating null wide

character) into the array pointed to by s1.

Returns
3 The wcscpy function returns the value of s1.

7.29.4.2.2 The wcsncpy function
Synopsis

1 #include <wchar.h>
wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsncpy function copies not more than n wide characters (those that follow a null wide character

are not copied) from the array pointed to by s2 to the array pointed to by s1.375)

3 If the array pointed to by s2 is a wide string that is shorter than n wide characters, null wide
characters are appended to the copy in the array pointed to by s1, until n wide characters in all have

375)Thus, if there is no null wide character in the first n wide characters of the array pointed to by s2, the result will not be
null-terminated.

372 Library § 7.29.4.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

been written.

Returns
4 The wcsncpy function returns the value of s1.

7.29.4.2.3 The wmemcpy function
Synopsis

1 #include <wchar.h>
wchar_t *wmemcpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wmemcpy function copies n wide characters from the object pointed to by s2 to the object pointed

to by s1.

Returns
3 The wmemcpy function returns the value of s1.

7.29.4.2.4 The wmemmove function
Synopsis

1 #include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wmemmove function copies n wide characters from the object pointed to by s2 to the object

pointed to by s1. Copying takes place as if the n wide characters from the object pointed to by s2
are first copied into a temporary array of n wide characters that does not overlap the objects pointed
to by s1 or s2, and then the n wide characters from the temporary array are copied into the object
pointed to by s1.

Returns
3 The wmemmove function returns the value of s1.

7.29.4.3 Wide string concatenation functions
7.29.4.3.1 The wcscat function
Synopsis

1 #include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

Description
2 The wcscat function appends a copy of the wide string pointed to by s2 (including the terminating

null wide character) to the end of the wide string pointed to by s1. The initial wide character of s2
overwrites the null wide character at the end of s1.

Returns
3 The wcscat function returns the value of s1.

7.29.4.3.2 The wcsncat function
Synopsis

1 #include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

§ 7.29.4.3.2 Library 373

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The wcsncat function appends not more than n wide characters (a null wide character and those

that follow it are not appended) from the array pointed to by s2 to the end of the wide string pointed
to by s1. The initial wide character of s2 overwrites the null wide character at the end of s1. A
terminating null wide character is always appended to the result.376)

Returns
3 The wcsncat function returns the value of s1.

7.29.4.4 Wide string comparison functions
1 Unless explicitly stated otherwise, the functions described in this subclause order two wide charac-

ters the same way as two integers of the underlying integer type designated by wchar_t.

7.29.4.4.1 The wcscmp function
Synopsis

1 #include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcscmp function compares the wide string pointed to by s1 to the wide string pointed to by s2.

Returns
3 The wcscmp function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2.

7.29.4.4.2 The wcscoll function
Synopsis

1 #include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcscoll function compares the wide string pointed to by s1 to the wide string pointed to by

s2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns
3 The wcscoll function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.29.4.4.3 The wcsncmp function
Synopsis

1 #include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wcsncmp function compares not more than n wide characters (those that follow a null wide

character are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The wcsncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

376)Thus, the maximum number of wide characters that can end up in the array pointed to by s1 is wcslen(s1)+n+1.

374 Library § 7.29.4.4.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.29.4.4.4 The wcsxfrm function
Synopsis

1 #include <wchar.h>
size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

Description
2 The wcsxfrm function transforms the wide string pointed to by s2 and places the resulting wide

string into the array pointed to by s1. The transformation is such that if the wcscmp function is
applied to two transformed wide strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the wcscoll function applied to the same two original wide strings.
No more than n wide characters are placed into the resulting array pointed to by s1, including the
terminating null wide character. If n is zero, s1 is permitted to be a null pointer.

Returns
3 The wcsxfrm function returns the length of the transformed wide string (not including the terminat-

ing null wide character). If the value returned is n or greater, the contents of the array pointed to by
s1 are indeterminate.

4 EXAMPLE The value of the following expression is the length of the array needed to hold the transformation of the wide
string pointed to by s:

1 + wcsxfrm(NULL, s, 0)

7.29.4.4.5 The wmemcmp function
Synopsis

1 #include <wchar.h>
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description
2 The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first

n wide characters of the object pointed to by s2.

Returns
3 The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.29.4.5 Wide string search functions
7.29.4.5.1 The wcschr function
Synopsis

1 #include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

Description
2 The wcschr function locates the first occurrence of c in the wide string pointed to by s. The

terminating null wide character is considered to be part of the wide string.

Returns
3 The wcschr function returns a pointer to the located wide character, or a null pointer if the wide

character does not occur in the wide string.

7.29.4.5.2 The wcscspn function
Synopsis

1 #include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

§ 7.29.4.5.2 Library 375

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The wcscspn function computes the length of the maximum initial segment of the wide string

pointed to by s1 which consists entirely of wide characters not from the wide string pointed to by
s2.

Returns
3 The wcscspn function returns the length of the segment.

376 Library § 7.29.4.5.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.29.4.5.3 The wcspbrk function
Synopsis

1 #include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcspbrk function locates the first occurrence in the wide string pointed to by s1 of any wide

character from the wide string pointed to by s2.

Returns
3 The wcspbrk function returns a pointer to the wide character in s1, or a null pointer if no wide

character from s2 occurs in s1.

7.29.4.5.4 The wcsrchr function
Synopsis

1 #include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Description
2 The wcsrchr function locates the last occurrence of c in the wide string pointed to by s. The

terminating null wide character is considered to be part of the wide string.

Returns
3 The wcsrchr function returns a pointer to the wide character, or a null pointer if c does not occur in

the wide string.

7.29.4.5.5 The wcsspn function
Synopsis

1 #include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcsspn function computes the length of the maximum initial segment of the wide string pointed

to by s1 which consists entirely of wide characters from the wide string pointed to by s2.

Returns
3 The wcsspn function returns the length of the segment.

7.29.4.5.6 The wcsstr function
Synopsis

1 #include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcsstr function locates the first occurrence in the wide string pointed to by s1 of the sequence

of wide characters (excluding the terminating null wide character) in the wide string pointed to by
s2.

Returns
3 The wcsstr function returns a pointer to the located wide string, or a null pointer if the wide string

is not found. If s2 points to a wide string with zero length, the function returns s1.

§ 7.29.4.5.6 Library 377

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.29.4.5.7 The wcstok function
Synopsis

1 #include <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,

wchar_t ** restrict ptr);

Description
2 A sequence of calls to the wcstok function breaks the wide string pointed to by s1 into a sequence

of tokens, each of which is delimited by a wide character from the wide string pointed to by s2. The
third argument points to a caller-provided wchar_t pointer into which the wcstok function stores
information necessary for it to continue scanning the same wide string.

3 The first call in a sequence has a non-null first argument and stores an initial value in the object
pointed to by ptr. Subsequent calls in the sequence have a null first argument and the object pointed
to by ptr is required to have the value stored by the previous call in the sequence, which is then
updated. The separator wide string pointed to by s2 may be different from call to call.

4 The first call in the sequence searches the wide string pointed to by s1 for the first wide character
that is not contained in the current separator wide string pointed to by s2. If no such wide character
is found, then there are no tokens in the wide string pointed to by s1 and the wcstok function
returns a null pointer. If such a wide character is found, it is the start of the first token.

5 The wcstok function then searches from there for a wide character that is contained in the current
separator wide string. If no such wide character is found, the current token extends to the end of the
wide string pointed to by s1, and subsequent searches in the same wide string for a token return
a null pointer. If such a wide character is found, it is overwritten by a null wide character, which
terminates the current token.

6 In all cases, the wcstok function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start
searching just past the element overwritten by a null wide character (if any).

Returns
7 The wcstok function returns a pointer to the first wide character of a token, or a null pointer if there

is no token.
8 EXAMPLE

#include <wchar.h>
static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptr1, *ptr2;

t = wcstok(str1, L"?", &ptr1); // t points to the token L"a"
t = wcstok(NULL, L",", &ptr1); // t points to the token L"??b"
t = wcstok(str2, L" \t", &ptr2); // t is a null pointer
t = wcstok(NULL, L"#,", &ptr1); // t points to the token L"c"
t = wcstok(NULL, L"?", &ptr1); // t is a null pointer

7.29.4.5.8 The wmemchr function
Synopsis

1 #include <wchar.h>
wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Description
2 The wmemchr function locates the first occurrence of c in the initial n wide characters of the object

pointed to by s.

378 Library § 7.29.4.5.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
3 The wmemchr function returns a pointer to the located wide character, or a null pointer if the wide

character does not occur in the object.

7.29.4.6 Miscellaneous functions
7.29.4.6.1 The wcslen function
Synopsis

1 #include <wchar.h>
size_t wcslen(const wchar_t *s);

Description
2 The wcslen function computes the length of the wide string pointed to by s.

Returns
3 The wcslen function returns the number of wide characters that precede the terminating null wide

character.

7.29.4.6.2 The wmemset function
Synopsis

1 #include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description
2 The wmemset function copies the value of c into each of the first n wide characters of the object

pointed to by s.

Returns
3 The wmemset function returns the value of s.

7.29.5 Wide character time conversion functions
7.29.5.1 The wcsftime function
Synopsis

1 #include <time.h>
#include <wchar.h>
size_t wcsftime(wchar_t * restrict s, size_t maxsize,

const wchar_t * restrict format, const struct tm * restrict timeptr);

Description
2 The wcsftime function is equivalent to the strftime function, except that:

— The argument s points to the initial element of an array of wide characters into which the
generated output is to be placed.

— The argument maxsize indicates the limiting number of wide characters.

— The argument format is a wide string and the conversion specifiers are replaced by corre-
sponding sequences of wide characters.

— The return value indicates the number of wide characters.

Returns
3 If the total number of resulting wide characters including the terminating null wide character is not

more than maxsize, the wcsftime function returns the number of wide characters placed into the
array pointed to by s not including the terminating null wide character. Otherwise, zero is returned
and the contents of the array are indeterminate.

§ 7.29.5.1 Library 379

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.29.6 Extended multibyte/wide character conversion utilities
1 The header <wchar.h> declares an extended set of functions useful for conversion between multibyte

characters and wide characters.

2 Most of the following functions — those that are listed as "restartable", 7.29.6.3 and 7.29.6.4 — take
as a last argument a pointer to an object of type mbstate_t that is used to describe the current
conversion state from a particular multibyte character sequence to a wide character sequence (or the
reverse) under the rules of a particular setting for the LC_CTYPE category of the current locale.

3 The initial conversion state corresponds, for a conversion in either direction, to the beginning of a
new multibyte character in the initial shift state. A zero-valued mbstate_t object is (at least) one
way to describe an initial conversion state. A zero-valued mbstate_t object can be used to initiate
conversion involving any multibyte character sequence, in any LC_CTYPE category setting. If an
mbstate_t object has been altered by any of the functions described in this subclause, and is then
used with a different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is undefined.377)

4 On entry, each function takes the described conversion state (either internal or pointed to by an
argument) as current. The conversion state described by the referenced object is altered as needed
to track the shift state, and the position within a multibyte character, for the associated multibyte
character sequence.

7.29.6.1 Single-byte/wide character conversion functions
7.29.6.1.1 The btowc function
Synopsis

1 #include <wchar.h>
wint_t btowc(int c);

Description
2 The btowc function determines whether c constitutes a valid single-byte character in the initial shift

state.

Returns
3 The btowc function returns WEOF if c has the value EOF or if (unsigned char)c does not constitute

a valid single-byte character in the initial shift state. Otherwise, it returns the wide character
representation of that character.

7.29.6.1.2 The wctob function
Synopsis

1 #include <wchar.h>
int wctob(wint_t c);

Description
2 The wctob function determines whether c corresponds to a member of the extended character set

whose multibyte character representation is a single byte when in the initial shift state.

Returns
3 The wctob function returns EOF if c does not correspond to a multibyte character with length one

in the initial shift state. Otherwise, it returns the single-byte representation of that character as an
unsigned char converted to an int.

7.29.6.2 Conversion state functions
7.29.6.2.1 The mbsinit function
Synopsis

1 #include <wchar.h>

377)Thus, a particular mbstate_t object can be used, for example, with both the mbrtowc and mbsrtowcs functions as long
as they are used to step sequentially through the same multibyte character string.

380 Library § 7.29.6.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

int mbsinit(const mbstate_t *ps);

Description
2 If ps is not a null pointer, the mbsinit function determines whether the referenced mbstate_t object

describes an initial conversion state.

Returns
3 The mbsinit function returns nonzero if ps is a null pointer or if the referenced object describes an

initial conversion state; otherwise, it returns zero.

7.29.6.3 Restartable multibyte/wide character conversion functions
1 These functions differ from the corresponding multibyte character functions of 7.22.7 (mblen, mbtowc,

and wctomb) in that they have an extra parameter, ps, of type pointer to mbstate_t that points
to an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object
instead, which is initialized prior to the first call to the function to the initial conversion state; the
functions are not required to avoid data races with other calls to the same function in this case. It
is implementation-defined whether the internal mbstate_t object has thread storage duration; if
it has thread storage duration, it is initialized to the initial conversion state prior to the first call to
the function on the new thread. The implementation behaves as if no library function calls these
functions with a null pointer for ps.

2 Also unlike their corresponding functions, the return value does not represent whether the encoding
is state-dependent.

7.29.6.3.1 The mbrlen function
Synopsis

1 #include <wchar.h>
size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);

Description
2 The mbrlen function is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps: &internal)

where internal is the mbstate_t object for the mbrlen function, except that the expression desig-
nated by ps is evaluated only once.

Returns
3 The mbrlen function returns a value between zero and n, inclusive,(size_t)(−2), or(size_t)(−1).

Forward references: the mbrtowc function (7.29.6.3.2).

7.29.6.3.2 The mbrtowc function
Synopsis

1 #include <wchar.h>
size_t mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,

mbstate_t * restrict ps);

Description
2 If s is a null pointer, the mbrtowc function is equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the parameters pwc and n are ignored.

§ 7.29.6.3.2 Library 381

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the resulting state described is the initial conversion state.

Returns
4 The mbrtowc function returns the first of the following that applies (given the current conversion

state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that complete the
multibyte character.

(size_t)(−2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).378)

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the
macro EILSEQ is stored in errno, and the conversion state is unspecified.

7.29.6.3.3 The wcrtomb function
Synopsis

1 #include <wchar.h>
size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);

Description
2 If s is a null pointer, the wcrtomb function is equivalent to the call

wcrtomb(buf, L’\0’, ps)

where buf is an internal buffer.

3 If s is not a null pointer, the wcrtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by wc (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

Returns
4 The wcrtomb function returns the number of bytes stored in the array object (including any shift

sequences). When wc is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t)(−1); the conversion state is unspecified.

7.29.6.4 Restartable multibyte/wide string conversion functions
1 These functions differ from the corresponding multibyte string functions of 7.22.8 (mbstowcs and

wcstombs) in that they have an extra parameter, ps, of type pointer to mbstate_t that points to
an object that can completely describe the current conversion state of the associated multibyte
character sequence. If ps is a null pointer, each function uses its own internal mbstate_t object
instead, which is initialized prior to the first call to the function to the initial conversion state; the

378)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

382 Library § 7.29.6.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

functions are not required to avoid data races with other calls to the same function in this case. It
is implementation-defined whether the internal mbstate_t object has thread storage duration; if
it has thread storage duration, it is initialized to the initial conversion state prior to the first call to
the function on the new thread. The implementation behaves as if no library function calls these
functions with a null pointer for ps.

2 Also unlike their corresponding functions, the conversion source parameter, src, has a pointer-to-
pointer type. When the function is storing the results of conversions (that is, when dst is not a null
pointer), the pointer object pointed to by this parameter is updated to reflect the amount of the
source processed by that invocation.

7.29.6.4.1 The mbsrtowcs function
Synopsis

1 #include <wchar.h>
size_t mbsrtowcs(wchar_t * restrict dst, const char ** restrict src, size_t len,

mbstate_t * restrict ps);

Description
2 The mbsrtowcs function converts a sequence of multibyte characters that begins in the conversion

state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are
stored into the array pointed to by dst. Conversion continues up to and including a terminating
null character, which is also stored. Conversion stops earlier in two cases: when a sequence of bytes
is encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when
len wide characters have been stored into the array pointed to by dst.379) Each conversion takes
place as if by a call to the mbrtowc function.

3 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
multibyte character converted (if any). If conversion stopped due to reaching a terminating null
character and if dst is not a null pointer, the resulting state described is the initial conversion state.

Returns
4 If the input conversion encounters a sequence of bytes that do not form a valid multibyte character,

an encoding error occurs: the mbsrtowcs function stores the value of the macro EILSEQ in errno
and returns (size_t)(-1); the conversion state is unspecified. Otherwise, it returns the number of
multibyte characters successfully converted, not including the terminating null character (if any).

7.29.6.4.2 The wcsrtombs function
Synopsis

1 #include <wchar.h>
size_t wcsrtombs(char * restrict dst, const wchar_t ** restrict src, size_t len,

mbstate_t * restrict ps);

Description
2 The wcsrtombs function converts a sequence of wide characters from the array indirectly pointed to

by src into a sequence of corresponding multibyte characters that begins in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters are then
stored into the array pointed to by dst. Conversion continues up to and including a terminating null
wide character, which is also stored. Conversion stops earlier in two cases: when a wide character
is reached that does not correspond to a valid multibyte character, or (if dst is not a null pointer)
when the next multibyte character would exceed the limit of len total bytes to be stored into the
array pointed to by dst. Each conversion takes place as if by a call to the wcrtomb function.380)

379)Thus, the value of len is ignored if dst is a null pointer.
380)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary

to reach the initial shift state immediately before the null byte.

§ 7.29.6.4.2 Library 383

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide character) or the address just past the
last wide character converted (if any). If conversion stopped due to reaching a terminating null wide
character, the resulting state described is the initial conversion state.

Returns
4 If conversion stops because a wide character is reached that does not correspond to a valid multibyte

character, an encoding error occurs: the wcsrtombs function stores the value of the macro EILSEQ
in errno and returns (size_t)(−1); the conversion state is unspecified. Otherwise, it returns the
number of bytes in the resulting multibyte character sequence, not including the terminating null
character (if any).

384 Library § 7.29.6.4.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.30 Wide character classification and mapping utilities <wctype.h>
7.30.1 Introduction

1 The header <wctype.h> defines one macro, and declares three data types and many functions.381)

2 The types declared are wint_t described in 7.29.1;

wctrans_t

which is a scalar type that can hold values which represent locale-specific character mappings; and

wctype_t

which is a scalar type that can hold values which represent locale-specific character classifications.

3 The macro defined is WEOF (described in 7.29.1).

4 The functions declared are grouped as follows:

— Functions that provide wide character classification;

— Extensible functions that provide wide character classification;

— Functions that provide wide character case mapping;

— Extensible functions that provide wide character mapping.

5 For all functions described in this subclause that accept an argument of type wint_t, the value shall
be representable as a wchar_t or shall equal the value of the macro WEOF. If this argument has any
other value, the behavior is undefined.

6 The behavior of these functions is affected by the LC_CTYPE category of the current locale.

7.30.2 Wide character classification utilities
1 The header <wctype.h> declares several functions useful for classifying wide characters.

2 The term printing wide character refers to a member of a locale-specific set of wide characters, each of
which occupies at least one printing position on a display device. The term control wide character
refers to a member of a locale-specific set of wide characters that are not printing wide characters.

7.30.2.1 Wide character classification functions
1 The functions in this subclause return nonzero (true) if and only if the value of the argument wc

conforms to that in the description of the function.

2 Each of the following functions returns true for each wide character that corresponds (as if by a call
to the wctob function) to a single-byte character for which the corresponding character classification
function from 7.4.1 returns true, except that the iswgraph and iswpunct functions may differ with
respect to wide characters other than L’’ that are both printing and white-space wide characters.382)

Forward references: the wctob function (7.29.6.1.2).

381)See "future library directions" (7.31.19).
382)For example, if the expression isalpha(wctob(wc)) evaluates to true, then the call iswalpha(wc) also returns true.

But, if the expression isgraph(wctob(wc)) evaluates to true (which cannot occur for wc == L’’ of course), then either
iswgraph(wc) or iswprint(wc)&& iswspace(wc) is true, but not both.

§ 7.30.2.1 Library 385

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

7.30.2.1.1 The iswalnum function
Synopsis

1 #include <wctype.h>
int iswalnum(wint_t wc);

Description
2 The iswalnum function tests for any wide character for which iswalpha or iswdigit is true.

7.30.2.1.2 The iswalpha function
Synopsis

1 #include <wctype.h>
int iswalpha(wint_t wc);

Description
2 The iswalpha function tests for any wide character for which iswupper or iswlower is true, or any

wide character that is one of a locale-specific set of alphabetic wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true.383)

7.30.2.1.3 The iswblank function
Synopsis

1 #include <wctype.h>
int iswblank(wint_t wc);

Description
2 The iswblank function tests for any wide character that is a standard blank wide character or is one

of a locale-specific set of wide characters for which iswspace is true and that is used to separate
words within a line of text. The standard blank wide characters are the following: space (L’’),
and horizontal tab (L’\t’). In the "C" locale, iswblank returns true only for the standard blank
characters.

7.30.2.1.4 The iswcntrl function
Synopsis

1 #include <wctype.h>
int iswcntrl(wint_t wc);

Description
2 The iswcntrl function tests for any control wide character.

7.30.2.1.5 The iswdigit function
Synopsis

1 #include <wctype.h>
int iswdigit(wint_t wc);

Description
2 The iswdigit function tests for any wide character that corresponds to a decimal-digit character (as

defined in 5.2.1).

383)The functions iswlower and iswupper test true or false separately for each of these additional wide characters; all four
combinations are possible.

386 Library § 7.30.2.1.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.30.2.1.6 The iswgraph function
Synopsis

1 #include <wctype.h>
int iswgraph(wint_t wc);

Description
2 The iswgraph function tests for any wide character for which iswprint is true and iswspace is

false.384)

7.30.2.1.7 The iswlower function
Synopsis

1 #include <wctype.h>
int iswlower(wint_t wc);

Description
2 The iswlower function tests for any wide character that corresponds to a lowercase letter or is one

of a locale-specific set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or
iswspace is true.

7.30.2.1.8 The iswprint function
Synopsis

1 #include <wctype.h>
int iswprint(wint_t wc);

Description
2 The iswprint function tests for any printing wide character.

7.30.2.1.9 The iswpunct function
Synopsis

1 #include <wctype.h>
int iswpunct(wint_t wc);

Description
2 The iswpunct function tests for any printing wide character that is one of a locale-specific set of

punctuation wide characters for which neither iswspace nor iswalnum is true.384)

7.30.2.1.10 The iswspace function
Synopsis

1 #include <wctype.h>
int iswspace(wint_t wc);

Description
2 The iswspace function tests for any wide character that corresponds to a locale-specific set of

white-space wide characters for which none of iswalnum, iswgraph, or iswpunct is true.

7.30.2.1.11 The iswupper function
Synopsis

1 #include <wctype.h>
int iswupper(wint_t wc);

384)Note that the behavior of the iswgraph and iswpunct functions can differ from their corresponding functions in 7.4.1
with respect to printing, white-space, single-byte execution characters other than’ ’ .

§ 7.30.2.1.11 Library 387

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The iswupper function tests for any wide character that corresponds to an uppercase letter or is

one of a locale-specific set of wide characters for which none of iswcntrl, iswdigit, iswpunct, or
iswspace is true.

7.30.2.1.12 The iswxdigit function
Synopsis

1 #include <wctype.h>
int iswxdigit(wint_t wc);

Description
2 The iswxdigit function tests for any wide character that corresponds to a hexadecimal-digit

character (as defined in 6.4.4.1).

7.30.2.2 Extensible wide character classification functions
1 The functions wctype and iswctype provide extensible wide character classification as well as

testing equivalent to that performed by the functions described in the previous subclause (7.30.2.1).

7.30.2.2.1 The iswctype function
Synopsis

1 #include <wctype.h>
int iswctype(wint_t wc, wctype_t desc);

Description
2 The iswctype function determines whether the wide character wc has the property described by

desc. The current setting of the LC_CTYPE category shall be the same as during the call to wctype
that returned the value desc.

3 Each of the following expressions has a truth-value equivalent to the call to the wide character
classification function (7.30.2.1) in the comment that follows the expression:

iswctype(wc, wctype("alnum")) // iswalnum(wc)
iswctype(wc, wctype("alpha")) // iswalpha(wc)
iswctype(wc, wctype("blank")) // iswblank(wc)
iswctype(wc, wctype("cntrl")) // iswcntrl(wc)
iswctype(wc, wctype("digit")) // iswdigit(wc)
iswctype(wc, wctype("graph")) // iswgraph(wc)
iswctype(wc, wctype("lower")) // iswlower(wc)
iswctype(wc, wctype("print")) // iswprint(wc)
iswctype(wc, wctype("punct")) // iswpunct(wc)
iswctype(wc, wctype("space")) // iswspace(wc)
iswctype(wc, wctype("upper")) // iswupper(wc)
iswctype(wc, wctype("xdigit")) // iswxdigit(wc)

Returns
4 The iswctype function returns nonzero (true) if and only if the value of the wide character wc has

the property described by desc. If desc is zero, the iswctype function returns zero (false).

Forward references: the wctype function (7.30.2.2.2).

7.30.2.2.2 The wctype function
Synopsis

1 #include <wctype.h>
wctype_t wctype(const char *property);

388 Library § 7.30.2.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
2 The wctype function constructs a value with type wctype_t that describes a class of wide characters

identified by the string argument property.

3 The strings listed in the description of the iswctype function shall be valid in all locales as property
arguments to the wctype function.

Returns
4 If property identifies a valid class of wide characters according to the LC_CTYPE category of the

current locale, the wctype function returns a nonzero value that is valid as the second argument to
the iswctype function; otherwise, it returns zero.

7.30.3 Wide character case mapping utilities
1 The header <wctype.h> declares several functions useful for mapping wide characters.

7.30.3.1 Wide character case mapping functions
7.30.3.1.1 The towlower function
Synopsis

1 #include <wctype.h>
wint_t towlower(wint_t wc);

Description
2 The towlower function converts an uppercase letter to a corresponding lowercase letter.

Returns
3 If the argument is a wide character for which iswupper is true and there are one or more correspond-

ing wide characters, as specified by the current locale, for which iswlower is true, the towlower
function returns one of the corresponding wide characters (always the same one for any given
locale); otherwise, the argument is returned unchanged.

7.30.3.1.2 The towupper function
Synopsis

1 #include <wctype.h>
wint_t towupper(wint_t wc);

Description
2 The towupper function converts a lowercase letter to a corresponding uppercase letter.

Returns
3 If the argument is a wide character for which iswlower is true and there are one or more correspond-

ing wide characters, as specified by the current locale, for which iswupper is true, the towupper
function returns one of the corresponding wide characters (always the same one for any given
locale); otherwise, the argument is returned unchanged.

7.30.3.2 Extensible wide character case mapping functions
1 The functions wctrans and towctrans provide extensible wide character mapping as well as case

mapping equivalent to that performed by the functions described in the previous subclause (7.30.3.1).

7.30.3.2.1 The towctrans function
Synopsis

1 #include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

§ 7.30.3.2.1 Library 389

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The towctrans function maps the wide character wc using the mapping described by desc. The

current setting of the LC_CTYPE category shall be the same as during the call to wctrans that returned
the value desc.

3 Each of the following expressions behaves the same as the call to the wide character case mapping
function (7.30.3.1) in the comment that follows the expression:

towctrans(wc, wctrans("tolower")) // towlower(wc)
towctrans(wc, wctrans("toupper")) // towupper(wc)

Returns
4 The towctrans function returns the mapped value of wc using the mapping described by desc. If

desc is zero, the towctrans function returns the value of wc.

7.30.3.2.2 The wctrans function
Synopsis

1 #include <wctype.h>
wctrans_t wctrans(const char *property);

Description
2 The wctrans function constructs a value with type wctrans_t that describes a mapping between

wide characters identified by the string argument property.

3 The strings listed in the description of the towctrans function shall be valid in all locales as
property arguments to the wctrans function.

Returns
4 If property identifies a valid mapping of wide characters according to the LC_CTYPE category of the

current locale, the wctrans function returns a nonzero value that is valid as the second argument to
the towctrans function; otherwise, it returns zero.

390 Library § 7.30.3.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.31 Future library directions
1 The following names are grouped under individual headers for convenience. All external names

described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
1 The function names

cacospi
casinpi
catanpi
ccompoundn
ccospi
cerfc
cerf

cexp10m1
cexp10
cexp2m1
cexp2
cexpm1
clgamma
clog10p1

clog10
clog1p
clog2p1
clog2
clogp1
cpown
cpowr

crootn
crsqrt
csinpi
ctanpi
ctgamma

and the same names suffixed with f or l are potentially reserved identifiers and may be added to
the declarations in the <complex.h> header.

7.31.2 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter are potentially reserved

identifiers and may be added to the declarations in the <ctype.h> header.

7.31.3 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header by a future revision of this document or by an implementation.

7.31.4 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header by a future revision of this document.

7.31.5 Characteristics of floating types <float.h>
1 Macros that begin with DBL_, DEC32_, DEC64_, DEC128_, DEC_, FLT_, or LDBL_ and an uppercase

letter are potentially reserved identifiers and may be added to the macros defined in the <float.h>
header.

7.31.6 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter or X are potentially reserved

identifiers and may be added to the macros defined in the <inttypes.h> header.

2 Function names that begin with str, or wcs and a lowercase letter are potentially reserved identifiers
may be added to the declarations in the <inttypes.h> header.

7.31.7 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header by a future revision of this document or by an implementation.

7.31.8 Mathematics <math.h>
1 Macros that begin with FP_ or MATH_ and an uppercase letter may be added to the macros defined

in the <math.h> header by a future revision of this document or by an implementation.

Macros that begin with MATH_ and an uppercase letter are potentially reserved identifiers and may
be added to the macros in the <math.h> header.

2 Use of the DECIMAL_DIG macro is an obsolescent feature. A similar type-specific macro, such as
LDBL_DECIMAL_DIG, can be used instead.

3 Function names that begin with is and a lowercase letter are potentially reserved identifiers and
may be added to the declarations in the <math.h> header.

§ 7.31.8 Library 391

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

4 The function names

cr_acosh
cr_acospi
cr_acos
cr_asinh
cr_asinpi
cr_asin
cr_atan2pi
cr_atan2

cr_atanh
cr_atanpi
cr_atan
cr_compoundn
cr_cosh
cr_cospi
cr_cos
cr_exp10m1

cr_exp10
cr_exp2m1
cr_exp2
cr_expm1
cr_exp
cr_hypot
cr_log10p1
cr_log10

cr_log1p
cr_log2p1
cr_log2
cr_logp1
cr_log
cr_pown
cr_powr
cr_pow

cr_rootn
cr_rsqrt
cr_sinh
cr_sinpi
cr_sin
cr_tanh
cr_tanpi
cr_tan

and the same names suffixed with f, l, d32, d64, or d128 are potentially reserved identifiers and
may be added to the <math.h> header. The cr_ prefix is intended to indicate a correctly rounded
version of the function.

7.31.9 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header by a fture revision of this document or by an
implementation.

7.31.10 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter are potentially reserved identifiers and

may be added to the macros defined in the <stdatomic.h> header. Typedef names that begin with
either atomic_ or memory_, and a lowercase letter are potentially reserved identifiers and may be
added to the declarations in the <stdatomic.h> header. Enumeration constants that begin with
memory_order_ and a lowercase letter are potentially reserved identifiers and may be added to
the definition of the memory_order type in the <stdatomic.h> header. Function names that begin
with atomic_ and a lowercase letter are potentially reserved identifiers and may be added to the
declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.11 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent

feature.

7.31.12 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t are potentially reserved identifiers

and may be added to the types defined in the <stdint.h> header. Macro names beginning with
INT or UINT and ending with _MAX, _MIN, _WIDTH, or _C are potentially reserved identifiers and may
be added to the macros defined in the <stdint.h> header.

7.31.13 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.14 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter are potentially reserved identifiers

and may be added to the declarations in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.15 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter are potentially reserved

identifiers and may be added to the declarations in the <string.h> header.

392 Library § 7.31.15

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

7.31.16 Date and time <time.h>
Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header by a future revision of this document or by an implementation.

7.31.17 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_, or

tss_, and a lowercase letter are potentially reserved identifiers and may be added to the declarations
in the <threads.h> header.

7.31.18 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter are potentially reserved identifiers and

may be added to the declarations in the <wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

7.31.19 Wide character classification and mapping utilities <wctype.h>
1 Function names that begin with is or to and a lowercase letter are potentially reserved identifiers

and may be added to the declarations in the <wctype.h> header.

§ 7.31.19 Library 393

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex A
(informative)

Language syntax summary

1 NOTE The notation is described in 6.1.

A.1 Lexical grammar
A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

A.1.2 Keywords

(6.4.1) keyword: one of
auto
break
case
char
const
continue
default
do
double
else
enum
extern

float
for
goto
if
inline
int
long
register
restrict
return
short
signed

sizeof
static
struct
switch
typedef
union
unsigned
void
volatile
while
_Alignas
_Alignof

_Atomic
_Bool
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn
_Static_assert
_Thread_local

A.1.3 Identifiers

(6.4.2.1) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

(6.4.2.1) identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

394 Language syntax summary § A.1.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.4.2.1) nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

(6.4.2.1) digit: one of
0 1 2 3 4 5 6 7 8 9

A.1.4 Universal character names

(6.4.3) universal-character-name:
\u hex-quad
\U hex-quad hex-quad

(6.4.3) hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

A.1.5 Constants

(6.4.4) constant:
integer-constant
floating-constant
enumeration-constant
character-constant

(6.4.4.1) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

(6.4.4.1) decimal-constant:
nonzero-digit
decimal-constant digit

(6.4.4.1) octal-constant:
0
octal-constant octal-digit

(6.4.4.1) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.4.4.1) hexadecimal-prefix: one of
0x 0X

(6.4.4.1) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.4.1) octal-digit: one of
0 1 2 3 4 5 6 7

(6.4.4.1) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

§ A.1.5 Language syntax summary 395

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.4.4.1) integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

(6.4.4.1) unsigned-suffix: one of
u U

(6.4.4.1) long-suffix: one of
l L

(6.4.4.1) long-long-suffix: one of
ll LL

(6.4.4.2) floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

(6.4.4.2) decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

(6.4.4.2) hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

(6.4.4.2) fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

(6.4.4.2) exponent-part:
e signopt digit-sequence
E signopt digit-sequence

(6.4.4.2) sign: one of
+ -

(6.4.4.2) digit-sequence:
digit
digit-sequence digit

(6.4.4.2) hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

(6.4.4.2) binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

(6.4.4.2) hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

(6.4.4.2) floating-suffix: one of
f l F L df dd dl DF DD DL

(6.4.4.3) enumeration-constant:
identifier

396 Language syntax summary § A.1.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.4.4.4) character-constant:
encoding-prefixopt ’ c-char-sequence ’

(6.4.4.4) encoding-prefix:
u8
u
U
L

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.6 String literals
(6.4.5) string-literal:

encoding-prefixopt " s-char-sequenceopt "

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

(6.4.5) s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

A.1.7 Punctuators

§ A.1.7 Language syntax summary 397

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.4.6) punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : :: ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

A.1.8 Header names

(6.4.7) header-name:
< h-char-sequence >
" q-char-sequence "

(6.4.7) h-char-sequence:
h-char
h-char-sequence h-char

(6.4.7) h-char:
any member of the source character set except

the new-line character and >

(6.4.7) q-char-sequence:
q-char
q-char-sequence q-char

(6.4.7) q-char:
any member of the source character set except

the new-line character and "

A.1.9 Preprocessing numbers

(6.4.8) pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

A.2 Phrase structure grammar
A.2.1 Expressions

(6.5.1) primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

398 Language syntax summary § A.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.5.1.1) generic-selection:
_Generic (assignment-expression , generic-assoc-list)

(6.5.1.1) generic-assoc-list:
generic-association
generic-assoc-list , generic-association

(6.5.1.1) generic-association:
type-name : assignment-expression
default : assignment-expression

(6.5.2) postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
(type-name) { initializer-list }
(type-name) { initializer-list , }

(6.5.2) argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

(6.5.3) unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
_Alignof (type-name)

(6.5.3) unary-operator: one of
& * + - ~ !

(6.5.4) cast-expression:
unary-expression
(type-name) cast-expression

(6.5.5) multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

(6.5.6) additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

(6.5.7) shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

§ A.2.1 Language syntax summary 399

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.5.8) relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

(6.5.9) equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

(6.5.10) AND-expression:
equality-expression

AND-expression & equality-expression
(6.5.11) exclusive-OR-expression:

AND-expression
exclusive-OR-expression ^ AND-expression

(6.5.12) inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

(6.5.13) logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

(6.5.14) logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

(6.5.15) conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

(6.5.16) assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

(6.5.16) assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

(6.5.17) expression:
assignment-expression
expression , assignment-expression

(6.6) constant-expression:
conditional-expression

A.2.2 Declarations
(6.7) declaration:

declaration-specifiers init-declarator-listopt ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration attribute-declaration

(6.7) declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers

(6.7) declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier

400 Language syntax summary § A.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.7) init-declarator-list:
init-declarator
init-declarator-list , init-declarator

(6.7) init-declarator:
declarator
declarator = initializer

(6.7) attribute-declaration:
attribute-specifier-sequence ;

(6.7.1) storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register

(6.7.2) type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Decimal32
_Decimal64
_Decimal128
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

(6.7.2.1) struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceopt identifieropt { member-declaration-list }
struct-or-union attribute-specifier-sequenceopt identifier

(6.7.2.1) struct-or-union:
struct
union

(6.7.2.1) member-declaration-list:
member-declaration
member-declaration-list member-declaration

(6.7.2.1) member-declaration:
attribute-specifier-sequenceopt specifier-qualifier-list member-declarator-listopt ;
static_assert-declaration

(6.7.2.1) specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

(6.7.2.1) type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

§ A.2.2 Language syntax summary 401

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.7.2.1) member-declarator-list:
member-declarator
member-declarator-list , member-declarator

(6.7.2.1) member-declarator:
declarator
declaratoropt : constant-expression

(6.7.2.2) enum-specifier:
enum attribute-specifier-sequenceopt identifieropt { enumerator-list }
enum attribute-specifier-sequenceopt identifieropt { enumerator-list , }
enum identifier

(6.7.2.2) enumerator-list:
enumerator
enumerator-list , enumerator

(6.7.2.2) enumerator:
enumeration-constant attribute-specifier-sequenceopt
enumeration-constant attribute-specifier-sequenceopt = constant-expression

(6.7.2.4) atomic-type-specifier:
_Atomic (type-name)

(6.7.3) type-qualifier:
const
restrict
volatile
_Atomic

(6.7.4) function-specifier:
inline
_Noreturn

(6.7.5) alignment-specifier:
_Alignas (type-name)
_Alignas (constant-expression)

(6.7.6) declarator:
pointeropt direct-declarator

(6.7.6) direct-declarator:
identifier attribute-specifier-sequenceopt
(declarator)
array-declarator attribute-specifier-sequenceopt
function-declarator attribute-specifier-sequenceopt

(6.7.6) array-declarator:
direct-declarator [type-qualifier-listopt assignment-expressionopt]
direct-declarator [static type-qualifier-listopt assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]

(6.7.6) function-declarator:
direct-declarator (parameter-type-listopt)

(6.7.6) pointer:
* attribute-specifier-sequenceopt type-qualifier-listopt

* attribute-specifier-sequenceopt type-qualifier-listopt pointer
(6.7.6) type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

(6.7.6) parameter-type-list:
parameter-list
parameter-list , ...

402 Language syntax summary § A.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.7.6) parameter-list:
parameter-declaration
parameter-list , parameter-declaration

(6.7.6) parameter-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator
attribute-specifier-sequenceopt declaration-specifiers abstract-declaratoropt

(6.7.7) type-name:
specifier-qualifier-list abstract-declaratoropt

(6.7.7) abstract-declarator:
pointer
pointeropt direct-abstract-declarator

(6.7.7) direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceopt
function-abstract-declarator attribute-specifier-sequenceopt

(6.7.7) array-abstract-declarator:
direct-abstract-declaratoropt [type-qualifier-listopt assignment-expressionopt]
direct-abstract-declaratoropt [static type-qualifier-listopt assignment-expression]
direct-abstract-declaratoropt [type-qualifier-list static assignment-expression]
direct-abstract-declaratoropt [*]

(6.7.7) function-abstract-declarator:
direct-abstract-declaratoropt (parameter-type-listopt)

(6.7.8) typedef-name:
identifier

(6.7.9) initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

(6.7.9) initializer-list:
designationopt initializer
initializer-list , designationopt initializer

(6.7.9) designation:
designator-list =

(6.7.9) designator-list:
designator
designator-list designator

(6.7.9) designator:
[constant-expression]
. identifier

(6.7.10) static_assert-declaration:
_Static_assert (constant-expression , string-literal) ;
_Static_assert (constant-expression) ;

(6.7.11.1) attribute-specifier-sequence:
attribute-specifier-sequenceopt attribute-specifier

(6.7.11.1) attribute-specifier:
[[attribute-list]]

(6.7.11.1) attribute-list:
attributeopt
attribute-list , attributeopt

(6.7.11.1) attribute:
attribute-token attribute-argument-clauseopt

§ A.2.2 Language syntax summary 403

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.7.11.1) attribute-token:
standard-attribute
attribute-prefixed-token

(6.7.11.1) standard-attribute:
identifier

(6.7.11.1) attribute-prefixed-token:
attribute-prefix :: identifier

(6.7.11.1) attribute-prefix:
identifier

(6.7.11.1) attribute-argument-clause:
(balanced-token-sequenceopt)

(6.7.11.1) balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token

(6.7.11.1) balanced-token:
(balanced-token-sequenceopt)
[balanced-token-sequenceopt]
{ balanced-token-sequenceopt }

any token other than a parenthesis, a bracket, or a brace

A.2.3 Statements

(6.8) statement:
labeled-statement
unlabeled-statement

(6.8) unlabeled-statement:
expression-statement
attribute-specifier-sequenceopt compound-statement
attribute-specifier-sequenceopt selection-statement
attribute-specifier-sequenceopt iteration-statement
attribute-specifier-sequenceopt jump-statement

(6.8.1) label:
attribute-specifier-sequenceopt identifier :
attribute-specifier-sequenceopt case constant-expression :
attribute-specifier-sequenceopt default :

(6.8.1) labeled-statement:
label statement

(6.8.2) compound-statement:
{ block-item-listopt }

(6.8.2) block-item-list:
block-item
block-item-list block-item

(6.8.2) block-item:
declaration
unlabeled-statement
label

(6.8.3) expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;

(6.8.4) selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

404 Language syntax summary § A.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(6.8.5) iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

(6.8.6) jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

A.2.4 External definitions

(6.9) translation-unit:
external-declaration
translation-unit external-declaration

(6.9) external-declaration:
function-definition
declaration

(6.9.1) function-definition:
attribute-specifier-sequenceopt declaration-specifiers declarator function-body

(6.9.1) function-body:
compound-statement

A.3 Preprocessing directives

(6.10) preprocessing-file:
groupopt

(6.10) group:
group-part
group group-part

(6.10) group-part:
if-section
control-line
text-line
non-directive

(6.10) if-section:
if-group elif-groupsopt else-groupopt endif-line

(6.10) if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

(6.10) elif-groups:
elif-group
elif-groups elif-group

(6.10) elif-group:
elif constant-expression new-line groupopt

(6.10) else-group:
else new-line groupopt

§ A.3 Language syntax summary 405

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

(6.10) endif-line:
endif new-line

(6.10) control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list , ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

(6.10) text-line:
pp-tokensopt new-line

(6.10) non-directive:
pp-tokens new-line

(6.10) lparen:
a (character not immediately preceded by white space

(6.10) replacement-list:
pp-tokensopt

(6.10) pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

(6.10) new-line:
the new-line character

(6.10) identifier-list:
identifier
identifier-list , identifier

(6.10.6) standard-pragma:
pragma STDC FP_CONTRACT on-off-switch
pragma STDC FENV_ACCESS on-off-switch
pragma STDC FENV_DEC_ROUND dec-direction
pragma STDC FENV_ROUND direction
pragma STDC CX_LIMITED_RANGE on-off-switch

(6.10.6) on-off-switch: one of
ON OFF DEFAULT

(6.10.6) direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

(6.10.6) dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

A.4 Floating-point subject sequenceA.4.1 NaN char sequence

406 Language syntax summary § A.4.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

(7.22.1.5) n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

A.4.2 NaN wchar_t sequence

(7.29.4.1.1) n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

A.5 Decimal floating-point subject sequence
A.5.1 NaN decimal char sequence

(7.22.1.6) d-char-sequence:
digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

A.5.2 NaN decimal wchar_t sequence

(7.29.4.1.2) d-wchar-sequence:
digit
nondigit
d-wchar-sequence digit
d-wchar-sequence nondigit

§ A.5.2 Language syntax summary 407

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex B
(informative)

Library summary

B.1 Diagnostics <assert.h>

NDEBUG static_assert

void assert(scalar expression);

B.2 Complex <complex.h>

__STDC_NO_COMPLEX__

complex
_Complex_I

imaginary
_Imaginary_I
I

#pragma STDC CX_LIMITED_RANGE on-off-switch
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);
double complex clog(double complex z);
float complex clogf(float complex z);

408 Library summary § B.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

long double complex clogl(long double complex z);
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x, long double complex y);
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);
double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

B.3 Character handling <ctype.h>

int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

B.4 Errors <errno.h>

EDOM EILSEQ ERANGE errno

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <errno.h>:

errno_t

B.5 Floating-point environment <fenv.h>

§ B.5 Library summary 409

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

fenv_t
fexcept_t
FE_DIVBYZERO
FE_INEXACT
FE_INVALID

FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT
FE_DOWNWARD
FE_TONEAREST

FE_TOWARDZERO
FE_UPWARD
FE_DFL_ENV

#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC FENV_ROUND direction
#pragma STDC FENV_ROUND FE_DYNAMIC
int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t *flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexcept(int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);
int fetestexceptflag(const fexcept_t * flagp, int excepts);
int fetestexcept(int excepts);
int fegetmode(femode_t *modep);
int fegetround(void);
int fesetmode(const femode_t *modep);
int fesetround(int round);
int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

Only if the implementation defines __STDC_IEC_60559_DFP__:

FE_DEC_DOWNWARD
FE_DEC_TONEAREST

FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO

FE_DEC_UPWARD

#pragma STDC FENV_DEC_ROUND dec-direction
int fe_dec_getround(void);
int fe_dec_setround(int round);

B.6 Characteristics of floating types <float.h>

FLT_ROUNDS
FLT_EVAL_METHOD
FLT_HAS_SUBNORM
DBL_HAS_SUBNORM
LDBL_HAS_SUBNORM
FLT_RADIX
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
FLT_DECIMAL_DIG
DBL_DECIMAL_DIG
LDBL_DECIMAL_DIG
DECIMAL_DIG
FLT_IS_IEC_60559
DBL_IS_IEC_60559
FLT_DIG
DBL_DIG

LDBL_DIG
FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP
FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP
FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP
FLT_MAX
DBL_MAX
LDBL_MAX
FLT_NORM_MAX

DBL_NORM_MAX
LDBL_NORM_MAX
FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON
FLT_MIN
DBL_MIN
LDBL_MIN
FLT_SNAN
DBL_SNAN
LDBL_SNAN
FLT_TRUE_MIN
DBL_TRUE_MIN
LDBL_TRUE_MIN
INFINITY
NAN

410 Library summary § B.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

B.6.1 Characteristics of decimal floating types
1 The following macros are provided only if the implementation defines __STDC_IEC_60559_DFP__.

N is 32, 64 and 128.

DEC_INFINITY
DEC_NAN
DECN_EPSILON

DECN_MANT_DIG
DECN_MAX_EXP
DECN_MAX

DECN_MIN_EXP
DECN_MIN
DECN_TRUE_MIN

DN_SNAN

B.7 Format conversion of integer types <inttypes.h>

imaxdiv_t

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR
PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR
SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

intmax_t imaxabs(intmax_t j);
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);
intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base);
intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

B.8 Alternative spellings <iso646.h>

and
and_eq
bitand

bitor
compl
not

not_eq
or
or_eq

xor
xor_eq

B.9 Sizes of integer types <limits.h>

BOOL_WIDTH
CHAR_BIT
CHAR_WIDTH
SCHAR_WIDTH
UCHAR_WIDTH
SHRT_WIDTH
USHRT_WIDTH
INT_WIDTH

UINT_WIDTH
LONG_WIDTH
ULONG_WIDTH
LLONG_WIDTH
ULLONG_WIDTH
BOOL_MAX
SCHAR_MIN
SCHAR_MAX

UCHAR_MAX
CHAR_MIN
CHAR_MAX
MB_LEN_MAX
SHRT_MIN
SHRT_MAX
USHRT_MAX
INT_MIN

INT_MAX
UINT_MAX
LONG_MIN
LONG_MAX
ULONG_MAX
LLONG_MIN
LLONG_MAX
ULLONG_MAX

B.10 Localization <locale.h>

struct lconv
NULL

LC_ALL
LC_COLLATE

LC_CTYPE
LC_MONETARY

LC_NUMERIC
LC_TIME

char *setlocale(int category, const char *locale);
struct lconv *localeconv(void);

B.11 Mathematics <math.h>

§ B.11 Library summary 411

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

float_t
double_t
HUGE_VAL
HUGE_VALF
HUGE_VALL
INFINITY
NAN
SNANF

SNAN
SNANL
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
FP_FAST_FMA

FP_FAST_FMAF
FP_FAST_FMAL
FP_ILOGB0
FP_ILOGBNAN
MATH_ERRNO
MATH_ERREXCEPT
math_errhandling

#pragma STDC FP_CONTRACT on-off-switch
int fpclassify(real-floating x);
int iscanonical(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);
int isnan(real-floating x);
int isnormal(real-floating x);
int signbit(real-floating x);
int issignaling(real-floating x);
int issubnormal(real-floating x);
int iszero(real-floating x);
double acos(double x);
float acosf(float x);
long double acosl(long double x);
double asin(double x);
float asinf(float x);
long double asinl(long double x);
double atan(double x);
float atanf(float x);
long double atanl(long double x);
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
double cos(double x);
float cosf(float x);
long double cosl(long double x);
double sin(double x);
float sinf(float x);
long double sinl(long double x);
double tan(double x);
float tanf(float x);
long double tanl(long double x);
double acospi(double x);
float acospif(float x);
long double acospil(long double x);
double asinpi(double x);
float asinpif(float x);
long double asinpil(long double x);
double atanpi(double x);
float atanpif(float x);
long double atanpil(long double x);
double atan2pi(double y, double x);
float atan2pif(float y, float x);
long double atan2pil(long double y, long double x);
double cospi(double x);
float cospif(float x);
long double cospil(long double x);
double sinpi(double x);
float sinpif(float x);
long double sinpil(long double x);
double tanpi(double x);

412 Library summary § B.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

float tanpif(float x);
long double tanpil(long double x);
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);
double exp(double x);
float expf(float x);
long double expl(long double x);
double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);
double exp10m1(double x);
float exp10m1f(float x);
long double exp10m1l(long double x);
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double exp2m1(double x);
float exp2m1f(float x);
long double exp2m1l(long double x);
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double frexp(double value, int *p);
float frexpf(float value, int *p);
long double frexpl(long double value, int *p);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
double ldexp(double x, int p);
float ldexpf(float x, int p);
long double ldexpl(long double x, int p);
long int llogb(double x);
long int llogbf(float x);
long int llogbl(long double x);
double log(double x);
float logf(float x);
long double logl(long double x);
double log10(double x);
float log10f(float x);
long double log10l(long double x);
double log10p1(double x);
float log10p1f(float x);
long double log10p1l(long double x);
double log1p(double x);
float log1pf(float x);

§ B.11 Library summary 413

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

long double log1pl(long double x);
double logp1(double x);
float logp1f(float x);
long double logp1l(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double log2p1(double x);
float log2p1f(float x);
long double log2p1l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
double compoundn(double x, long long int n);
float compoundnf(float x, long long int n);
long double compoundnl(long double x, long long int n);
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
double pown(double x, long long int n);
float pownf(float x, long long int n);
long double pownl(long double x, long long int n);
double powr(double y, double x);
float powrf(float y, float x);
long double powrl(long double y, long double x);
double rootn(double x, long long int n);
float rootnf(float x, long long int n);
long double rootnl(long double x, long long int n);
double rsqrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
double erf(double x);
float erff(float x);
long double erfl(long double x);
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

414 Library summary § B.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
double floor(double x);
float floorf(float x);
long double floorl(long double x);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
double round(double x);
float roundf(float x);
long double roundl(long double x);
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
double fromfp(double x, int round, unsigned int width);
float fromfpf(float x, int round, unsigned int width);
long double fromfpl(long double x, int round, unsigned int width);
double ufromfp(double x, int round, unsigned int width);
float ufromfpf(float x, int round, unsigned int width);
long double ufromfpl(long double x, int round, unsigned int width);
double fromfpx(double x, int round, unsigned int width);
float fromfpxf(float x, int round, unsigned int width);
long double fromfpxl(long double x, int round, unsigned int width);
double ufromfpx(double x, int round, unsigned int width);
float ufromfpxf(float x, int round, unsigned int width);
long double ufromfpxl(long double x, int round, unsigned int width);
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
double nan(const char *tagp);

§ B.11 Library summary 415

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

float nanf(const char *tagp);
long double nanl(const char *tagp);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);
double nextdown(double x);
float nextdownf(float x);
long double nextdownl(long double x);
int canonicalize(double * cx, const double * x);
int canonicalizef(float * cx, const float * x);
int canonicalizel(long double * cx, const long double * x);
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
float fadd(double x, double y);
float faddl(long double x, long double y);
double daddl(long double x, long double y);
float fsub(double x, double y);
float fsubl(long double x, long double y);
double dsubl(long double x, long double y);
float fmul(double x, double y);
float fmull(long double x, long double y);
double dmull(long double x, long double y);
float fdiv(double x, double y);
float fdivl(long double x, long double y);
double ddivl(long double x, long double y);
float ffma(double x, double y, double z);
float ffmal(long double x, long double y, long double z);
double dfmal(long double x, long double y, long double z);
float fsqrt(double x);
float fsqrtl(long double x);
double dsqrtl(long double x);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);
int iseqsig(real-floating x, real-floating y);

Only if the implementation defines __STDC_IEC_60559_DFP__:

_Decimal32 acosd32(_Decimal32 x);
_Decimal64 acosd64(_Decimal64 x);
_Decimal128 acosd128(_Decimal128 x);
_Decimal32 asind32(_Decimal32 x);

416 Library summary § B.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

_Decimal64 asind64(_Decimal64 x);
_Decimal128 asind128(_Decimal128 x);
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimal128 atand128(_Decimal128 x);
_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimal128 cosd128(_Decimal128 x);
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimal64 x);
_Decimal128 sind128(_Decimal128 x);
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimal64 x);
_Decimal128 tand128(_Decimal128 x);
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal64 x);
_Decimal128 acospid128(_Decimal128 x);
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimal128 asinpid128(_Decimal128 x);
_Decimal32 atanpid32(_Decimal32 x);
_Decimal64 atanpid64(_Decimal64 x);
_Decimal128 atanpid128(_Decimal128 x);
_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2pid64(_Decimal64 y, _Decimal64 x);
_Decimal128 atan2pid128(_Decimal128 y, _Decimal128 x);
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64 x);
_Decimal128 cospid128(_Decimal128 x);
_Decimal32 sinpid32(_Decimal32 x);
_Decimal64 sinpid64(_Decimal64 x);
_Decimal128 sinpid128(_Decimal128 x);
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 x);
_Decimal128 tanpid128(_Decimal128 x);
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 x);
_Decimal128 acoshd128(_Decimal128 x);
_Decimal32 asinhd32(_Decimal32 x);
_Decimal64 asinhd64(_Decimal64 x);
_Decimal128 asinhd128(_Decimal128 x);
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimal128 coshd128(_Decimal128 x);
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimal128 sinhd128(_Decimal128 x);
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimal128 tanhd128(_Decimal128 x);
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimal64 x);
_Decimal128 expd128(_Decimal128 x);
_Decimal32 exp10d32(_Decimal32 x);
_Decimal64 exp10d64(_Decimal64 x);

§ B.11 Library summary 417

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

_Decimal128 exp10d128(_Decimal128 x);
_Decimal32 exp10m1d32(_Decimal32 x);
_Decimal64 exp10m1d64(_Decimal64 x);
_Decimal128 exp10m1d128(_Decimal128 x);
_Decimal32 exp2d32(_Decimal32 x);
_Decimal64 exp2d64(_Decimal64 x);
_Decimal128 exp2d128(_Decimal128 x);
_Decimal32 exp2m1d32(_Decimal32 x);
_Decimal64 exp2m1d64(_Decimal64 x);
_Decimal128 exp2m1d128(_Decimal128 x);
_Decimal32 expm1d32(_Decimal32 x);
_Decimal64 expm1d64(_Decimal64 x);
_Decimal128 expm1d128(_Decimal128 x);
_Decimal32 frexpd32(_Decimal32 value, int *p);
_Decimal64 frexpd64(_Decimal64 value, int *p);
_Decimal128 frexpd128(_Decimal128 value, int *p);
int ilogbd32(_Decimal32 x);
int ilogbd64(_Decimal64 x);
int ilogbd128(_Decimal128 x);
_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimal128 ldexpd128(_Decimal128 x, int p);
long int llogbd32(_Decimal32 x);
long int llogbd64(_Decimal64 x);
long int llogbd128(_Decimal128 x);
_Decimal32 logd32(_Decimal32 x);
_Decimal64 logd64(_Decimal64 x);
_Decimal128 logd128(_Decimal128 x);
_Decimal32 log10d32(_Decimal32 x);
_Decimal64 log10d64(_Decimal64 x);
_Decimal128 log10d128(_Decimal128 x);
_Decimal32 log10p1d32(_Decimal32 x);
_Decimal64 log10p1d64(_Decimal64 x);
_Decimal128 log10p1d128(_Decimal128 x);
_Decimal32 log1pd32(_Decimal32 x);
_Decimal64 log1pd64(_Decimal64 x);
_Decimal128 log1pd128(_Decimal128 x);
_Decimal32 logp1d32(_Decimal32 x);
_Decimal64 logp1d64(_Decimal64 x);
_Decimal128 logp1d128(_Decimal128 x);
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimal64 x);
_Decimal128 log2d128(_Decimal128 x);
_Decimal32 log2p1d32(_Decimal32 x);
_Decimal64 log2p1d64(_Decimal64 x);
_Decimal128 log2p1d128(_Decimal128 x);
_Decimal32 logbd32(_Decimal32 x);
_Decimal64 logbd64(_Decimal64 x);
_Decimal128 logbd128(_Decimal128 x);
_Decimal32 modfd32(_Decimal32 x, _Decimal32 *iptr);
_Decimal64 modfd64(_Decimal64 x, _Decimal64 *iptr);
_Decimal128 modfd128(_Decimal128 x, _Decimal128 *iptr);
_Decimal32 scalbnd32(_Decimal32 x, int n);
_Decimal64 scalbnd64(_Decimal64 x, int n);
_Decimal128 scalbnd128(_Decimal128 x, int n);
_Decimal32 scalblnd32(_Decimal32 x, long int n);
_Decimal64 scalblnd64(_Decimal64 x, long int n);
_Decimal128 scalblnd128(_Decimal128 x, long int n);
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal64 cbrtd64(_Decimal64 x);
_Decimal128 cbrtd128(_Decimal128 x);

418 Library summary § B.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

_Decimal32 compoundnd32(_Decimal32 x, long long int n);
_Decimal64 compoundnd64(_Decimal64 x, long long n);
_Decimal128 compoundnd128(_Decimal128 x, long long int n);
_Decimal32 fabsd32(_Decimal32 x);
_Decimal64 fabsd64(_Decimal64 x);
_Decimal128 fabsd128(_Decimal128 x);
_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
_Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);
_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
_Decimal64 powd64(_Decimal64 x, _Decimal64 y);
_Decimal128 powd128(_Decimal128 x, _Decimal128 y);
_Decimal32 pownd32(_Decimal32 x, long long int n);
_Decimal64 pownd64(_Decimal64 x, long long int n);
_Decimal128 pownd128(_Decimal128 x, long long int n);
_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimal128 powrd128(_Decimal128 y, _Decimal128 x);
_Decimal32 rootnd32(_Decimal32 x, long long int n);
_Decimal64 rootnd64(_Decimal64 x, long long int n);
_Decimal128 rootnd128(_Decimal128 x, long long int n);
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimal64 rsqrtd64(_Decimal64 x);
_Decimal128 rsqrtd128(_Decimal128 x);
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal128 sqrtd128(_Decimal128 x);
_Decimal32 erfd32(_Decimal32 x);
_Decimal64 erfd64(_Decimal64 x);
_Decimal128 erfd128(_Decimal128 x);
_Decimal32 erfcd32(_Decimal32 x);
_Decimal64 erfcd64(_Decimal64 x);
_Decimal128 erfcd128(_Decimal128 x);
_Decimal32 lgammad32(_Decimal32 x);
_Decimal64 lgammad64(_Decimal64 x);
_Decimal128 lgammad128(_Decimal128 x);
_Decimal32 tgammad32(_Decimal32 x);
_Decimal64 tgammad64(_Decimal64 x);
_Decimal128 tgammad128(_Decimal128 x);
_Decimal32 ceild32(_Decimal32 x);
_Decimal64 ceild64(_Decimal64 x);
_Decimal128 ceild128(_Decimal128 x);
_Decimal32 floord32(_Decimal32 x);
_Decimal64 floord64(_Decimal64 x);
_Decimal128 floord128(_Decimal128 x);
_Decimal32 nearbyintd32(_Decimal32 x);
_Decimal64 nearbyintd64(_Decimal64 x);
_Decimal128 nearbyintd128(_Decimal128 x);
_Decimal32 rintd32(_Decimal32 x);
_Decimal64 rintd64(_Decimal64 x);
_Decimal128 rintd128(_Decimal128 x);
long int lrintd32(_Decimal32 x);
long int lrintd64(_Decimal64 x);
long int lrintd128(_Decimal128 x);
long long int llrintd32(_Decimal32 x);
long long int llrintd64(_Decimal64 x);
long long int llrintd128(_Decimal128 x);
_Decimal32 roundd32(_Decimal32 x);
_Decimal64 roundd64(_Decimal64 x);
_Decimal128 roundd128(_Decimal128 x);
long int lroundd32(_Decimal32 x);

§ B.11 Library summary 419

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

long int lroundd64(_Decimal64 x);
long int lroundd128(_Decimal128 x);
long long int llroundd32(_Decimal32 x);
long long int llroundd64(_Decimal64 x);
long long int llroundd128(_Decimal128 x);
_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimal64 x);
_Decimal128 roundevend128(_Decimal128 x);
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimal128 truncd128(_Decimal128 x);
_Decimal32 fromfpd32(_Decimal32 x, int round, unsigned int width);
_Decimal64 fromfpd64(_Decimal64 x, int round, unsigned int width);
_Decimal128 fromfpd128(_Decimal128 x, int round, unsigned int width);
_Decimal32 ufromfpd32(_Decimal32 x, int round, unsigned int width);
_Decimal64 ufromfpd64(_Decimal64 x, int round, unsigned int width);
_Decimal128 ufromfpd128(_Decimal128 x, int round, unsigned int width);
_Decimal32 fromfpxd32(_Decimal32 x, int round, unsigned int width);
_Decimal64 fromfpxd64(_Decimal64 x, int round, unsigned int width);
_Decimal128 fromfpxd128(_Decimal128 x, int round, unsigned int width);
_Decimal32 ufromfpxd32(_Decimal32 x, int round, unsigned int width);
_Decimal64 ufromfpxd64(_Decimal64 x, int round, unsigned int width);
_Decimal128 ufromfpxd128(_Decimal128 x, int round, unsigned int width);
_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);
_Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
_Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
_Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);
_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
_Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
_Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nand32(const char *tagp);
_Decimal64 nand64(const char *tagp);
_Decimal128 nand128(const char *tagp);
_Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
_Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);
_Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
_Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
_Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);
_Decimal32 nextupd32(_Decimal32 x);
_Decimal64 nextupd64(_Decimal64 x);
_Decimal128 nextupd128(_Decimal128 x);
_Decimal32 nextdownd32(_Decimal32 x);
_Decimal64 nextdownd64(_Decimal64 x);
_Decimal128 nextdownd128(_Decimal128 x);
int canonicalized32(_Decimal32 cx, const _Decimal32 * x);
int canonicalized64(_Decimal64 cx, const _Decimal64 * x);
int canonicalized128(_Decimal128 cx, const _Decimal128 * x);
_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmind64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmind128(_Decimal128 x, _Decimal128 y);
_Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
_Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);

420 Library summary § B.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

_Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal32 d32addd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32addd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32subd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32subd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64subd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32muld64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32muld128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64muld128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32divd64(_Decimal64 x, _Decimal64 y);
_Decimal32 d32divd128(_Decimal128 x, _Decimal128 y);
_Decimal64 d64divd128(_Decimal128 x, _Decimal128 y);
_Decimal32 d32fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
_Decimal32 d32fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal64 d64fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
_Decimal32 d32sqrtd64(_Decimal64 x);
_Decimal32 d32sqrtd128(_Decimal128 x);
_Decimal64 d64sqrtd128(_Decimal128 x);
_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);
_Bool samequantumd32(_Decimal32 x, _Decimal32 y);
_Bool samequantumd64(_Decimal64 x, _Decimal64 y);
_Bool samequantumd128(_Decimal128 x, _Decimal128 y);
_Decimal32 quantumd32(_Decimal32 x);
_Decimal64 quantumd64(_Decimal64 x);
_Decimal128 quantumd128(_Decimal128 x);
long long int llquantexpd32(_Decimal32 x);
long long int llquantexpd64(_Decimal64 x);
long long int llquantexpd128(_Decimal128 x);
void encodedecd32(unsigned char encptr[restrict static 4],

const _Decimal32*restrict xptr);
void encodedecd64(unsigned char encptr[restrict static 8],

const _Decimal64*restrict xptr);
void encodedecd128(unsigned char encptr[restrict static 16],

const _Decimal128*restrict xptr);
void decodedecd32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodedecd64(_Decimal64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodedecd128(_Decimal128 * restrict xptr,

const unsigned char encptr[restrict static 16]);
void encodebind32(unsigned char encptr[restrict static 4],

const _Decimal32 * restrict xptr);
void encodebind64(unsigned char encptr[restrict static 8],

const _Decimal64 * restrict xptr);
void encodebind128(unsigned char encptr[restrict static 16],

const _Decimal128 * restrict xptr);
void decodebind32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodebind64(_Decimal64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodebind128(_Decimal128 * restrict xptr,

const unsigned char encptr[restrict static 16]);

Only if the implementation defines __STDC_IEC_60559_BFP__ or __STDC_IEC_559__ and addition-
ally the user code defines __STDC_WANT_IEC_60559_EXT__ before any inclusion of <math.h>:

int totalorder(const double *x, const double *y);
int totalorderf(const float *x, const float *y);

§ B.11 Library summary 421

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int totalorderl(const long double *x, const long double *y);
int totalordermag(const double *x, const double *y);
int totalordermagf(const float *x, const float *y);
int totalordermagl(const long double *x, const long double *y);
double getpayload(const double *x);
float getpayloadf(const float *x);
long double getpayloadl(const long double *x);
int setpayload(double *res, double pl);
int setpayloadf(float *res, float pl);
int setpayloadl(long double *res, long double pl);
int setpayloadsig(double *res, double pl);
int setpayloadsigf(float *res, float pl);
int setpayloadsigl(long double *res, long double pl);

Only if the implementation defines __STDC_IEC_60559_DFP__ and additionally the user code
defines __STDC_WANT_IEC_60559_EXT__ before any inclusion of <math.h>:

int totalorderd32(const _Decimal32 *x, const _Decimal32 *y);
int totalorderd64(const _Decimal64 *x, const _Decimal64 *y);
int totalorderd128(const _Decimal128 *x, const _Decimal128 *y);
int totalordermagd32(const _Decimal32 *x, const _Decimal32 *y);
int totalordermagd64(const _Decimal64 *x, const _Decimal64 *y);
int totalordermagd128(const _Decimal128 *x, const _Decimal128 *y);
_Decimal32 getpayloadd32(const _Decimal32 *x);
_Decimal64 getpayloadd64(const _Decimal64 *x);
_Decimal128 getpayloadd128(const _Decimal128 *x);
int setpayloadd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadd128(_Decimal128 *res, _Decimal128 pl);
int setpayloadsigd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadsigd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadsigd128(_Decimal128 *res, _Decimal128 pl);

B.12 Nonlocal jumps <setjmp.h>

jmp_buf

int setjmp(jmp_buf env);
_Noreturn void longjmp(jmp_buf env, int val);

B.13 Signal handling <signal.h>

sig_atomic_t
SIG_DFL
SIG_ERR

SIG_IGN
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGSEGV

SIGTERM

void (*signal(int sig, void (*func)(int)))(int);
int raise(int sig);

B.14 Alignment <stdalign.h>
alignas alignof __alignas_is_defined __alignof_is_defined

B.15 Variable arguments <stdarg.h>
va_list

422 Library summary § B.15

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, parmN);

B.16 Atomics <stdatomic.h>

__STDC_NO_ATOMICS__

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
ATOMIC_FLAG_INIT
memory_order
atomic_flag
memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel

memory_order_seq_cst
atomic_bool
atomic_char
atomic_schar
atomic_uchar
atomic_short
atomic_ushort
atomic_int
atomic_uint
atomic_long
atomic_ulong
atomic_llong
atomic_ullong
atomic_char16_t
atomic_char32_t
atomic_wchar_t
atomic_int_least8_t
atomic_uint_least8_t
atomic_int_least16_t

atomic_uint_least16_t
atomic_int_least32_t
atomic_uint_least32_t
atomic_int_least64_t
atomic_uint_least64_t
atomic_int_fast8_t
atomic_uint_fast8_t
atomic_int_fast16_t
atomic_uint_fast16_t
atomic_int_fast32_t
atomic_uint_fast32_t
atomic_int_fast64_t
atomic_uint_fast64_t
atomic_intptr_t
atomic_uintptr_t
atomic_size_t
atomic_ptrdiff_t
atomic_intmax_t
atomic_uintmax_t

#define ATOMIC_VAR_INIT(C value)
void atomic_init(volatile A *obj, C value);
type kill_dependency(type y);
void atomic_thread_fence(memory_order order);
void atomic_signal_fence(memory_order order);
_Bool atomic_is_lock_free(const volatile A *obj);
void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);
C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object, memory_order order);
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired, memory_order order);
_Bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
_Bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);
_Bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A *object, M operand, memory_order order);
_Bool atomic_flag_test_and_set(volatile atomic_flag *object);
_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

B.17 Boolean type and values <stdbool.h>
bool true false __bool_true_false_are_defined

§ B.17 Library summary 423

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

B.18 Common definitions <stddef.h>

ptrdiff_t size_t max_align_t wchar_t NULL

offsetof(type, member-designator)

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stddef.h>:

rsize_t

B.19 Integer types <stdint.h>

intN_t
uintN_t
int_leastN_t
uint_leastN_t
int_fastN_t
uint_fastN_t
intptr_t
uintptr_t
intmax_t
uintmax_t
INTN_MIN
INTN_MAX
INTN_WIDTH
UINTN_MAX
UINTN_WIDTH
INT_LEASTN_MIN
INT_LEASTN_MAX
INT_LEASTN_WIDTH

UINT_LEASTN_MAX
UINT_LEASTN_WIDTH
INT_FASTN_MIN
INT_FASTN_MAX
INT_FASTN_WIDTH
UINT_FASTN_MAX
UINT_FASTN_WIDTH
INTPTR_MIN
INTPTR_MAX
INTPTR_WIDTH
UINTPTR_MAX
UINTPTR_WIDTH
INTMAX_MIN
INTMAX_MAX
INTMAX_WIDTH
UINTMAX_MAX
UINTMAX_WIDTH
PTRDIFF_MIN

PTRDIFF_MAX
SIG_ATOMIC_MIN
SIG_ATOMIC_MAX
SIG_ATOMIC_WIDTH
SIZE_MAX
SIZE_WIDTH
WCHAR_MIN
WCHAR_MAX
WCHAR_WIDTH
WINT_MIN
WINT_MAX
WINT_WIDTH
INTN_C(value)
UINTN_C(value)
INTMAX_C(value)
UINTMAX_C(value)

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdint.h>:

RSIZE_MAX

B.20 Input/output <stdio.h>

size_t
FILE
fpos_t
NULL
_IOFBF
_IOLBF

_IONBF
BUFSIZ
EOF
FOPEN_MAX
FILENAME_MAX
L_tmpnam

SEEK_CUR
SEEK_END
SEEK_SET
TMP_MAX
stderr
stdin

stdout
_PRINTF_NAN_LEN_MAX

int remove(const char *filename);
int rename(const char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fopen(const char * restrict filename, const char * restrict mode);
FILE *freopen(const char * restrict filename, const char * restrict mode,

FILE * restrict stream);

424 Library summary § B.20

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

void setbuf(FILE * restrict stream, char * restrict buf);
int setvbuf(FILE * restrict stream, char * restrict buf, int mode, size_t size);
int printf(const char * restrict format, ...);
int scanf(const char * restrict format, ...);
int snprintf(char * restrict s, size_t n, const char * restrict format, ...);
int sprintf(char * restrict s, const char * restrict format, ...);
int sscanf(const char * restrict s, const char * restrict format, ...);
int vfprintf(FILE * restrict stream, const char * restrict format, va_list arg);
int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);
int vprintf(const char * restrict format, va_list arg);
int vscanf(const char * restrict format, va_list arg);
int vsnprintf(char * restrict s, size_t n, const char * restrict format, va_list arg);
int vsprintf(char * restrict s, const char * restrict format, va_list arg);
int vsscanf(const char * restrict s, const char * restrict format, va_list arg);
int fgetc(FILE *stream);
char *fgets(char * restrict s, int n, FILE * restrict stream);
int fputc(int c, FILE *stream);
int fputs(const char * restrict s, FILE * restrict stream);
int getc(FILE *stream);
int getchar(void);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int ungetc(int c, FILE *stream);
size_t fread(void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);
size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

FILE * restrict stream);
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos_t *pos);
long int ftell(FILE *stream);
void rewind(FILE *stream);
void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
void perror(const char *s);
int fprintf(FILE * restrict stream, const char * restrict format, ...);
int fscanf(FILE * restrict stream, const char * restrict format, ...);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdio.h>:

L_tmpnam_s TMP_MAX_S errno_t rsize_t

errno_t tmpfile_s(FILE * restrict * restrict streamptr);
errno_t tmpnam_s(char *s, rsize_t maxsize);
errno_t fopen_s(FILE * restrict * restrict streamptr,

const char * restrict filename, const char * restrict mode);
errno_t freopen_s(FILE * restrict * restrict newstreamptr,

const char * restrict filename, const char * restrict mode,
FILE * restrict stream);

int fprintf_s(FILE * restrict stream, const char * restrict format, ...);
int fscanf_s(FILE * restrict stream, const char * restrict format, ...);
int printf_s(const char * restrict format, ...);
int scanf_s(const char * restrict format, ...);
int snprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);
int sprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);
int sscanf_s(const char * restrict s, const char * restrict format, ...);
int vfprintf_s(FILE *restrict stream, const char *restrict format, va_list arg);

§ B.20 Library summary 425

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int vfscanf_s(FILE *restrict stream, const char *restrict format, va_list arg);
int vprintf_s(const char * restrict format, va_list arg);
int vscanf_s(const char * restrict format, va_list arg);
int vsnprintf_s(char *restrict s, rsize_t n, const char *restrict format,

va_list arg);
int vsprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);
int vsscanf_s(const char *restrict s, const char *restrict format, va_list arg);
char *gets_s(char *s, rsize_t n);

B.21 General utilities <stdlib.h>

size_t
wchar_t

div_t
ldiv_t

lldiv_t
NULL

EXIT_FAILURE
EXIT_SUCCESS

RAND_MAX
MB_CUR_MAX

double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);
int strfromd(char *restrict s, size_t n, const char *restrict format, double fp);
int strfromf(char *restrict s, size_t n, const char *restrict format, float fp);
int strfroml(char *restrict s, size_t n, const char *restrict format, long double fp);

double strtod(const char *restrict nptr, char **restrict endptr);
float strtof(const char *restrict nptr, char **restrict endptr);
long double strtold(const char *restrict nptr, char **restrict endptr);
long int strtol(const char *restrict nptr, char **restrict endptr, int base);
long long int strtoll(const char *restrict nptr, char **restrict endptr, int base);
unsigned long int strtoul(const char *restrict nptr, char **restrict endptr, int base);
unsigned long long int strtoull(const char *restrict nptr, char **restrict endptr, int

base);
int rand(void);
void srand(unsigned int seed);
void *aligned_alloc(size_t alignment, size_t size);
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
_Noreturn void abort(void);
int atexit(void (*func)(void));
int at_quick_exit(void (*func)(void));
_Noreturn void exit(int status);
_Noreturn void _Exit(int status);
char *getenv(const char *name);
_Noreturn void quick_exit(int status);
int system(const char *string);
void *bsearch(const void *key, const void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);
div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv_t lldiv(long long int numer, long long int denom);
int mblen(const char *s, size_t n);
int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);
int wctomb(char *s, wchar_t wc);
size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);

426 Library summary § B.21

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);

Only if the implementation defines __STDC_IEC_60559_DFP__:

int strfromd32(char*restrict s, size_t n, const char*restrict format, _Decimal32 fp);
int strfromd64(char*restrict s, size_t n, const char*restrict format, _Decimal64 fp);
int strfromd128(char*restrict s, size_t n, const char*restrict format, _Decimal128 fp);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <stdlib.h>:

errno_t rsize_t constraint_handler_t

constraint_handler_t set_constraint_handler_s(constraint_handler_t handler);
void abort_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);
void ignore_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);
errno_t getenv_s(size_t * restrict len, char * restrict value, rsize_t maxsize,

const char * restrict name);
void *bsearch_s(const void *key, const void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *k, const void *y, void *context),
void *context);

errno_t qsort_s(void *base, rsize_t nmemb, rsize_t size,
int (*compar)(const void *x, const void *y, void *context),
void *context);

errno_t wctomb_s(int *restrict status, char *restrict s, rsize_t smax,
wchar_t wc);

errno_t mbstowcs_s(size_t *restrict retval, wchar_t *restrict dst,
rsize_t dstmax, const char * restrict src, rsize_t len);

errno_t wcstombs_s(size_t * restrict retval, char * restrict dst, rsize_t dstmax,
const wchar_t * restrict src, rsize_t len);

B.22 _Noreturn <stdnoreturn.h>

noreturn

B.23 String handling <string.h>

size_t NULL

void *memcpy(void * restrict s1, const void * restrict s2, size_t n);
void *memccpy(void * restrict s1, const void * restrict s2, int c, size_t n);
void *memmove(void *s1, const void *s2, size_t n);
char *strcpy(char * restrict s1, const char * restrict s2);
char *strncpy(char * restrict s1, const char * restrict s2, size_t n);
char *strcat(char * restrict s1, const char * restrict s2);
char *strncat(char * restrict s1, const char * restrict s2, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
int strcmp(const char *s1, const char *s2);
int strcoll(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
size_t strxfrm(char * restrict s1, const char * restrict s2, size_t n);
void *memchr(const void *s, int c, size_t n);
char *strchr(const char *s, int c);
size_t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);
char *strrchr(const char *s, int c);

§ B.23 Library summary 427

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

size_t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char * restrict s1, const char * restrict s2);
void *memset(void *s, int c, size_t n);
char *strerror(int errnum);
size_t strlen(const char *s);
char *strdup(const char *s);
char *strndup(const char *s, size_t size);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <string.h>:

errno_t rsize_t

errno_t memcpy_s(void * restrict s1, rsize_t s1max, const void * restrict s2,
rsize_t n);

errno_t memmove_s(void *s1, rsize_t s1max, const void *s2, rsize_t n);
errno_t strcpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2);
errno_t strncpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);
errno_t strcat_s(char * restrict s1, rsize_t s1max, const char * restrict s2);
errno_t strncat_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);
char *strtok_s(char * restrict s1, rsize_t * restrict s1max,

const char * restrict s2, char ** restrict ptr);
errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)
errno_t strerror_s(char *s, rsize_t maxsize, errno_t errnum);
size_t strerrorlen_s(errno_t errnum);
size_t strnlen_s(const char *s, size_t maxsize);

B.24 Type-generic math <tgmath.h>

acos
asin
atan
acosh
asinh
atanh
cos
sin
tan
cosh
sinh
tanh
exp
log
pow
sqrt
fabs
acospi
asinpi
atan2pi
atan2

atanpi
cbrt
ceil
compoundn
copysign
cospi
erfc
erf
exp10m1
exp10
exp2m1
exp2
expm1
fdim
floor
fmax
fmaximum
fmaximum_mag
fmaximum_num
fmaximum_mag_num
fma

fmin
fminimum
fminimum_mag
fminimum_num
fminimum_mag_num
fmod
frexp
fromfpx
fromfp
hypot
ilogb
ldexp
lgamma
llogb
llrint
llround
log10p1
log10
log1p
log2p1
log2

logb
logp1
lrint
lround
nearbyint
nextafter
nextdown
nexttoward
nextup
pown
powr
remainder
remquo
rint
rootn
roundeven
round
rsqrt
scalbln
scalbn
sinpi

tanpi
tgamma
trunc
ufromfpx
ufromfp
fadd
dadd
fsub
dsub
fmul
dmul
fdiv
ddiv
ffma
dfma
fsqrt
dsqrt

Only if the implementation does not define __STDC_NO_COMPLEX__:

428 Library summary § B.24

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

carg cimag conj cproj creal

Only if the implementation defines __STDC_IEC_60559_DFP__:

d32add
d64add
d32sub

d64sub
d32mul
d64mul

d32div
d64div
d32fma

d64fma
d32sqrt
d64sqrt

quantize
samequantum
quantum

llquantexp

B.25 Threads <threads.h>

__STDC_NO_THREADS__

thread_local
ONCE_FLAG_INIT
TSS_DTOR_ITERATIONS
cnd_t
thrd_t
tss_t

mtx_t
tss_dtor_t
thrd_start_t
once_flag
mtx_plain
mtx_recursive
mtx_timed

thrd_timedout
thrd_success
thrd_busy
thrd_error
thrd_nomem

void call_once(once_flag *flag, void (*func)(void));
int cnd_broadcast(cnd_t *cond);
void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);
int cnd_signal(cnd_t *cond);
int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,

const struct timespec *restrict ts);
int cnd_wait(cnd_t *cond, mtx_t *mtx);
void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);
int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t *restrict mtx, const struct timespec *restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);
thrd_t thrd_current(void);
int thrd_detach(thrd_t thr);
int thrd_equal(thrd_t thr0, thrd_t thr1);
_Noreturn void thrd_exit(int res);
int thrd_join(thrd_t thr, int *res);
int thrd_sleep(const struct timespec *duration, struct timespec *remaining);
void thrd_yield(void);
int tss_create(tss_t *key, tss_dtor_t dtor);
void tss_delete(tss_t key);
void *tss_get(tss_t key);
int tss_set(tss_t key, void *val);

B.26 Date and time <time.h>

NULL
CLOCKS_PER_SEC
TIME_UTC

size_t
clock_t
time_t

struct timespec
struct tm

clock_t clock(void);
double difftime(time_t time1, time_t time0);
time_t mktime(struct tm *timeptr);
time_t time(time_t *timer);
int timespec_get(struct timespec *ts, int base);

§ B.26 Library summary 429

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

int timespec_getres(struct timespec *ts, int base);
char *asctime(const struct tm *timeptr);
char *asctime_r(const struct tm *timeptr, char *buf);
char *ctime(const time_t *timer);
char *ctime_r(const time_t *timer, char *buf);
struct tm *gmtime(const time_t *timer);
struct tm *gmtime_r(const time_t *timer, struct tm *buf);
struct tm *localtime(const time_t *timer);
struct tm *localtime_r(const time_t *timer, struct tm *buf);
size_t strftime(char * restrict s, size_t maxsize, const char * restrict format,

const struct tm * restrict timeptr);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <time.h>:

errno_t rsize_t

errno_t asctime_s(char *s, rsize_t maxsize, const struct tm *timeptr);
errno_t ctime_s(char *s, rsize_t maxsize, const time_t *timer);
struct tm *gmtime_s(const time_t * restrict timer, struct tm * restrict result);
struct tm *localtime_s(const time_t *restrict timer, struct tm *restrict result);

B.27 Unicode utilities <uchar.h>

mbstate_t size_t char16_t char32_t

size_t mbrtoc16(char16_t * restrict pc16, const char * restrict s, size_t n,
mbstate_t * restrict ps);

size_t c16rtomb(char * restrict s, char16_t c16, mbstate_t * restrict ps);
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t * restrict ps);

B.28 Extended multibyte/wide character utilities <wchar.h>

wchar_t
size_t
mbstate_t

wint_t
struct tm
NULL

WCHAR_MAX
WCHAR_MIN
WEOF

int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);
int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);
int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

...);
int swscanf(const wchar_t * restrict s, const wchar_t * restrict format, ...);
int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,

va_list arg);
int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);
int vwprintf(const wchar_t * restrict format, va_list arg);
int vwscanf(const wchar_t * restrict format, va_list arg);
int wprintf(const wchar_t * restrict format, ...);
int wscanf(const wchar_t * restrict format, ...);

430 Library summary § B.28

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);
wint_t fputwc(wchar_t c, FILE *stream);
int fputws(const wchar_t * restrict s, FILE * restrict stream);
int fwide(FILE *stream, int mode);
wint_t getwc(FILE *stream);
wint_t getwchar(void);
wint_t putwc(wchar_t c, FILE *stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE *stream);
double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr,

int base);
unsigned long int wcstoul(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);
wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
wchar_t *wmemcpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
int wcscmp(const wchar_t *s1, const wchar_t *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);
size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);
wchar_t *wcschr(const wchar_t *s, wchar_t c);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,

wchar_t ** restrict ptr);
wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);
size_t wcslen(const wchar_t *s);
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);
size_t wcsftime(wchar_t * restrict s, size_t maxsize,

const wchar_t * restrict format, const struct tm * restrict timeptr);
wint_t btowc(int c);
int wctob(wint_t c);
int mbsinit(const mbstate_t *ps);
size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);
size_t mbrtowc(wchar_t * restrict pwc, const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);
size_t mbsrtowcs(wchar_t * restrict dst, const char ** restrict src, size_t len,

mbstate_t * restrict ps);
size_t wcsrtombs(char * restrict dst, const wchar_t ** restrict src, size_t len,

mbstate_t * restrict ps);

Only if the implementation defines __STDC_LIB_EXT1__ and additionally the user code defines
__STDC_WANT_LIB_EXT1__ before any inclusion of <wchar.h>:

§ B.28 Library summary 431

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

errno_t rsize_t

int fwprintf_s(FILE * restrict stream, const wchar_t * restrict format, ...);
int fwscanf_s(FILE * restrict stream, const wchar_t * restrict format, ...);
int snwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);
int swprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);
int swscanf_s(const wchar_t * restrict s, const wchar_t * restrict format, ...);
int vfwprintf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vfwscanf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);
int vsnwprintf_s(wchar_t *restrict s, rsize_t n, const wchar_t *restrict format,

va_list arg);
int vswprintf_s(wchar_t *restrict s, rsize_t n, const wchar_t *restrict format,

va_list arg);
int vswscanf_s(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);
int vwprintf_s(const wchar_t * restrict format, va_list arg);
int vwscanf_s(const wchar_t * restrict format, va_list arg);
int wprintf_s(const wchar_t * restrict format, ...);
int wscanf_s(const wchar_t * restrict format, ...);
errno_t wcscpy_s(wchar_t *restrict s1, rsize_t s1max,

const wchar_t *restrict s2);
errno_t wcsncpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);
errno_t wmemcpy_s(wchar_t *restrict s1, rsize_t s1max,

const wchar_t *restrict s2, rsize_t n);
errno_t wmemmove_s(wchar_t *s1, rsize_t s1max, const wchar_t *s2, rsize_t n);
errno_t wcscat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);
errno_t wcsncat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);
wchar_t *wcstok_s(wchar_t * restrict s1, rsize_t * restrict s1max,

const wchar_t * restrict s2, wchar_t ** restrict ptr);
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);
errno_t wcrtomb_s(size_t * restrict retval, char * restrict s, rsize_t smax,

wchar_t wc, mbstate_t * restrict ps);
errno_t mbsrtowcs_s(size_t * restrict retval, wchar_t * restrict dst,

rsize_t dstmax, const char ** restrict src, rsize_t len,
mbstate_t * restrict ps);

errno_t wcsrtombs_s(size_t * restrict retval, char * restrict dst,
rsize_t dstmax, const wchar_t ** restrict src, rsize_t len,
mbstate_t * restrict ps);

B.29 Wide character classification and mapping utilities <wctype.h>

wint_t wctrans_t wctype_t WEOF

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);

432 Library summary § B.29

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);
int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char *property);
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);
wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char *property);

§ B.29 Library summary 433

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex C
(informative)

Sequence points

1 The following are the sequence points described in 5.1.2.3:

— Between the evaluations of the function designator and actual arguments in a function call
and the actual call. (6.5.2.2).

— Between the evaluations of the first and second operands of the following operators: logical
AND && (6.5.13); logical OR || (6.5.14); comma , (6.5.17).

— Between the evaluations of the first operand of the conditional ?: operator and whichever of
the second and third operands is evaluated (6.5.15).

— Between the evaluation of a full expression and the next full expression to be evaluated. The
following are full expressions: a full declarator for a variably modified type; an initializer that
is not part of a compound literal (6.7.9); the expression in an expression statement (6.8.3); the
controlling expression of a selection statement (if or switch) (6.8.4); the controlling expression
of a while or do statement (6.8.5); each of the (optional) expressions of a for statement (6.8.5.3);
the (optional) expression in a return statement (6.8.6.4).

— Immediately before a library function returns (7.1.4).

— After the actions associated with each formatted input/output function conversion specifier
(7.21.6, 7.29.2).

— Immediately before and immediately after each call to a comparison function, and also between
any call to a comparison function and any movement of the objects passed as arguments to
that call (7.22.5).

434 Sequence points § B.29

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Annex D
(normative)

Universal character names for identifiers

1 This clause lists the hexadecimal code values that are valid in universal character names in identifiers.

D.1 Ranges of characters allowed
1 00A8, 00AA, 00AD, 00AF, 00B2–00B5, 00B7–00BA, 00BC–00BE, 00C0–00D6, 00D8–00F6, 00F8–00FF

2 0100–167F, 1681–180D, 180F–1FFF

3 200B–200D, 202A–202E, 203F–2040, 2054, 2060–206F

4 2070–218F, 2460–24FF, 2776–2793, 2C00–2DFF, 2E80–2FFF

5 3004–3007, 3021–302F, 3031–303F

6 3040–D7FF

7 F900–FD3D, FD40–FDCF, FDF0–FE44, FE47–FFFD

8 10000–1FFFD, 20000–2FFFD, 30000–3FFFD, 40000–4FFFD, 50000–5FFFD, 60000–6FFFD, 70000–
7FFFD, 80000–8FFFD, 90000–9FFFD, A0000–AFFFD, B0000–BFFFD, C0000–CFFFD, D0000–DFFFD,
E0000–EFFFD

D.2 Ranges of characters disallowed initially
1 0300–036F, 1DC0–1DFF, 20D0–20FF, FE20–FE2F

§ D.2 Universal character names for identifiers 435

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex E
(informative)

Implementation limits

1 The contents of the header <limits.h> are given below. The values shall all be constant expressions
suitable for use in #if preprocessing directives. The components are described further in 5.2.4.2.1.

2 For the following macros, the minimum values shown shall be replaced by implementation-defined
values.

#define BOOL_WIDTH 1
#define CHAR_BIT 8
#define USHRT_WIDTH 16
#define UINT_WIDTH 16
#define ULONG_WIDTH 32
#define ULLONG_WIDTH 64
#define MB_LEN_MAX 1

3 For the following macros, the minimum magnitudes shown shall be replaced by implementation-
defined magnitudes with the same sign that are deduced from the macros above as indicated.385)

#define BOOL_MAX 1 // 2BOOL
_WIDTH − 1

#define CHAR_MAX UCHAR_MAX or SCHAR_MAX
#define CHAR_MIN 0 or SCHAR_MIN
#define CHAR_WIDTH 8 // CHAR_BIT
#define INT_MAX +32767 // 2INT

_WIDTH−1 − 1
#define INT_MIN -32768 // −2INT

_WIDTH−1

#define INT_WIDTH 16 // UINT_WIDTH
#define LONG_MAX +2147483647 // 2LONG

_WIDTH−1 − 1
#define LONG_MIN -2147483648 // −2LONG

_WIDTH−1

#define LONG_WIDTH 32 // ULONG_WIDTH
#define LLONG_MAX +9223372036854775807 // 2LLONG

_WIDTH−1 − 1
#define LLONG_MIN -9223372036854775808 // −2LLONG

_WIDTH−1

#define LLONG_WIDTH 64 // ULLONG_WIDTH
#define SCHAR_MAX +127 // 2SCHAR

_WIDTH−1 − 1
#define SCHAR_MIN -128 // −2SCHAR

_WIDTH−1

#define SCHAR_WIDTH 8 // CHAR_BIT
#define SHRT_MAX +32767 // 2SHRT

_WIDTH−1 − 1
#define SHRT_MIN -32768 // −2SHRT

_WIDTH−1

#define UCHAR_MAX 255 // 2UCHAR
_WIDTH − 1

#define UCHAR_WIDTH 8 // CHAR_BIT
#define USHRT_MAX 65535 // 2USHRT

_WIDTH − 1
#define UINT_MAX 65535 // 2UINT

_WIDTH − 1
#define ULONG_MAX 4294967295 // 2ULONG

_WIDTH − 1
#define ULLONG_MAX 18446744073709551615 // 2ULLONG

_WIDTH − 1

4 The contents of the header <float.h> are given below. All integer values, except FLT_ROUNDS, shall
be constant expressions suitable for use in #if preprocessing directives; all floating values shall be
constant expressions. The components are described further in 5.2.4.2.2 and 5.2.4.2.3.

5 The values given in the following list shall be replaced by implementation-defined expressions:

#define FLT_EVAL_METHOD
#define FLT_ROUNDS
#ifdef __STDC_IEC_60559_DFP__

#define DEC_EVAL_METHOD
#endif

385)For the minimum value of a signed integer type there is no expression consisting of a minus sign and a decimal literal of
that same type. The numbers in the table are only given as indications for the values and do not represent suitable expressions
to be used for these macros.

436 Implementation limits § D.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

6 The values given in the following list shall be replaced by implementation-defined constant ex-
pressions that are greater or equal in magnitude (absolute value) to those shown, with the same
sign:

#define DBL_DECIMAL_DIG 10
#define DBL_DIG 10
#define DBL_MANT_DIG
#define DBL_MAX_10_EXP +37
#define DBL_MAX_EXP
#define DBL_MIN_10_EXP -37
#define DBL_MIN_EXP
#define DECIMAL_DIG 10
#define FLT_DECIMAL_DIG 6
#define FLT_DIG 6
#define FLT_MANT_DIG
#define FLT_MAX_10_EXP +37
#define FLT_MAX_EXP
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP
#define FLT_RADIX 2
#define LDBL_DECIMAL_DIG 10
#define LDBL_DIG 10
#define LDBL_MANT_DIG
#define LDBL_MAX_10_EXP +37
#define LDBL_MAX_EXP
#define LDBL_MIN_10_EXP -37
#define LDBL_MIN_EXP

7 The values given in the following list shall be replaced by implementation-defined constant expres-
sions with values that are greater than or equal to those shown:

#define DBL_MAX 1E+37
#define DBL_NORM_MAX 1E+37
#define FLT_MAX 1E+37
#define FLT_NORM_MAX 1E+37
#define LDBL_MAX 1E+37
#define LDBL_NORM_MAX 1E+37

8 The values given in the following list shall be replaced by implementation-defined constant expres-
sions with (positive) values that are less than or equal to those shown:

#define DBL_EPSILON 1E-9
#define DBL_MIN 1E-37
#define FLT_EPSILON 1E-5
#define FLT_MIN 1E-37
#define LDBL_EPSILON 1E-9
#define LDBL_MIN 1E-37

9 If the implementation supports decimal floating types, the following macros provide the parameters
of these types as exact values.

#ifdef __STDC_IEC_60559_DFP__

#define DEC32_EPSILON 1E-6DF
#define DEC32_MANT_DIG 7
#define DEC32_MAX 9.999999E96DF
#define DEC32_MAX_EXP 97
#define DEC32_MIN 1E-95DF
#define DEC32_MIN_EXP -94
#define DEC32_TRUE_MIN 0.000001E-95DF
#define DEC64_EPSILON 1E-15DD

§ D.2 Implementation limits 437

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#define DEC64_MANT_DIG 16
#define DEC64_MAX 9.999999999999999E384DD
#define DEC64_MAX_EXP 385
#define DEC64_MIN 1E-383DD
#define DEC64_MIN_EXP -382
#define DEC64_TRUE_MIN 0.000000000000001E-383DD
#define DEC128_EPSILON 1E-33DL
#define DEC128_MANT_DIG 34
#define DEC128_MAX 9.999999999999999999999999999999999E6144DL
#define DEC128_MAX_EXP 6145
#define DEC128_MIN 1E-6143DL
#define DEC128_MIN_EXP -6142
#define DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL
#endif

438 Implementation limits § D.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Annex F
(normative)

IEC 60559 floating-point arithmetic

F.1 Introduction
1 This annex specifies C language support for the IEC 60559 floating-point standard. The IEC 60559

floating-point standard is specifically Floating-point arithmetic (ISO/IEC 60559:2020), also designated
as IEEE Standard for Floating-Point Arithmetic (IEEE 754–2019). IEC 60559 generally refers to the
floating-point standard, as in IEC 60559 operation, IEC 60559 format, etc.

2 The IEC 60559 floating-point standard is a minor upgrade to IEC 60559:2011 (IEEE 754-2008). IEC
60559:2011 was a major upgrade to IEC 60559:1989 (IEEE 754–1985), specifying decimal as well as
binary floating-point arithmetic.

3 The IEC 60559 floating-point standard specifies decimal, as well as binary, floating-point arithmetic.
It supersedes IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE 854–1987)
which generalized the binary arithmetic standard (IEEE 754-1985) to remove dependencies on radix
and word length.

4 An implementation that defines __STDC_IEC_60559_BFP__ to yyyymmL shall conform to the specifi-
cations in this annex for binary floating-point arithmetic and shall also define __STDC_IEC_559__
to 1.386)

5 An implementation that defines __STDC_IEC_60559_DFP__ to yyyymmL shall conform to the
specifications for decimal floating-point arithmetic in the following subclauses of this annex:

— F.2.1 Infinities and NaNs
— F.3 Operations
— F.4 Floating to integer conversions
— F.6 The return statement
— F.7 Contracted expressions
— F.8 Floating-point environment
— F.9 Optimization
— F.10 Mathematics <math.h> and <tgmath.h>

For the purpose of specifying these conformance requirements, the macros, functions, and values
mentioned in the subclauses listed above are understood to refer to the corresponding macros,
functions, and values for decimal floating types. Likewise, the "rounding direction mode" is
understood to refer to the rounding direction mode for decimal floating-point arithmetic.

6 Where a binding between the C language and IEC 60559 is indicated, the IEC 60559-specified
behavior is adopted by reference, unless stated otherwise.

7 This annex amends some standard headers with declarations or definitions of identifiers contingent
on whether certain macros whose names begin with __STDC_WANT_IEC_60559_ and end with
_EXT__ are defined (by the user) at the point in the code where the header is first included. Within a
preprocessing translation unit, the same set of such macros shall be defined for the first inclusion of
all such headers.

F.2 Types
1 The C floating types match the IEC 60559 formats as follows:

— The float type matches the IEC 60559 binary32 format.

— The double type matches the IEC 60559 binary64 format.

386)Implementations that do not define either of __STDC_IEC_60559_BFP__ and __STDC_IEC_559__ are not required to
conform to these specifications. New code should not use the obsolescent macro __STDC_IEC_559__ to test for conformance
to this annex.

§ F.2 IEC 60559 floating-point arithmetic 439

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— The long double type matches the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format, 387) else a non-IEC 60559 extended format, else the IEC 60559 binary64
format.

Any non-IEC 60559 extended format used for the long double type shall have more precision than
IEC 60559 binary64 and at least the range of IEC 60559 binary64.388) The value of FLT_ROUNDS
applies to all IEC 60559 types supported by the implementation, but need not apply to non-IEC
60559 types.

Recommended practice
2 The long double type should match the IEC 60559 binary128 format, else an IEC 60559 binary64-

extended format.

F.2.1 Infinities and NaNs
1 Since negative and positive infinity are representable in IEC 60559 formats, all real numbers lie

within the range of representable values (5.2.4.2.2).

2 The NAN and INFINITYmacros and the nan functions in <math.h> provide designations for IEC 60559
quiet NaNs and infinities. The SNANF, SNAN, and SNANL macros in <math.h> provide designations
for IEC 60559 signaling NaNs.

3 This annex does not require the full support for signaling NaNs specified in IEC 60559. This
annex uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of
signaling NaNs is not provided, the behavior of signaling NaNs is implementation-defined (either
treated as an IEC 60559 quiet NaN or treated as an IEC 60559 signaling NaN). 389)

4 Any operator or <math.h> function that raises an "invalid" floating-point exception, if delivering a
floating type result, shall return a quiet NaN, unless explicitly specified otherwise.

5 In order to support signaling NaNs as specified in IEC 60559, an implementation should adhere to
the following recommended practice.

Recommended practice
6 Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless

explicitly specified otherwise, raises an "invalid" floating-point exception.
7 NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y) returns infinity if x or y is

infinite and the other is a quiet NaN. The recommended practice in this subclause specifies that such functions (and others)
raise the "invalid" floating-point exception if an argument is a signaling NaN, which also implies they return a quiet NaN in
these cases.

8 The <fenv.h> header defines the macro FE_SNANS_ALWAYS_SIGNAL if and only if the implemen-
tation follows the recommended practice in this subclause. If defined, FE_SNANS_ALWAYS_SIGNAL
expands to the integer constant 1.

F.3 Operations
1 C operators, functions, and function-like macros provide operations specified by IEC 60559 as shown

in the following table. In the table, C functions are represented by the function name without a type
suffix. Specifications for the C facilities are provided in the listed clauses. The C specifications are
intended to match IEC 60559, unless stated otherwise.

Operation binding

IEC 60559 operation C operation Clause
roundToIntegralTiesToEven roundeven 7.12.9.8, F.10.6.8
roundToIntegralTiesAway round 7.12.9.6, F.10.6.6
roundToIntegralTowardZero trunc 7.12.9.9, F.10.6.9

387)IEC 60559 binary64-extended formats include the common 80-bit IEC 60559 format.
388)A non-IEC 60559 long double type is required to provide infinity and NaNs, as its values include all double values.
389)Since NaNs created by IEC 60559 arithmetic operations are always quiet, quiet NaNs (along with infinities) are sufficient

for closure of the arithmetic.

440 IEC 60559 floating-point arithmetic § F.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

roundToIntegralTowardPositive ceil 7.12.9.1, F.10.6.1
roundToIntegralTowardNegative floor 7.12.9.2, F.10.6.2
roundToIntegralExact rint 7.12.9.4, F.10.6.4
nextUp nextup 7.12.11.5, F.10.8.5
nextDown nextdown 7.12.11.6, F.10.8.6
getPayload getpayload F.10.13.1
setPayload setpayload F.10.13.2
setPayloadSignaling setpayloadsig F.10.13.3
quantize quantize 7.12.15.1
sameQuantum samequantum 7.12.15.2
quantum quantum 7.12.15.3
encodeDecimal encodedec 7.12.16.1
decodeDecimal decodedec 7.12.16.2
encodeBinary encodebin 7.12.16.3
decodeBinary decodebin 7.12.16.4
remainder remainder, remquo 7.12.10.2, F.10.7.2,

7.12.10.3, F.10.7.3
fmax 7.12.12.2, F.10.9.2
fmin 7.12.12.3, F.10.9.3

maximum fmaximum 7.12.12.4, F.10.9.4
minimum fminimum 7.12.12.5, F.10.9.4
maximumMagnitude fmaximum_mag 7.12.12.6, F.10.9.4
minimumMagnitude fminimum_mag 7.12.12.7, F.10.9.4
maximumNumber fmaximum_num 7.12.12.8, F.10.9.5
minimumNumber fminimum_num 7.12.12.9, F.10.9.5
maximumMagnitudeNumber fmaximum_mag_num 7.12.12.10, F.10.9.5
minimumMagnitudeNumber fminimum_mag_num 7.12.12.11, F.10.9.5
scaleB scalbn, scalbln 7.12.6.19, F.10.3.19
logB logb, ilogb, llogb 7.12.6.17, F.10.3.17,

7.12.6.8, F.10.3.8,
7.12.6.10, F.10.3.10

addition + , fadd, faddl, daddl 6.5.6, 7.12.14.1,
F.10.11

subtraction - , fsub, fsubl, dsubl 6.5.6, 7.12.14.2,
F.10.11

multiplication * , fmul, fmull, dmull 6.5.5, 7.12.14.3,
F.10.11

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.14.4,
F.10.11

squareRoot sqrt, fsqrt, fsqrtl, dsqrtl 7.12.7.10, F.10.4.10,
7.12.14.6, F.10.11

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F.10.10.1,
7.12.14.5, F.10.11

convertFromInt cast and implicit conversion 6.3.1.4, 6.5.4
convertToIntegerTiesToEven
convertToIntegerTowardZero
convertToIntegerTowardPositive
convertToIntegerTowardNegative

fromfp, ufromfp 7.12.9.10, F.10.6.10

convertToIntegerTiesToAway fromfp, ufromfp, lround,
llround

7.12.9.10, F.10.6.10,
7.12.9.7, F.10.6.7

§ F.3 IEC 60559 floating-point arithmetic 441

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

convertToIntegerExactTiesToEven
convertToIntegerExactTowardZero
convertToIntegerExactTowardPositive
convertToIntegerExactTowardNegative
convertToIntegerExactTiesToAway

fromfpx, ufromfpx 7.12.9.11, F.10.6.11

convertFormat - different formats cast and implicit conversions 6.3.1.5, 6.5.4
convertFormat - same format canonicalize 7.12.11.7, F.10.8.7
convertFromDecimalCharacter strtod, wcstod, scanf, wscanf,

decimal floating constants
7.22.1.5, 7.29.4.1.1,
7.21.6.4, 7.29.2.12,
F.5

convertToDecimalCharacter printf, wprintf, strfromd 7.21.6.3, 7.29.2.11,
7.22.1.3, F.5

convertFromHexCharacter strtod, wcstod, scanf, wscanf,
hexadecimal floating constants

7.22.1.5, 7.29.4.1.1,
7.21.6.4, 7.29.2.12,
F.5

convertToHexCharacter printf, wprintf, strfromd 7.21.6.3, 7.29.2.11,
7.22.1.3, F.5

copy memcpy, memmove,+(x) 7.24.2.1, 7.24.2.3
negate -(x) 6.5.3.3
abs fabs 7.12.7.3, F.10.4.3
copySign copysign 7.12.11.1, F.10.8.1
compareQuietEqual == 6.5.9, F.9.3
compareQuietNotEqual != 6.5.9, F.9.3
compareSignalingEqual iseqsig 7.12.17.7, F.10.14.1
compareSignalingGreater > 6.5.8, F.9.3
compareSignalingGreaterEqual >= 6.5.8, F.9.3
compareSignalingLess < 6.5.8, F.9.3
compareSignalingLessEqual <= 6.5.8, F.9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.17.7, F.10.14.1
compareSignalingNotGreater ! (x > y) 6.5.8, F.9.3
compareSignalingLessUnordered ! (x >= y) 6.5.8, F.9.3
compareSignalingNotLess ! (x < y) 6.5.8, F.9.3
compareSignalingGreaterUnordered ! (x <= y) 6.5.8, F.9.3
compareQuietGreater isgreater 7.12.17.1
compareQuietGreaterEqual isgreaterequal 7.12.17.2
compareQuietLess isless 7.12.17.3
compareQuietLessEqual islessequal 7.12.17.4
compareQuietUnordered isunordered 7.12.17.6
compareQuietNotGreater ! isgreater(x, y) 7.12.17.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.17.2
compareQuietNotLess ! isless(x, y) 7.12.17.3
compareQuietGreaterUnordered ! islessequal(x, y) 7.12.17.4
compareQuietOrdered ! isunordered(x, y) 7.12.17.6
class fpclassify, signbit,

issignaling
7.12.3.1, 7.12.3.7,
7.12.3.8

isSignMinus signbit 7.12.3.7
isNormal isnormal 7.12.3.6
isFinite isfinite 7.12.3.3
isZero iszero 7.12.3.10
isSubnormal issubnormal 7.12.3.9
isInfinite isinf 7.12.3.4
isNaN isnan 7.12.3.5
isSignaling issignaling 7.12.3.8
isCanonical iscanonical 7.12.3.2

442 IEC 60559 floating-point arithmetic § F.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

radix FLT_RADIX 5.2.4.2.2
totalOrder totalorder F.10.12.1
totalOrderMag totalordermag F.10.12.2
lowerFlags feclearexcept 7.6.4.1
raiseFlags fesetexcept 7.6.4.4
testFlags fetestexcept 7.6.4.7
testSavedFlags fetestexceptflag 7.6.4.6
restoreFlags fesetexceptflag 7.6.4.5
saveAllFlags fegetexceptflag 7.6.4.2
getBinaryRoundingDirection fegetround 7.6.5.2
setBinaryRoundingDirection fesetround 7.6.5.5
saveModes fegetmode 7.6.5.1
restoreModes fesetmode 7.6.5.4
defaultModes fesetmode(FE_DFL_MODE) 7.6.5.4, 7.6

2 The IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.1.8) and function-call
argument conversions (6.5.2.2). For example, the following operations take float f and double d
inputs and produce a long double result:

(long double)f * d
powl(f, d)

3 The fmin and fmax functions provide the minNum and maxNum operations specified in (the
superseded) IEC60559:2011.

4 Whether C assignment (6.5.16) (and conversion as if by assignment) to the same format is an
IEC 60559 convertFormat or copy operation390) is implementation-defined, even if <fenv.h> defines
the macro FE_SNANS_ALWAYS_SIGNAL (F.2.1). If the return expression of a return statement is
evaluated to the floating-point format of the return type, it is implementation-defined whether a
convertFormat operation is applied to the result of the return expression.

5 The unary+ and - operators raises no floating-point exceptions, even if the operand is a signaling
NaN.

6 The C classification macros fpclassify, iscanonical, isfinite, isinf, isnan, isnormal,
issignaling, issubnormal, and iszero provide the IEC 60559 operations indicated in the ta-
ble above provided their arguments are in the format of their semantic type. Then these macros
raise no floating-point exceptions, even if an argument is a signaling NaN.

7 The C nearbyint functions (7.12.9.3, F.10.6.3) provide the nearbyinteger function recommended in
the Appendix to (superseded) ANSI/IEEE 854.

8 The C nextafter (7.12.11.3, F.10.8.3) and nexttoward (7.12.11.4, F.10.8.4) functions provide the
nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a
minor change to better handle signed zeros).

9 The macros (7.6) FE_DOWNWARD, FE_TONEAREST, FE_TONEARESTFROMZERO, FE_TOWARDZERO, and
FE_UPWARD, which are used in conjunction with the fegetroundand fesetroundfunctions and the
FENV_ROUND pragma, represent the IEC 60559 rounding-direction attributes roundTowardNegative,
roundTiesToEven, roundTiesToAway, roundTowardZero, and roundTowardPositive, respectively,
for binary floating-point arithmetic. Support for the roundTiesToAway attribute for binary floating-
point arithmetic, and hence for the FE_TONEARESTFROMZERO macro, is optional.

10 The C fegetenv (7.6.6.1), feholdexcept (7.6.6.2), fesetenv (7.6.6.3) and feupdateenv (7.6.6.4)
functions provide a facility to manage the dynamic floating-point environment, comprising the

390)Where the source and destination formats are the same, convertFormat operations differ from copy operations in
that convertFormat operations raise the "invalid" floating-point exception on signaling NaN inputs and do not propagate
non-canonical encodings.

§ F.3 IEC 60559 floating-point arithmetic 443

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

IEC 60559 status flags and dynamic control modes.

11 IEC 60559 requires operations with specified operand and result formats. Therefore, math functions
that are bound to IEC 60559 operations (see table above) must remove any extra range and precision
from arguments or results.

12 IEC 60559 requires operations that round their result to formats the same as and wider than the
operands, in addition to the operations that round their result to narrower formats (see 7.12.14).
Operators (+ ,- , * , and /) whose evaluation formats are wider than the semantic type (5.2.4.2.2)
might not support some of the IEEE 60559 operations, because getting a result in a given format
might require a cast that could introduce an extra rounding error. The functions that round result to
narrower type (7.12.14) provide the IEC 60559 operations that round result to same and wider (as
well as narrower) formats, in those cases where built-in operators and casts do not. For example,
ddivl(x, y) computes a correctly rounded double divide of float x by float y, regardless of
the evaluation method.

13 Decimal versions of the remquo library function are not provided. (The decimal remainder functions
provide the remainder operation defined by IEC 60559.)

14 The binding for the convertFormat operation applies to all conversions among IEC 60559 formats.
Therefore, for implementations that conform to Annex F, conversions between decimal floating types
and standard floating types with IEC 60559 formats are correctly rounded and raise floating-point
exceptions as specified in IEC 60559.

15 IEC 60559 specifies the convertFromHexCharacter and convertToHexCharacter operations only for
binary floating-point arithmetic.

16 The integer constant 10 provides the radix operation defined in IEC 60559 for decimal floating-point
arithmetic.

17 The samequantumdN functions (7.12.15.2) provide the sameQuantum operation defined in IEC 60559
for decimal floating-point arithmetic.

18 The fe_dec_getround (7.6.5.3) and fe_dec_setround (7.6.5.6) functions provide the getDeci-
malRoundingDirection and setDecimalRoundingDirection operations defined in IEC 60559 for
decimal floating-point arithmetic. The macros (7.6) FE_DEC_DOWNWARD, FE_DEC_TONEAREST,
FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD, which are used in con-
junction with the fe_dec_getround, fe_dec_setround functions and the FENV_DEC_ROUND, rep-
resent the IEC 60559 rounding-direction attributes roundTowardNegative, roundTiesToEven,
roundTiesToAway, roundTowardZero, and roundTowardPositive, respectively, for decimal floating-
point arithmetic.

19 The quantumdN (7.12.15.3) and llquantexpdN (7.12.15.4) functions compute the quantum and
the (quantum) exponent q defined in IEC 60559 for decimal numbers viewed as having integer
significands.

20 The C functions in the following table provide mathematical operations recommended by IEC 60559.
The C functions are represented by the function name without a type suffix. Correct rounding, which
IEC 60559 specifies for its operations, is not required for the C functions in the table. See also 7.31.8.

IEC 60559 operation C function Clause
exp exp 7.12.6.1, F.10.3.1
expm1 expm1 7.12.6.6, F.10.3.6
exp2 exp2 7.12.6.4, F.10.3.4
exp2m1 exp2m1 7.12.6.5, F.10.3.5
exp10 exp10 7.12.6.2, F.10.3.2
exp10m1 exp10m1 7.12.6.3, F.10.3.3
log log 7.12.6.11, F.10.3.11
log2 log2 7.12.6.15, F.10.3.15
log10 log10 7.12.6.12, F.10.3.12
logp1 log1p, logp1 7.12.6.14, F.10.3.14

... continued ...

444 IEC 60559 floating-point arithmetic § F.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

... continued ...
IEC 60559 operation C function Clause
log2p1 log2p1 7.12.6.16, F.10.3.16
log10p1 log10p1 7.12.6.13, F.10.3.13
hypot hypot 7.12.7.4, F.10.4.4
rSqrt rsqrt 7.12.7.9, F.10.4.9
compound compoundn 7.12.7.2, F.10.4.2
rootn rootn 7.12.7.8, F.10.4.8
pown pown 7.12.7.6, F.10.4.6
pow pow 7.12.7.5, F.10.4.5
powr powr 7.12.7.7, F.10.4.7
sin sin 7.12.4.6, F.10.1.6
cos cos 7.12.4.5, F.10.1.5
tan tan 7.12.4.7, F.10.1.7
sinPi sinpi 7.12.4.13, F.10.1.13
cosPi cospi 7.12.4.12, F.10.1.12
tanPi tanpi 7.12.4.14, F.10.1.14
asinPi asinpi 7.12.4.9, F.10.1.9
acosPi acospi 7.12.4.8, F.10.1.8
atanPi atanpi 7.12.4.10, F.10.1.10
atan2Pi atan2pi 7.12.4.11, F.10.1.11
asin asin 7.12.4.2, F.10.1.2
acos acos 7.12.4.1, F.10.1.1
atan atan 7.12.4.3, F.10.1.3
atan2 atan2 7.12.4.4, F.10.1.4
sinh sinh 7.12.5.5, F.10.2.5
cosh cosh 7.12.5.4, F.10.2.4
tanh tanh 7.12.5.6, F.10.2.6
asinh asinh 7.12.5.2, F.10.2.2
acosh acosh 7.12.5.1, F.10.2.1
atanh atanh 7.12.5.3, F.10.2.3

F.4 Floating to integer conversion
1 If the integer type is _Bool, 6.3.1.2 applies and the conversion raises no floating-point exceptions if

the floating-point value is not a signaling NaN. Otherwise, if the floating value is infinite or NaN
or if the integral part of the floating value exceeds the range of the integer type, then the "invalid"
floating-point exception is raised and the resulting value is unspecified. Otherwise, the resulting
value is determined by 6.3.1.4. Conversion of an integral floating value that does not exceed the
range of the integer type raises no floating-point exceptions; whether conversion of a non-integral
floating value raises the "inexact" floating-point exception is unspecified.391)

F.5 Conversions between binary floating types and decimal character se-
quences

1 The <float.h> header defines the macro

CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_EXT__ is defined as a macro at the point in the source file
where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integral constant
expression suitable for use in #if preprocessing directives whose value is a number such that
conversions between all supported IEC 60559 binary formats and character sequences with at most

391)IEC 60559 recommends that implicit floating-to-integer conversions raise the "inexact" floating-point exception for
non-integer in-range values. In those cases where it matters, library functions can be used to effect such conversions with or
without raising the "inexact" floating- point exception. See fromfp, ufromfp, fromfpx, ufromfpx, rint, lrint, llrint, and
nearbyint in <math.h>.

§ F.5 IEC 60559 floating-point arithmetic 445

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

CR_DECIMAL_DIG significant decimal digits are correctly rounded. The value of CR_DECIMAL_DIG
shall be at least M +3, where M is the maximum value of the T_DECIMAL_DIG macros for IEC 60559
binary formats. If the implementation correctly rounds for all numbers of significant decimal digits,
then CR_DECIMAL_DIG shall have the value of the macro UINTMAX_MAX.

2 Conversions of types with IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

3 Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal digits
to types with IEC 60559 binary formats shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction,
and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to
the destination type. The "inexact" floating-point exception is raised (once) if either conversion
is inexact.392) (The second conversion may raise the "overflow" or "underflow" floating-point
exception.)

4 The specification in this subclause assures conversion between IEC 60559 binary format and decimal
character sequence follows all pertinent recommended practice. It also assures conversion from
IEC 60559 format to decimal character sequence with at least T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function, where T is the macro prefix for the format.

5 Functions such as strtod that convert character sequences to floating types honor the rounding
direction. Hence, if the rounding direction might be upward or downward, the implementation
cannot convert a minus-signed sequence by negating the converted unsigned sequence.

6 NOTE IEC 60559 specifies that conversion to one-digit character strings using roundTiesToEven when both choices have
an odd least significant digit, shall produce the value with the larger magnitude. For example, this can happen with 9.5e2
whose nearest neighbors are 9.e2 and 1.e3, both of which have a single odd digit in the significand part.

F.6 The return statement
If the return expression is evaluated in a floating-point format different from the return type, the
expression is converted as if by assignment393) to the return type of the function and the resulting
value is returned to the caller.

F.7 Contracted expressions
1 A contracted expression is correctly rounded (once) and treats infinities, NaNs, signed zeros, sub-

normals, and the rounding directions in a manner consistent with the basic arithmetic operations
covered by IEC 60559.

Recommended practice
2 A contracted expression should raise floating-point exceptions in a manner generally consistent

with the basic arithmetic operations.

F.8 Floating-point environment
1 The floating-point environment defined in <fenv.h> includes the IEC 60559 floating-point exception

status flags and rounding-direction control modes. It may also include other floating-point status or
modes that the implementation provides as extensions.394)

2 This annex does not include support for IEC 60559’s optional alternate exception handling. The
specification in this annex assumes IEC 60559 default exception handling: the flag is set, a default
result is delivered, and execution continues. Implementations might provide alternate exception
handling as an extension.

F.8.1 Environment management
1 IEC 60559 requires that floating-point operations implicitly raise floating-point exception status

flags, and that rounding control modes can be set explicitly to affect result values of floating-point

392)The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits are 0.
393)Assignment removes any extra range and precision.
394)Dynamic rounding precision and trap enablement modes are examples of such extensions.

446 IEC 60559 floating-point arithmetic § F.8.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

operations. These changes to the floating-point state are treated as side effects which respect
sequence points.395)

F.8.2 Translation
1 During translation, constant rounding direction modes (7.6.2) are in effect where specified. Else-

where, during translation the IEC 60559 default modes are in effect:

— The rounding direction mode is rounding to nearest.

— The rounding precision mode (if supported) is set so that results are not shortened.

— Trapping or stopping (if supported) is disabled on all floating-point exceptions.

Recommended practice
2 The implementation should produce a diagnostic message for each translation-time floating-point

exception, other than "inexact";396) the implementation should then proceed with the translation of
the program.

F.8.3 Execution
1 At program startup the dynamic floating-point environment is initialized as prescribed by IEC 60559:

— All floating-point exception status flags are cleared.

— The dynamic rounding direction mode is rounding to nearest.

— The dynamic rounding precision mode (if supported) is set so that results are not shortened.

— Trapping or stopping (if supported) is disabled on all floating-point exceptions.

F.8.4 Constant expressions
1 An arithmetic constant expression of floating type, other than one in an initializer for an object that

has static or thread storage duration, is evaluated (as if) during execution; thus, it is affected by any
operative floating-point control modes and raises floating-point exceptions as required by IEC 60559
(provided the state for the FENV_ACCESS pragma is "on").397)

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

float w[] = { 0.0/0.0 }; // raises an exception
static float x = 0.0/0.0; // does not raise an exception
float y = 0.0/0.0; // raises an exception
double z = 0.0/0.0; // raises an exception
/* ... */

}

3 For the static initialization, the division is done at translation time, raising no (execution-time) floating-point exceptions. On
the other hand, for the three automatic initializations the invalid division occurs at execution time.

395)If the state for the FENV_ACCESS pragma is "off", the implementation is free to assume the dynamic floating-point control
modes will be the default ones and the floating-point status flags will not be tested, which allows certain optimizations (see
F.9).
396)As floating constants are converted to appropriate internal representations at translation time, their conversion is subject

to constant or default rounding modes and raises no execution-time floating-point exceptions (even where the state of the
FENV_ACCESS pragma is "on"). Library functions, for example strtod, provide execution-time conversion of numeric strings.
397)Where the state for the FENV_ACCESS pragma is "on", results of inexact expressions like 1.0/3.0 are affected by rounding

modes set at execution time, and expressions such as 0.0/0.0 and 1.0/0.0 generate execution-time floating-point exceptions.
The programmer can achieve the efficiency of translation-time evaluation through static initialization, such as

const static double one_third = 1.0/3.0;

§ F.8.4 IEC 60559 floating-point arithmetic 447

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.8.5 Initialization
1 All computation for automatic initialization is done (as if) at execution time; thus, it is affected by

any operative modes and raises floating-point exceptions as required by IEC 60559 (provided the
state for the FENV_ACCESS pragma is "on"). All computation for initialization of objects that have
static or thread storage duration is done (as if) at translation time.

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

float u[] = { 1.1e75 }; // raises exceptions
static float v = 1.1e75; // does not raise exceptions
float w = 1.1e75; // raises exceptions
double x = 1.1e75; // may raise exceptions
float y = 1.1e75f; // may raise exceptions
long double z = 1.1e75; // does not raise exceptions
/* ... */

}

3 The static initialization of v raises no (execution-time) floating-point exceptions because its computation is done at translation
time. The automatic initialization of u and w require an execution-time conversion to float of the wider value 1.1e75,
which raises floating-point exceptions. The automatic initializations of x and y entail execution-time conversion; however, in
some expression evaluation methods, the conversions is not to a narrower format, in which case no floating-point exception
is raised.398) The automatic initialization of z entails execution-time conversion, but not to a narrower format, so no
floating-point exception is raised. Note that the conversions of the floating constants 1.1e75 and 1.1e75f to their internal
representations occur at translation time in all cases.

F.8.6 Changing the environment
1 Operations defined in 6.5 and functions and macros defined for the standard libraries change

floating-point status flags and control modes just as indicated by their specifications (including
conformance to IEC 60559). They do not change flags or modes (so as to be detectable by the user) in
any other cases.

2 If the argument to the feraiseexcept function in <fenv.h> represents IEC 60559 valid coincident
floating-point exceptions for atomic operations (namely "overflow" and "inexact", or "underflow"
and "inexact"), then "overflow" or "underflow" is raised before "inexact".

F.9 Optimization
1 This section identifies code transformations that might subvert IEC 60559-specified behavior, and

others that do not.

F.9.1 Global transformations
1 Floating-point arithmetic operations and external function calls may entail side effects which

optimization shall honor, at least where the state of the FENV_ACCESS pragma is "on". The flags
and modes in the floating-point environment may be regarded as global variables; floating-point
operations (+ ,* , etc.) implicitly read the modes and write the flags.

2 Concern about side effects may inhibit code motion and removal of seemingly useless code. For
example, in

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(double x)
{

398)Use of float_t and double_t variables increases the likelihood of translation-time computation. For example, the
automatic initialization

double_t x = 1.1e75;

could be done at translation time, regardless of the expression evaluation method.

448 IEC 60559 floating-point arithmetic § F.9.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

/* ... */
for (i = 0; i < n; i++) x + 1;
/* ... */

}

x+1 might raise floating-point exceptions, so cannot be removed. And since the loop body might not
execute (maybe 0 ≥ n), x+1 cannot be moved out of the loop. (Of course these optimizations are
valid if the implementation can rule out the nettlesome cases.)

3 This specification does not require support for trap handlers that maintain information about
the order or count of floating-point exceptions. Therefore, between function calls, floating-point
exceptions need not be precise: the actual order and number of occurrences of floating-point
exceptions (> 1) may vary from what the source code expresses. Thus, the preceding loop could be
treated as

if (0 < n) x + 1;

F.9.2 Expression transformations
1 Valid expression transformations must preserve numerical values.

2 The equivalences noted below apply to expressions of standard floating types.

x/2 ↔ x× 0.5 Although similar transformations involving inexact constants generally do not
yield numerically equivalent expressions, if the constants are exact then such
transformations can be made on IEC 60559 machines and others that round
perfectly.

1× x and x/1 → x The expressions 1× x, x/1, and x may be regarded as equivalent (on IEC 60559
machines, among others).399)

x/x → 1.0 The expressions x/x and 1.0 are not equivalent if x can be zero, infinite, or NaN.

x− y ↔ x+ (−y) The expressions x − y, x + (−y), and (−y) + x are equivalent (on IEC 60559
machines, among others).

x− y ↔−(y − x) The expressions x− y and −(y − x) are not equivalent because 1− 1 is +0 but
−(1− 1) is −0 (in the default rounding direction).400)

x− x → 0.0 The expressions x− x and 0.0 are not equivalent if x is a NaN or infinite.

0× x → 0.0 The expressions 0× x and 0.0 are not equivalent if x is a NaN, infinite, or −0.

x+ 0 → x The expressions x+ 0 and x are not equivalent if x is −0, because (−0) + (+0)
yields +0 (in the default rounding direction), not −0.

x− 0 → x (+0) − (+0) yields −0 when rounding is downward (toward −∞), but +0
otherwise, and (−0)−(+0) always yields −0; so, if the state of the FENV_ACCESS
pragma is "off", promising default rounding, then the implementation can
replace x− 0 by x, even if x might be zero.

−x ↔ 0− x The expressions −x and 0−x are not equivalent if x is +0, because −(+0) yields
−0, but 0− (+0) yields +0 (unless rounding is downward).

399)Strict support for signaling NaNs — not required by this specification — would invalidate these and other transformations
that remove arithmetic operators.
400)IEC 60559 prescribes a signed zero to preserve mathematical identities across certain discontinuities. Examples include:

1/(1/±∞) is ±∞
and

conj(csqrt(z)) is csqrt(conj(z)),
for complex z.

§ F.9.2 IEC 60559 floating-point arithmetic 449

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

3 For expressions of decimal floating types, transformations must preserve quantum exponents, as
well as numerical values (5.2.4.2.3).

4 EXAMPLE 1.× x→ x is valid for decimal floating-point expressions x, but 1.0× x → x is not:

1.× 12.34 = (+1, 1, 0)× (+1, 1234,−2) = (+1, 1234,−2) = 12.34
1.0× 12.34 = (+1, 10,−1)× (+1, 1234,−2) = (+1, 12340,−3) = 12.340

The results are numerically equal, but have different quantum exponents, hence have different values.

F.9.3 Relational operators
1 x ̸= x → false The expression x ̸= x is true if x is a NaN.

x = x → true The expression x = x is false if x is a NaN.

x < y → isless(x, y) (and similarly for ≤, >, ≥) Though numerically equal, these expressions are
not equivalent because of side effects when x or y is a NaN and the state
of the FENV_ACCESS pragma is "on". This transformation, which would be
desirable if extra code were required to cause the "invalid" floating-point
exception for unordered cases, could be performed provided the state of the
FENV_ACCESS pragma is "off".

The sense of relational operators shall be maintained. This includes handling unordered cases as
expressed by the source code.

2 EXAMPLE

// calls g and raises "invalid" if a and b are unordered
if (a < b)

f();
else

g();

is not equivalent to

// calls f and raises "invalid" if a and b are unordered
if (a >= b)

g();
else

f();

nor to

// calls f without raising "invalid" if a and b are unordered
if (isgreaterequal(a,b))

g();
else

f();

nor, unless the state of the FENV_ACCESS pragma is "off", to

// calls g without raising "invalid" if a and b are unordered
if (isless(a,b))

f();
else

g();

but is equivalent to

if (!(a < b))
g();

else
f();

450 IEC 60559 floating-point arithmetic § F.9.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.9.4 Constant arithmetic
1 The implementation shall honor floating-point exceptions raised by execution-time constant arith-

metic wherever the state of the FENV_ACCESS pragma is "on". (See F.8.4 and F.8.5.) An operation
on constants that raises no floating-point exception can be folded during translation, except, if the
state of the FENV_ACCESS pragma is "on", a further check is required to assure that changing the
rounding direction to downward does not alter the sign of the result,401) and implementations that
support dynamic rounding precision modes shall assure further that the result of the operation
raises no floating-point exception when converted to the semantic type of the operation.

F.10 Mathematics <math.h> and <tgmath.h>
1 This subclause contains specifications of <math.h> and <tgmath.h> facilities that are particularly

suited for IEC 60559 implementations.

2 The Standard C macro HUGE_VAL and its float and long double analogs, HUGE_VALF and
HUGE_VALL, expand to expressions whose values are positive infinities.

3 For each single-argument function f in <math.h> whose mathematical counterpart is symmetric
(even), f(-x) is f(x) for all rounding modes and for all x in the (valid) domain of the function. For
each single-argument function f in <math.h> whose mathematical counterpart is antisymmetric
(odd), f(-x) is-f(x) for the IEC 60559 rounding modes roundTiesToEven, roundTiesToAway, and
roundTowardZero, and for all x in the (valid) domain of the function. The atan2 and atan2pi
functions are odd in their first argument.

4 Special cases for functions in <math.h> are covered directly or indirectly by IEC 60559. The functions
that IEC 60559 specifies directly are identified in F.3. The other functions in <math.h> treat infinities,
NaNs, signed zeros, subnormals, and (provided the state of the FENV_ACCESS pragma is "on") the
floating-point status flags in a manner consistent with IEC 60559 operations.

5 The expression math_errhandling & MATH_ERREXCEPT shall evaluate to a nonzero value.

6 The functions bound to operations in IEC 60559 (F.3) are fully specified by IEC 60559, including
rounding behaviors and floating-point exceptions.

7 The "invalid" and "divide-by-zero" floating-point exceptions are raised as specified in subsequent
subclauses of this annex.

8 The "overflow" floating-point exception is raised whenever an infinity — or, because of rounding
direction, a maximal-magnitude finite number — is returned in lieu of a value whose magnitude is
too large.

9 The "underflow" floating-point exception is raised whenever a result is tiny (essentially subnormal
or zero) and suffers loss of accuracy.402)

10 Whether or when library functions not bound to operations in IEC 60559 raise the "inexact" floating-
point exception is unspecified, unless stated otherwise.

11 Whether or when library functions raise an undeserved "underflow" floating-point exception is
unspecified.403) Otherwise, as implied by F.8.6, these functions do not raise spurious floating-point
exceptions (detectable by the user), other than the "inexact" floating-point exception.

12 Whether the functions not bound to operations in IEC 60559 honor the rounding direction mode is
implementation-defined, unless explicitly specified otherwise.

13 Functions with a NaN argument return a NaN result and raise no floating-point exception, except
where explicitly stated otherwise.

14 The specifications in the following subclauses append to the definitions in <math.h>. For families of
functions, the specifications apply to all of the functions even though only the principal function
is shown. Unless otherwise specified, where the symbol "±" occurs in both an argument and the

401)0-0 yields-0 instead of+0 just when the rounding direction is downward.
402)IEC 60559 allows different definitions of underflow. They all result in the same values, but differ on when the floating-

point exception is raised.
403)It is intended that undeserved "underflow" and "inexact" floating-point exceptions are raised only if avoiding them

would be too costly.

§ F.10 IEC 60559 floating-point arithmetic 451

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

result, the result has the same sign as the argument.

Recommended practice
15 IEC 60559 specifies correct rounding for the operations in the F.3 table of operations recommended

by IEC 60559, and thereby preserves useful mathematical properties such as symmetry, monotonicity,
and periodicity. The corresponding functions with reserved cr_-prefixed names (7.31.8) do the same.
The C functions in the table, however, are not required to be correctly rounded, but implementations
should still preserve as many of these useful mathematical properties as possible.

16 If a function with one or more NaN arguments returns a NaN result, the result should be the same
as one of the NaN arguments (after possible type conversion), except perhaps for the sign.

F.10.1 Trigonometric functions
F.10.1.1 The acos functions

1 — acos(1) returns +0.

— acos(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.1.2 The asin functions
1 — asin(±0) returns ±0.

— asin(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.1.3 The atan functions
1 — atan(±0) returns ±0.

— atan(±∞) returns ±π
2 .

F.10.1.4 The atan2 functions
1 — atan2(±0,−0) returns ±π.404)

— atan2(±0,+0) returns ±0.

— atan2(±0, x) returns ±π for x < 0.

— atan2(±0, x) returns ±0 for x > 0.

— atan2(y,±0) returns −π
2 for y < 0.

— atan2(y,±0) returns π
2 for y > 0.

— atan2(±y,−∞) returns ±π for finite y > 0.

— atan2(±y,+∞) returns ±0 for finite y > 0.

— atan2(±∞, x) returns ±π
2 for finite x.

— atan2(±∞,−∞) returns ± 3π
4 .

— atan2(±∞,+∞) returns ±π
4 .

F.10.1.5 The cos functions
1 — cos(±0) returns 1.

— cos(±∞) returns a NaN and raises the "invalid" floating-point exception.
404)atan2(0, 0) does not raise the "invalid" floating-point exception, nor does atan2(y, 0) raise the "divide-by-zero" floating-

point exception.

452 IEC 60559 floating-point arithmetic § F.10.1.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.10.1.6 The sin functions
1 — sin(±0) returns ±0.

— sin(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.1.7 The tan functions
1 — tan(±0) returns ±0.

— tan(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.1.8 The acospi functions
1 — acospi(+1) returns +0.

— acospi(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.1.9 The asinpi functions
1 — asinpi(±0) returns ±0.

— asinpi(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.1.10 The atanpi functions
1 — atanpi(±0) returns ±0.

— atanpi(±∞) returns ± 1
2 .

F.10.1.11 The atan2pi functions
1 — atan2pi(±0,−0) returns ±1.405)

— atan2pi(±0,+0) returns ±0.

— atan2pi(±0, x) returns ±1 for x < 0.

— atan2pi(±0, x) returns ±0 for x > 0.

— atan2pi(y,±0) returns − 1
2 for y < 0.

— atan2pi(y,±0) returns + 1
2 for y > 0.

— atan2pi(±y,−∞) returns ±1 for finite y > 0.

— atan2pi(±y,+∞) returns ±0 for finite y > 0.

— atan2pi(±∞, x) returns ± 1
2 for finite x.

— atan2pi(±∞,−∞) returns ± 3
4 .

— atan2pi(±∞,+∞) returns ± 1
4 .

F.10.1.12 The cospi functions
1 — cospi(±0) returns 1.

— cospi(n+ 1
2) returns +0, for integers n.

— cospi(±∞) returns a NaN and raises the "invalid" floating-point exception.
405)atan2pi(0, 0) does not raise the "invalid" floating-point exception, nor does atan2pi(y, 0) raise the "divide-by-zero"

floating-point exception.

§ F.10.1.12 IEC 60559 floating-point arithmetic 453

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.10.1.13 The sinpi functions
1 — sinpi(±0) returns ±0.

— sinpi(±n) returns ±0, for positive integers n.

— sinpi(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.1.14 The tanpi functions
1 — tanpi(±0) returns ±0.

— tanpi(n) returns +0, for positive even and negative odd integers n.

— tanpi(n) returns −0, for positive odd and negative even integers n.

— tanpi(n+ 1
2) returns +∞ and raises the "divide-by-zero" floating-point exception, for even

integers n.

— tanpi(n+ 1
2) returns −∞ and raises the "divide-by-zero" floating-point exception, for odd

integers n.

— tanpi(±∞) returns a NaN and raises the "invalid" floating-point exception.

F.10.2 Hyperbolic functions
F.10.2.1 The acosh functions

1 — acosh(1) returns +0.

— acosh(x) returns a NaN and raises the "invalid" floating-point exception for x < 1.

— acosh(+∞) returns +∞.

F.10.2.2 The asinh functions
1 — asinh(±0) returns ±0.

— asinh(±∞) returns ±∞.

F.10.2.3 The atanh functions
1 — atanh(±0) returns ±0.

— atanh(±1) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— atanh(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1.

F.10.2.4 The cosh functions
1 — cosh(±0) returns 1.

— cosh(±∞) returns +∞.

F.10.2.5 The sinh functions
1 — sinh(±0) returns ±0.

— sinh(±∞) returns ±∞.

F.10.2.6 The tanh functions
1 — tanh(±0) returns ±0.

— tanh(±∞) returns ±1.

454 IEC 60559 floating-point arithmetic § F.10.2.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.10.3 Exponential and logarithmic functions
F.10.3.1 The exp functions

1 — exp(±0) returns 1.

— exp(−∞) returns +0.

— exp(+∞) returns +∞.

F.10.3.2 The exp10 functions
1 — exp10(±0) returns 1.

— exp10(−∞) returns +0.

— exp10(+∞) returns +∞.

F.10.3.3 The exp10m1 functions
1 — exp10m1(±0) returns ±0.

— exp10m1(−∞) returns −1.

— exp10m1(+∞) returns +∞.

F.10.3.4 The exp2 functions
1 — exp2(±0) returns 1.

— exp2(−∞) returns +0.

— exp2(+∞) returns +∞.

F.10.3.5 The exp2m1 functions
1 — exp2m1(±0) returns ±0.

— exp2m1(−∞) returns −1.

— exp2m1(+∞) returns +∞.

F.10.3.6 The expm1 functions
1 — expm1(±0) returns ±0.

— expm1(−∞) returns −1.

— expm1(+∞) returns +∞.

F.10.3.7 The frexp functions
1 — frexp(±0, exp) returns ±0, and stores 0 in the object pointed to by exp.

— frexp(±∞, exp) returns ±∞, and stores an unspecified value in the object pointed to by exp.

— frexp(NaN, exp) stores an unspecified value in the object pointed to by exp (and returns a
NaN).

2 frexp raises no floating-point exceptions if value is not a signaling NaN.

3 The returned value is independent of the current rounding direction mode.

4 On a binary system, the body of the frexp function might be

{

*exp = (value == 0) ? 0: (int)(1 + logb(value));
return scalbn(value, -(*exp));

}

§ F.10.3.7 IEC 60559 floating-point arithmetic 455

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.10.3.8 The ilogb functions
1 When the correct result is representable in the range of the return type, the returned value is exact

and is independent of the current rounding direction mode.

2 If the correct result is outside the range of the return type, the numeric result is unspecified and the
"invalid" floating-point exception is raised.

3 ilogb(x), for x zero, infinite, or NaN, raises the "invalid" floating-point exception and returns the
value specified in 7.12.6.8.

F.10.3.9 The ldexp functions
1 On a binary system, ldexp(x, exp) is equivalent to scalbn(x, exp).

F.10.3.10 The llogb functions
1 The llogb functions are equivalent to the ilogb functions, except that the llogb functions determine

a result in the long int type.

F.10.3.11 The log functions
1 — log(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log(1) returns +0.

— log(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log(+∞) returns +∞.

F.10.3.12 The log10 functions
1 — log10(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log10(1) returns +0.

— log10(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log10(+∞) returns +∞.

F.10.3.13 The log10p1 functions
1 — log10p1(±0) returns ±0.

— log10p1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log10p1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— log10p1(+∞) returns +∞.

F.10.3.14 The log1p and logp1 functions
1 — logp1(±0) returns ±0.

— logp1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— logp1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— logp1(+∞) returns +∞.

The log1p functions are equivalent to the logp1 functions.

F.10.3.15 The log2 functions
1 — log2(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log2(1) returns +0.

— log2(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— log2(+∞) returns +∞.

456 IEC 60559 floating-point arithmetic § F.10.3.15

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.10.3.16 The log2p1 functions
1 — log2p1(±0) returns ±0.

— log2p1(−1) returns −∞ and raises the "divide-by-zero" floating-point exception.

— log2p1(x) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— log2p1(+∞) returns +∞.

F.10.3.17 The logb functions
1 — logb(±0) returns −∞ and raises the "divide-by-zero" floating-point exception.

— logb(±∞) returns +∞.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.3.18 The modf functions
1 — modf(±x, iptr) returns a result with the same sign as x.

— modf(±∞, iptr) returns ±0 and stores ±∞ in the object pointed to by iptr.

— modf(NaN, iptr) stores a NaN in the object pointed to by iptr (and returns a NaN).

2 The returned values are exact and are independent of the current rounding direction mode.

3 modf behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double modf(double value, double *iptr)
{

int save_round = fegetround();
fesetround(FE_TOWARDZERO);

*iptr = nearbyint(value);
fesetround(save_round);
return copysign(

isinf(value) ? 0.0:
value - (*iptr), value);

}

F.10.3.19 The scalbn and scalbln functions
1 — scalbn(±0, n) returns ±0.

— scalbn(x, 0) returns x.

— scalbn(±∞, n) returns ±∞.

2 If the calculation does not overflow or underflow, the returned value is exact and independent of
the current rounding direction mode.

F.10.4 Power and absolute value functions
F.10.4.1 The cbrt functions

1 — cbrt(±0) returns ±0.

— cbrt(±∞) returns ±∞.

§ F.10.4.1 IEC 60559 floating-point arithmetic 457

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.10.4.2 The compoundn functions
1 — compoundn(x, 0) returns 1 for x ≥ −1 or x a NaN.

— compoundn(x, n) returns a NaN and raises the "invalid" floating-point exception for x < −1.

— compoundn(−1, n) returns +∞ and raises the divide-by-zero floating-point exception for n < 0.

— compoundn(−1, n) returns +0 for n > 0.

F.10.4.3 The fabs functions
1 — fabs(±0) returns +0.

— fabs(±∞) returns +∞.

2 fabs(x) raises no floating-point exceptions, even if x is a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.4.4 The hypot functions
1 — hypot(x, y), hypot(y, x), and hypot(x,−y) are equivalent.

— hypot(x,±0) is equivalent to fabs(x).

— hypot(±∞, y) returns +∞, even if y is a NaN.

F.10.4.5 The pow functions
1 — pow(±0, y) returns ±∞ and raises the "divide-by-zero" floating-point exception for y an odd

integer < 0.

— pow(±0, y) returns +∞ and raises the "divide-by-zero" floating-point exception for y < 0,
finite, and not an odd integer.

— pow(±0,−∞) returns +∞.

— pow(±0, y) returns ±0 for y an odd integer > 0.

— pow(±0, y) returns +0 for y > 0 and not an odd integer.

— pow(−1,±∞) returns 1.

— pow(+1, y) returns 1 for any y, even a NaN.

— pow(x,±0) returns 1 for any x, even a NaN.

— pow(x, y) returns a NaN and raises the "invalid" floating-point exception for finite x < 0 and
finite non-integer y.

— pow(x,−∞) returns +∞ for |x| < 1.

— pow(x,−∞) returns +0 for |x| > 1.

— pow(x,+∞) returns +0 for |x| < 1.

— pow(x,+∞) returns +∞ for |x| > 1.

— pow(−∞, y) returns −0 for y an odd integer < 0.

— pow(−∞, y) returns +0 for y < 0 and not an odd integer.

— pow(−∞, y) returns −∞ for y an odd integer > 0.

— pow(−∞, y) returns +∞ for y > 0 and not an odd integer.

— pow(+∞, y) returns +0 for y < 0.

— pow(+∞, y) returns +∞ for y > 0.

458 IEC 60559 floating-point arithmetic § F.10.4.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.10.4.6 The pown functions
1 — pown(x, 0) returns 1 for all x not a signalling NaN.

— pown(±0, n) returns ±∞ and raises the "divide-by-zero" floating-point exception for odd
n < 0.

— pown(±0, n) returns +∞ and raises the "divide-by-zero" floating-point exception for even
n < 0.

— pown(±0, n) returns +0 for even n > 0.

— pown(±0, n) returns ±0 for odd n > 0.

— pown(±∞, n) is equivalent to pown(±0,−n) for n not 0, except that the "divide-by-zero"
floating-point exception is not raised.

F.10.4.7 The powr functions
1 — powr(x,±0) returns 1 for finite x > 0.

— powr(±0, y) returns +∞ and raises the "divide-by-zero" floating-point exception for finite
y < 0.

— powr(±0,−∞) returns +∞.

— powr(±0, y) returns +0 for y > 0.

— powr(+1, y) returns 1 for finite y.

— powr(+1, y)

— powr(x, y) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— powr(±0,±0) returns a NaN and raises the "invalid" floating-point exception.

— powr(+∞,±0) returns a NaN and raises the "invalid" floating-point exception.

F.10.4.8 The rootn functions
1 — rootn(±0, n) returns ±∞ and raises the "divide-by-zero" floating-point exception for odd

n < 0.

— rootn(±0, n) returns +∞ and raises the "divide-by-zero" floating-point exception for even
n < 0.

— rootn(±0, n) returns +0 for even n > 0.

— rootn(±0, n) returns ±0 for odd n > 0.

— rootn(+∞, n) returns +∞ for n > 0.

— rootn(−∞, n) returns −∞ for odd n > 0.

— rootn(−∞, n) returns a NaN and raises the "invalid" floating-point exception for even n > 0.

— rootn(+∞, n) returns +0 for n < 0.

— rootn(−∞, n) returns −0 for odd n < 0.

— rootn(−∞, n) returns a NaN and raises the "invalid" floating-point exception for even n < 0.

— rootn(x, 0) returns a NaN and raises the "invalid" floating-point exception for all x (including
NaN).

— rootn(x, n) returns a NaN and raises the "invalid" floating-point exception for x < 0 and n
even.

§ F.10.4.8 IEC 60559 floating-point arithmetic 459

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.10.4.9 The rsqrt functions
1 — rsqrt(±0) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— rsqrt(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

— rsqrt(+∞) returns +0.

F.10.4.10 The sqrt functions
1 — sqrt(±0) returns ±0.

— sqrt(+∞) returns +∞.

— sqrt(x) returns a NaN and raises the "invalid" floating-point exception for x < 0.

2 The returned value is dependent on the current rounding direction mode.

F.10.5 Error and gamma functions
F.10.5.1 The erf functions

1 — erf(±0) returns ±0.

— erf(±∞) returns ±1.

F.10.5.2 The erfc functions
1 — erfc(−∞) returns 2.

— erfc(+∞) returns +0.

F.10.5.3 The lgamma functions
1 — lgamma(1) returns +0.

— lgamma(2) returns +0.

— lgamma(x) returns +∞ and raises the "divide-by-zero" floating-point exception for x a negative
integer or zero.

— lgamma(−∞) returns +∞.

— lgamma(+∞) returns +∞.

F.10.5.4 The tgamma functions
1 — tgamma(±0) returns ±∞ and raises the "divide-by-zero" floating-point exception.

— tgamma(x) returns a NaN and raises the "invalid" floating-point exception for x a negative
integer.

— tgamma(−∞) returns a NaN and raises the "invalid" floating-point exception.

— tgamma(+∞) returns +∞.

F.10.6 Nearest integer functions
F.10.6.1 The ceil functions

1 — ceil(±0) returns ±0.

— ceil(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 The double version of ceil behaves as though implemented by

460 IEC 60559 floating-point arithmetic § F.10.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double ceil(double x)
{

double result;
int save_round = fegetround();
fesetround(FE_UPWARD);
result = nearbyint(x);
fesetround(save_round);
return result;

}

F.10.6.2 The floor functions
1 — floor(±0) returns ±0.

— floor(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 See the sample implementation for ceil in F.10.6.1.

F.10.6.3 The nearbyint functions
1 The nearbyint functions use IEC 60559 rounding according to the current rounding direction. They

do not raise the "inexact" floating-point exception if the result differs in value from the argument.

— nearbyint(±0) returns ±0 (for all rounding directions).

— nearbyint(±∞) returns ±∞ (for all rounding directions).

F.10.6.4 The rint functions
1 The rint functions differ from the nearbyint functions only in that they do raise the "inexact"

floating-point exception if the result differs in value from the argument.

F.10.6.5 The lrint and llrint functions
1 The lrint and llrint functions provide floating-to-integer conversion as prescribed by IEC 60559.

They round according to the current rounding direction. If the rounded value is outside the range of
the return type, the numeric result is unspecified and the "invalid" floating-point exception is raised.
When they raise no other floating-point exception and the result differs from the argument, they
raise the "inexact" floating-point exception.

F.10.6.6 The round functions
1 — round(±0) returns ±0.

— round(±∞) returns ±∞.

2 The returned value is independent of the current rounding direction mode.

3 The double version of round behaves as though implemented by406)

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result;
fenv_t save_env;

406)This code does not handle signaling NaNs as required of implementations that define FE_SNANS_ALWAYS_SIGNAL.

§ F.10.6.6 IEC 60559 floating-point arithmetic 461

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO);
result = rint(copysign(0.5 + fabs(x), x));
feclearexcept(FE_INEXACT);

}
feupdateenv(&save_env);
return result;

}

F.10.6.7 The lround and llround functions
1 The lround and llround functions differ from the lrint and llrint functions with the default

rounding direction just in that the lround and llround functions round halfway cases away from
zero and need not raise the "inexact" floating-point exception for non-integer arguments that round
to within the range of the return type.

F.10.6.8 The roundeven functions
1

— roundeven(±0) returns ±0.

— roundeven(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 See the sample implementation for ceil in F.10.6.1.

F.10.6.9 The trunc functions
1 The trunc functions use IEC 60559 rounding toward zero (regardless of the current rounding

direction).

— trunc(±0) returns ±0.

— trunc(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.6.10 The fromfp and ufromfp functions
1 The fromfp and ufromfp functions raise the "invalid" floating-point exception and return a NaN

if the argument widthis zero or if the floating-point argument x is infinite or NaN or rounds to an
integral value that is outside the range determined by the argument width (see 7.12.9.10).

2 These functions do not raise the "inexact" floating-point exception.

F.10.6.11 The fromfpx and ufromfpx functions
1 The fromfpx and ufromfpx functions raise the "invalid" floating-point exception and return a NaN

if the floating-point argument x is infinite or NaN or rounds to an integral value that is outside the
range determined by the argument width (see 7.12.9.11).

2 These functions raise the "inexact" floating-point exception if a valid result differs in value from the
floating-point argument x.

F.10.7 Remainder functions
F.10.7.1 The fmod functions

1 — fmod(±0, y) returns ±0 for y not zero.

— fmod(x, y) returns a NaN and raises the "invalid" floating-point exception for x infinite or y
zero (and neither is a NaN).

462 IEC 60559 floating-point arithmetic § F.10.7.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— fmod(x,±∞) returns x for x finite x.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

3 The double version of fmod behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)
{

double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);

}

F.10.7.2 The remainder functions
1 — remainder(±0, y) returns ±0 for y not zero.

— remainder(x, y) returns a NaN and raises the "invalid" floating-point exception for x infinite
or y zero (and neither is a NaN).

— remainder(x,±∞) returns x for finite x.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F.10.7.3 The remquo functions
1 The remquo functions follow the specifications for the remainder functions. They have no further

specifications special to IEC 60559 implementations.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F.10.8 Manipulation functions
F.10.8.1 The copysign functions

1 copysign is specified in the Appendix to IEC 60559.

2 copysign(x, y) raises no floating-point exceptions, even if x or y is a signaling NaN. The returned
value is independent of the current rounding direction mode.

F.10.8.2 The nan functions
1 All IEC 60559 implementations support quiet NaNs, in all floating formats.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.8.3 The nextafter functions
1 — nextafter(x, y) raises the "overflow" and "inexact" floating-point exceptions for x finite and

the function value infinite.

— nextafter(x, y) raises the "underflow" and "inexact" floating-point exceptions for the func-
tion value subnormal or zero and x ̸= y.

2 Even though underflow or overflow can occur, the returned value is independent of the current
rounding direction mode.

§ F.10.8.3 IEC 60559 floating-point arithmetic 463

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

F.10.8.4 The nexttoward functions
1 No additional requirements beyond those on nextafter.

2 Even though underflow or overflow can occur, the returned value is independent of the current
rounding direction mode.

F.10.8.5 The nextup functions
1 — nextup(+∞) returns +∞.

— nextup(−∞) returns the largest-magnitude negative finite number in the type of the function.

2 nextup(x) raises no floating-point exceptions if x is not a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.8.6 The nextdown functions
1 — nextdown(−∞) returns −∞.

— nextdown(+∞) returns the largest-magnitude positive finite number in the type of the func-
tion.

2 nextdown(x) raises no floating-point exceptions if x is not a signaling NaN. The returned value is
independent of the current rounding direction mode.

F.10.8.7 The canonicalize functions

1 The canonicalize functions produce407) the canonical version of the representation in the object
pointed to by the argument x. If the input *x is a signaling NaN, the "invalid" floating-point
exception is raised and a (canonical) quiet NaN (which should be the canonical version of that
signaling NaN made quiet) is produced. For quiet NaN, infinity, and finite inputs, the functions
raise no floating-point exceptions.

F.10.9 Maximum, minimum, and positive difference functions
F.10.9.1 The fdim functions

1 No additional requirements.

F.10.9.2 The fmax functions
1 If just one argument is a NaN, the fmax functions return the other argument (if both arguments are

NaNs, the functions return a NaN).

2 The returned value is exact and is independent of the current rounding direction mode.

3 The body of the fmax function might be408)

{
double r = (isgreaterequal(x, y) || isnan(y)) ? x : y;
(void) canonicalize(&r, &r);
return r;

}

F.10.9.3 The fmin functions
1 The fmin functions are analogous to the fmax functions (see F.10.9.2).

2 The returned value is exact and is independent of the current rounding direction mode.

407)As if *x * 1e0 were computed. Note also that this implementation does not handle signaling NaNs as required of
implementations that define FE_SNANS_ALWAYS_SIGNAL.
408)Ideally, fmax would be sensitive to the sign of zero, for example fmax(−0.0,+0.0) would return +0; however, implemen-

tation in software might be impractical.

464 IEC 60559 floating-point arithmetic § F.10.9.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

F.10.9.4 The fmaximum, fminimum, fmaximum_mag, and fminimum_mag functions
1 These functions treat NaNs like other functions in <math.h> (see F.10). They differ from the cor-

responding fmaximum_num, fminimum_num, fmaximum_mag_num, and fminimum_mag_num functions
only in their treatment of NaNs.

F.10.9.5 The fmaximum_num, fminimum_num, fmaximum_mag_num, and fminimum_mag_num func-
tions

1 These functions return the number if one argument is a number and the other is a quiet or signaling
NaN. If both arguments are NaNs, a quiet NaN is returned. If an argument is a signaling NaN, the
"invalid" floating-point exception is raised (even though the function returns the number when the
other argument is a number).

F.10.10 Floating multiply-add
F.10.10.1 The fma functions

1 — fma(x, y, z) computes xy + z, correctly rounded once.

— fma(x, y, z) returns a NaN and optionally raises the "invalid" floating-point exception if one
of x and y is infinite, the other is zero, and z is a NaN.

— fma(x, y, z) returns a NaN and raises the "invalid" floating-point exception if one of x and y is
infinite, the other is zero, and z is not a NaN.

— fma(x, y, z) returns a NaN and raises the "invalid" floating-point exception if x times y is an
exact infinity and z is also an infinity but with the opposite sign.

F.10.11 Functions that round result to narrower type
1 The functions that round their result to narrower type (7.12.14) are fully specified in IEC 60559. The

returned value is dependent on the current rounding direction mode.

2 These functions treat zero and infinite arguments like the corresponding operation or function: + ,- ,
* , /, fma, or sqrt.

F.10.12 Total order functions
1 This subclause specifies the total order functions required by IEC 60559.
2 NOTE These functions are specified only in Annex F because they depend on details of IEC 60559 formats that might not be

supported if __STDC_IEC_60559_BFP__ is not defined.

F.10.12.1 The totalorder functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

int totalorder(const double *x, const double *y);
int totalorderf(const float *x, const float *y);
int totalorderl(const long double *x, const long double *y);
#endif
#ifdef __STDC_IEC_60559_DFP__

int totalorderd32(const _Decimal32 *x, const _Decimal32 *y);
int totalorderd64(const _Decimal64 *x, const _Decimal64 *y);
int totalorderd128(const _Decimal128 *x, const _Decimal128 *y);
#endif

Description
2 The totalorder functions determine whether the total order relationship, defined by IEC 60559, is

true for the ordered pair of*x ,*y . These functions are fully specified in IEC 60559. These functions
are independent of the current rounding direction mode and raise no floating-point exceptions, even
if*x or*y is a signaling NaN.

§ F.10.12.1 IEC 60559 floating-point arithmetic 465

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
3 The totalorder functions return nonzero if and only if the total order relation is true for the ordered

pair of*x ,*y .

F.10.12.2 The totalordermag functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h> \
#ifdef __STDC_IEC_60559_BFP__

int totalordermag(const double *x, const double *y);
int totalordermagf(const float *x, const float *y);
int totalordermagl(const long double *x, const long double *y);
#endif
#ifdef __STDC_IEC_60559_DFP__

int totalordermagd32(const _Decimal32 *x, const _Decimal32 *y);
int totalordermagd64(const _Decimal64 *x, const _Decimal64 *y);
int totalordermagd128(const _Decimal128 *x, const _Decimal128 *y);
#endif

Description
2 The totalordermag functions determine whether the total order relationship, defined by IEC 60559,

is true for the ordered pair of the magnitudes of *x , *y . These functions are fully specified in
IEC 60559. These functions are independent of the current rounding direction mode and raise no
floating-point exceptions, even if*x or*y is a signaling NaN.

Returns
3 The totalordermag functions return nonzero if and only if the total order relation is true for the

ordered pair of the magnitudes of*x ,*y .

F.10.13 Payload functions
1 IEC 60559 defines the payload to be information contained in a quiet or signaling NaN. The payload

is intended for implementation-defined diagnostic information about the NaN, such as where or
how the NaN was created. The implementation interprets the payload as a non-negative integer
suitable for use with the functions in this subclause, which get and set payloads. The implementation
may restrict which payloads are admissible for the user to set.

2 NOTE These functions are specified only in Annex F because they depend on details of IEC 60559 formats that might not be
supported if __STDC_IEC_60559_BFP__ is not defined.

F.10.13.1 The getpayload functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_BFP__

double getpayload(const double *x);
float getpayloadf(const float *x);
long double getpayloadl(const long double *x);
#endif
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 getpayloadd32(const _Decimal32 *x);
_Decimal64 getpayloadd64(const _Decimal64 *x);
_Decimal128 getpayloadd128(const _Decimal128 *x);
#endif

Description
2 The getpayload functions extract the payload of a quiet or signaling NaN input and return it as a

positive-signed floating-point integer. If*x is not a NaN, the return result is −1. These functions

466 IEC 60559 floating-point arithmetic § F.10.13.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

raise no floating-point exceptions, even if*x is a signaling NaN.

Returns
3 The getpayload functions return the payload of the NaN input as a positive-signed floating-point

integer.

F.10.13.2 The setpayload functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_DFP__

int setpayload(double *res, double pl);
int setpayloadf(float *res, float pl);
int setpayloadl(long double *res, long double pl);
#endif
#ifdef __STDC_IEC_60559_DFP__

int setpayloadd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadd128(_Decimal128 *res, _Decimal128 pl);
#endif

Description
2 The setpayload functions create a quiet NaN with the payload specified by pl and a zero sign bit

and store that NaN in the object pointed to by*res . If pl is not a floating-point integer representing
an admissible payload,*res is set to +0.

Returns
3 If the setpayload functions stored the specified NaN, they return a zero value, otherwise a non-zero

value (and*res is set to +0).

F.10.13.3 The setpayloadsig functions
Synopsis

1 #define __STDC_WANT_IEC_60559_EXT__

#include <math.h>
#ifdef __STDC_IEC_60559_DFP__

int setpayloadsig(double *res, double pl);
int setpayloadsigf(float *res, float pl);
int setpayloadsigl(long double *res, long double pl);
#endif
#ifdef __STDC_IEC_60559_DFP__

int setpayloadsigd32(_Decimal32 *res, _Decimal32 pl);
int setpayloadsigd64(_Decimal64 *res, _Decimal64 pl);
int setpayloadsigd128(_Decimal128 *res, _Decimal128 pl);
#endif

Description
2 The setpayloadsig functions create a signaling NaN with the payload specified by pl and a zero

sign bit and store that NaN in the object pointed to by *res . If pl is not a floating-point integer
representing an admissible payload,*res is set to +0.

Returns
3 If the setpayloadsig functions stored the specified NaN, they return a zero value, otherwise a

non-zero value (and*res is set to +0).

F.10.14 Comparison macros
1 Relational operators and their corresponding comparison macros (7.12.17) produce equivalent

result values, even if argument values are represented in wider formats. Thus, comparison macro

§ F.10.14 IEC 60559 floating-point arithmetic 467

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

arguments represented in formats wider than their semantic types are not converted to the semantic
types, unless the wide evaluation method converts operands of relational operators to their semantic
types. The standard wide evaluation methods characterized by FLT_EVAL_METHOD equal to 1 or 2
(5.2.4.2.2), do not convert operands of relational operators to their semantic types.

F.10.14.1 The iseqsig macro
1 The equality operator == and the iseqsig macro produce equivalent results, except that the iseqsig

macro raises the "invalid" floating-point exception if an argument is a NaN.

468 IEC 60559 floating-point arithmetic § F.10.14.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Annex G
(normative)

IEC 60559-compatible complex arithmetic

G.1 Introduction
1 This annex supplements Annex F to specify complex arithmetic for compatibility with IEC 60559

real floating-point arithmetic. An implementation that defines __STDC_IEC_60559_COMPLEX__ or
__STDC_IEC_559_COMPLEX__ shall conform to the specifications in this annex.409)

G.2 Types
1 There is a new keyword _Imaginary, which is used to specify imaginary types. It is used as a type

specifier within declaration specifiers in the same way as _Complex is (thus, _Imaginary float is a
valid type name).

2 There are three imaginary types, designated as float _Imaginary, double _Imaginary, and
long double _Imaginary. The imaginary types (along with the real floating and complex types)
are floating types.

3 For imaginary types, the corresponding real type is given by deleting the keyword _Imaginary
from the type name.

4 Each imaginary type has the same representation and alignment requirements as the corresponding
real type. The value of an object of imaginary type is the value of the real representation times the
imaginary unit.

5 The imaginary type domain comprises the imaginary types.

G.3 Conventions
1 A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its

other part is a quiet NaN). A complex or imaginary value is a finite number if each of its parts is a
finite number (neither infinite nor NaN). A complex or imaginary value is a zero if each of its parts is
a zero.

G.4 Conversions
G.4.1 Imaginary types

1 Conversions among imaginary types follow rules analogous to those for real floating types.

G.4.2 Real and imaginary
1 When a value of imaginary type is converted to a real type other than _Bool,410) the result is a

positive zero.

2 When a value of real type is converted to an imaginary type, the result is a positive imaginary zero.

G.4.3 Imaginary and complex
1 When a value of imaginary type is converted to a complex type, the real part of the complex result

value is a positive zero and the imaginary part of the complex result value is determined by the
conversion rules for the corresponding real types.

2 When a value of complex type is converted to an imaginary type, the real part of the complex value
is discarded and the value of the imaginary part is converted according to the conversion rules for
the corresponding real types.

409)Implementations that do not define __STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ are not required
to conform to these specifications. The use of __STDC_IEC_559_COMPLEX__ for this purpose is obsolescent and should be
avoided in new code.
410)See 6.3.1.2.

§ G.4.3 IEC 60559-compatible complex arithmetic 469

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

G.5 Binary operators
1 The following subclauses supplement 6.5 in order to specify the type of the result for an operation

with an imaginary operand.

2 For most operand types, the value of the result of a binary operator with an imaginary or complex
operand is completely determined, with reference to real arithmetic, by the usual mathematical
formula. For some operand types, the usual mathematical formula is problematic because of its
treatment of infinities and because of undue overflow or underflow; in these cases the result satisfies
certain properties (specified in G.5.1), but is not completely determined.

G.5.1 Multiplicative operators
Semantics

1 If one operand has real type and the other operand has imaginary type, then the result has imaginary
type. If both operands have imaginary type, then the result has real type. (If either operand has
complex type, then the result has complex type.)

2 If the operands are not both complex, then the result and floating-point exception behavior of the*
operator is defined by the usual mathematical formula:

* u iv u+ iv

x xu i(xv) (xu) + i(xv)
iy i(yu) (−y)v ((−y)v) + i(yu)
x+ iy (xu) + i(yu) ((−y)v) + i(xv)

3 If the second operand is not complex, then the result and floating-point exception behavior of the /
operator is defined by the usual mathematical formula:

/ u iv

x x/u i((−x)/v)
iy i(y/u) y/v
x+ iy (x/u) + i(y/u) (y/v) + i((−x)/v)

4 The* and / operators satisfy the following infinity properties for all real, imaginary, and complex
operands:411)

— if one operand is an infinity and the other operand is a nonzero finite number or an infinity,
then the result of the* operator is an infinity;

— if the first operand is an infinity and the second operand is a finite number, then the result of
the / operator is an infinity;

— if the first operand is a finite number and the second operand is an infinity, then the result of
the / operator is a zero;

— if the first operand is a nonzero finite number or an infinity and the second operand is a zero,
then the result of the / operator is an infinity.

5 If both operands of the* operator are complex or if the second operand of the / operator is complex,
the operator raises floating-point exceptions if appropriate for the calculation of the parts of the
result, and may raise spurious floating-point exceptions.

6 EXAMPLE 1 Multiplication of double _Complex operands could be implemented as follows. Note that the imaginary unit
I has imaginary type (see G.6).

#include <math.h>
#include <complex.h>

/* Multiply z * w ...*/
double complex _Cmultd(double complex z, double complex w)

411)These properties are already implied for those cases covered in the tables, but are required for all cases (at least where the
state for CX_LIMITED_RANGE is "off").

470 IEC 60559-compatible complex arithmetic § G.5.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

{
#pragma STDC FP_CONTRACT OFF
double a, b, c, d, ac, bd, ad, bc, x, y;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
ac = a * c; bd = b * d;
ad = a * d; bc = b * c;
x = ac - bd; y = ad + bc;
if (isnan(x) && isnan(y)) {

/* Recover infinities that computed as NaN+iNaN ... */
int recalc = 0;
if (isinf(a) || isinf(b)) { // z is infinite

/* "Box" the infinity and change NaNs in the other factor to 0 */
a = copysign(isinf(a) ? 1.0: 0.0, a);
b = copysign(isinf(b) ? 1.0: 0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
if (isinf(c) || isinf(d)) { // w is infinite

/* "Box" the infinity and change NaNs in the other factor to 0 */
c = copysign(isinf(c) ? 1.0: 0.0, c);
d = copysign(isinf(d) ? 1.0: 0.0, d);
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
recalc = 1;

}
if (!recalc && (isinf(ac) || isinf(bd) ||

isinf(ad) || isinf(bc))) {
/* Recover infinities from overflow by changing NaNs to 0 ... */
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
if (recalc) {

x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);

}
}
return x + I * y;

}

7 This implementation achieves the required treatment of infinities at the cost of only one isnan test in ordinary (finite) cases.
It is less than ideal in that undue overflow and underflow could occur.

8 EXAMPLE 2 Division of two double _Complex operands could be implemented as follows.

#include <math.h>
#include <complex.h>

/* Divide z / w ... */
double complex _Cdivd(double complex z, double complex w)
{

#pragma STDC FP_CONTRACT OFF
double a, b, c, d, logbw, denom, x, y;
int ilogbw = 0;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
logbw = logb(fmax(fabs(c), fabs(d)));
if (isfinite(logbw)) {

§ G.5.1 IEC 60559-compatible complex arithmetic 471

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

ilogbw = (int)logbw;
c = scalbn(c, -ilogbw); d = scalbn(d, -ilogbw);

}
denom = c * c + d * d;
x = scalbn((a * c + b * d) / denom, -ilogbw);
y = scalbn((b * c - a * d) / denom, -ilogbw);

/* Recover infinities and zeros that computed as NaN+iNaN; */
/* the only cases are nonzero/zero, infinite/finite, and finite/infinite, ... */

if (isnan(x) && isnan(y)) {
if ((denom == 0.0) &&

(!isnan(a) || !isnan(b))) {
x = copysign(INFINITY, c) * a;
y = copysign(INFINITY, c) * b;

}
else if ((isinf(a) || isinf(b)) &&

isfinite(c) && isfinite(d)) {
a = copysign(isinf(a) ? 1.0: 0.0, a);
b = copysign(isinf(b) ? 1.0: 0.0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);

}
else if ((logbw == INFINITY) &&

isfinite(a) && isfinite(b)) {
c = copysign(isinf(c) ? 1.0: 0.0, c);
d = copysign(isinf(d) ? 1.0: 0.0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);

}
}
return x + I * y;

}

9 Scaling the denominator alleviates the main overflow and underflow problem, which is more serious than for multiplication.
In the spirit of the multiplication example above, this code does not defend against overflow and underflow in the calculation
of the numerator. Scaling with the scalbn function, instead of with division, provides better roundoff characteristics.

G.5.2 Additive operators
Semantics

1 If both operands have imaginary type, then the result has imaginary type. (If one operand has real
type and the other operand has imaginary type, or if either operand has complex type, then the
result has complex type.)

2 In all cases the result and floating-point exception behavior of a+ or- operator is defined by the
usual mathematical formula:

+ or- u iv u+ iv

x x±u x±iv (x±u)±iv
iy ±u+ iy i(y±v) ±u+ i(y±v)
x+ iy (x±u) + iy x+ i(y±v) (x±u) + i(y±v)

G.6 Complex arithmetic <complex.h>
1 The macros

imaginary

and

_Imaginary_I

472 IEC 60559-compatible complex arithmetic § G.6

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

are defined, respectively, as _Imaginary and a constant expression of type
const float _Imaginary with the value of the imaginary unit. The macro

I

is defined to be _Imaginary_I (not _Complex_I as stated in 7.3). Notwithstanding the provisions of
7.1.3, a program may undefine and then perhaps redefine the macro imaginary.

2 This subclause contains specifications for the <complex.h> functions that are particularly suited to
IEC 60559 implementations. For families of functions, the specifications apply to all of the functions
even though only the principal function is shown. Unless otherwise specified, where the symbol "±"
occurs in both an argument and the result, the result has the same sign as the argument.

3 The functions are continuous onto both sides of their branch cuts, taking into account the sign of
zero. For example, csqrt(−2±i0) = ±i

√
2.

4 Since complex and imaginary values are composed of real values, each function may be regarded as
computing real values from real values. Except as noted, the functions treat real infinities, NaNs,
signed zeros, subnormals, and the floating-point exception flags in a manner consistent with the
specifications for real functions in F.10.412)

5 In subsequent subclauses in G.6 "NaN" refers to a quiet NaN. The behavior of signaling NaNs
in Annex G is implementation-defined.

6 The functions cimag, conj, cproj, and creal are fully specified for all implementations, including
IEC 60559 ones, in 7.3.9. These functions raise no floating-point exceptions.

7 Each of the functions cabs and carg is specified by a formula in terms of a real function (whose
special cases are covered in Annex F):

cabs(x+ iy) = hypot(x, y)
carg(x+ iy) = atan2(y, x)

8 Each of the functions casin, catan, ccos, csin, and ctan is specified implicitly by a formula in
terms of other complex functions (whose special cases are specified below):

casin(z) = −i casinh(iz)
catan(z) = −i catanh(iz)
ccos(z) = ccosh(iz)
csin(z) = −i csinh(iz)
ctan(z) = −i ctanh(iz)

9 For the other functions, the following subclauses specify behavior for special cases, including
treatment of the "invalid" and "divide-by-zero" floating-point exceptions. For families of functions,
the specifications apply to all of the functions even though only the principal function is shown. For
a function f satisfying f(conj(z)) = conj(f(z)), the specifications for the upper half-plane imply the
specifications for the lower half-plane; if the function f is also either even, f(−z) = f(z), or odd,
f(−z) = −f(z), then the specifications for the first quadrant imply the specifications for the other
three quadrants.

10 In the following subclauses, cis(y) is defined as cos(y) + i sin(y).

G.6.1 Trigonometric functions
G.6.1.1 The cacos functions

1 — cacos(conj(z)) = conj(cacos(z)).

— cacos(±0 + i0) returns π
2 − i0.

— cacos(±0 + iNaN) returns π
2 + iNaN.

412)As noted in G.3, a complex value with at least one infinite part is regarded as an infinity even if its other part is a quiet
NaN.

§ G.6.1.1 IEC 60559-compatible complex arithmetic 473

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— cacos(x+ i∞) returns π
2 − i∞, for finite x.

— cacos(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for nonzero finite x.

— cacos(−∞+ iy) returns pi− i∞, for positive-signed finite y.

— cacos(+∞+ iy) returns +0− i∞, for positive-signed finite y.

— cacos(−∞+ i∞) returns 3π
4 − i∞.

— cacos(+∞+ i∞) returns π
4 − i∞.

— cacos(±∞ + iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result is
unspecified).

— cacos(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— cacos(NaN + i∞) returns NaN − i∞.

— cacos(NaN + iNaN) returns NaN + iNaN.

G.6.2 Hyperbolic functions
G.6.2.1 The cacosh functions

1 — cacosh(conj(z)) = conj(cacosh(z)).

— cacosh(±0 + i0) returns +0 + iπ
2 .

— cacosh(x+ i∞) returns +∞+ iπ
2 , for finite x.

— cacosh(0 + iNaN) returns NaN± iπ
2 (where the sign of the imaginary part of the result is

unspecified).

— cacosh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— cacosh(−∞+ iy) returns +∞+ iπ, for positive-signed finite y.

— cacosh(+∞+ iy) returns +∞+ i0, for positive-signed finite y.

— cacosh(−∞+ i∞) returns +∞+ i 3π4 .

— cacosh(+∞+ i∞) returns +∞+ iπ
4 .

— cacosh(±∞+ iNaN) returns +∞+ iNaN.

— cacosh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— cacosh(NaN + i∞) returns +∞+ iNaN.

— cacosh(NaN + iNaN) returns NaN + iNaN.

474 IEC 60559-compatible complex arithmetic § G.6.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

G.6.2.2 The casinh functions
1 — casinh(conj(z)) = conj(casinh(z)). and casinh is odd.

— casinh(+0 + i0) returns 0 + i0.

— casinh(x+ i∞) returns +∞+ iπ
2 for positive-signed finite x.

— casinh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite x.

— casinh(+∞+ iy) returns +∞+ i0 for positive-signed finite y.

— casinh(+∞+ i∞) returns +∞+ iπ
4 .

— casinh(+∞+ iNaN) returns +∞+ iNaN.

— casinh(NaN + i0) returns NaN + i0.

— casinh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero y.

— casinh(NaN + i∞) returns ±∞ + iNaN (where the sign of the real part of the result is
unspecified).

— casinh(NaN + iNaN) returns NaN + iNaN.

G.6.2.3 The catanh functions
1 — catanh(conj(z)) = conj(catanh(z)). and catanh is odd.

— catanh(+0 + i0) returns +0 + i0.

— catanh(+0 + iNaN) returns +0 + iNaN.

— catanh(+1 + i0) returns +∞+ i0 and raises the "divide-by-zero" floating-point exception.

— catanh(x+ i∞) returns +0 + iπ
2 , for finite positive-signed x.

— catanh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for nonzero finite x.

— catanh(+∞+ iy) returns +0 + iπ
2 , for finite positive-signed y.

— catanh(+∞+ i∞) returns +0 + iπ
2 .

— catanh(+∞+ iNaN) returns +0 + iNaN.

— catanh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— catanh(NaN+ i∞) returns ±0+ iπ
2 (where the sign of the real part of the result is unspecified).

— catanh(NaN + iNaN) returns NaN + iNaN.

G.6.2.4 The ccosh functions
1 — ccosh(conj(z)) = conj(ccosh(z)) and ccosh is even.

— ccosh(+0 + i0) returns 1 + i0.

— ccosh(+0+ i∞) returns NaN±i0 (where the sign of the imaginary part of the result is unspec-
ified) and raises the "invalid" floating-point exception.

— ccosh(+0 + iNaN) returns NaN±i0 (where the sign of the imaginary part of the result is
unspecified).

§ G.6.2.4 IEC 60559-compatible complex arithmetic 475

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— ccosh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
finite nonzero x.

— ccosh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— ccosh(+∞+ i0) returns +∞+ i0.

— ccosh(+∞+ iy) returns +∞ cis(y), for finite nonzero y.

— ccosh(+∞+i∞) returns ±∞+iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— ccosh(+∞+ iNaN) returns +∞+ iNaN.

— ccosh(NaN + i0) returns NaN±i0 (where the sign of the imaginary part of the result is
unspecified).

— ccosh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— ccosh(NaN + iNaN) returns NaN + iNaN.

G.6.2.5 The csinh functions
1 — csinh(conj(z)) = conj(csinh(z)). and csinh is odd.

— csinh(+0 + i0) returns +0 + i0.

— csinh(+0+ i∞) returns ±0+ iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— csinh(+0 + iNaN) returns ±0 + iNaN (where the sign of the real part of the result is unspeci-
fied).

— csinh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
positive finite x.

— csinh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— csinh(+∞+ i0) returns +∞+ i0.

— csinh(+∞+ iy) returns +∞ cis(y), for positive finite y.

— csinh(+∞+i∞) returns ±∞+iNaN (where the sign of the real part of the result is unspecified)
and raises the "invalid" floating-point exception.

— csinh(+∞ + iNaN) returns ±∞ + iNaN (where the sign of the real part of the result is
unspecified).

— csinh(NaN + i0) returns NaN + i0.

— csinh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— csinh(NaN + iNaN) returns NaN + iNaN.

476 IEC 60559-compatible complex arithmetic § G.6.2.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

G.6.2.6 The ctanh functions
1 — ctanh(conj(z)) = conj(ctanh(z)) and ctanh is odd.

— ctanh(+0 + i0) returns +0 + i0.

— ctanh(0 + i∞) returns 0 + iNaN and raises the "invalid" floating-point exception.

— ctanh(x + i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for
finite nonzero x.

— ctanh(0 + iNaN) returns 0 + iNaN.

— ctanh(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite nonzero x.

— ctanh(+∞+ iy) returns 1 + i0sin(2y), for positive-signed finite y.

— ctanh(+∞+ i∞) returns 1±i0 (where the sign of the imaginary part of the result is unspeci-
fied).

— ctanh(+∞+ iNaN) returns 1±i0 (where the sign of the imaginary part of the result is unspec-
ified).

— ctanh(NaN + i0) returns NaN + i0.

— ctanh(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for all nonzero numbers y.

— ctanh(NaN + iNaN) returns NaN + iNaN.

G.6.3 Exponential and logarithmic functions
G.6.3.1 The cexp functions

1 — cexp(conj(z)) = conj(cexp(z)).

— cexp(±0 + i0) returns 1 + i0.

— cexp(x+ i∞) returns NaN + iNaN and raises the "invalid" floating-point exception, for finite
x.

— cexp(x+ iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite x.

— cexp(+∞+ i0) returns +∞+ i0.

— cexp(−∞+ iy) returns +0 cis(y), for finite y.

— cexp(+∞+ iy) returns +∞ cis(y), for finite nonzero y.

— cexp(−∞+ i∞) returns ±0±i0 (where the signs of the real and imaginary parts of the result
are unspecified).

— cexp(+∞+ i∞) returns ±∞+ iNaN and raises the "invalid" floating-point exception (where
the sign of the real part of the result is unspecified).

— cexp(−∞+ iNaN) returns ±0±i0 (where the signs of the real and imaginary parts of the result
are unspecified).

— cexp(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the result is unspec-
ified).

— cexp(NaN + i0) returns NaN + i0.

— cexp(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for all nonzero numbers y.

— cexp(NaN + iNaN) returns NaN + iNaN.

§ G.6.3.1 IEC 60559-compatible complex arithmetic 477

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

G.6.3.2 The clog functions
1 — clog(conj(z)) = conj(clog(z)).

— clog(−0 + i0) returns −∞+ iπ and raises the "divide-by-zero" floating-point exception.

— clog(+0 + i0) returns −∞+ i0 and raises the "divide-by-zero" floating-point exception.

— clog(x+ i∞) returns +∞+ iπ
2 , for finite x.

— clog(x+ iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite x.

— clog(−∞+ iy) returns +∞+ iπ, for finite positive-signed y.

— clog(+∞+ iy) returns +∞+ i0, for finite positive-signed y.

— clog(−∞+ i∞) returns +∞+ i 3π4 .

— clog(+∞+ i∞) returns +∞+ iπ
4 .

— clog(±∞+ iNaN) returns +∞+ iNaN.

— clog(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point excep-
tion, for finite y.

— clog(NaN + i∞) returns +∞+ iNaN.

— clog(NaN + iNaN) returns NaN + iNaN.

G.6.4 Power and absolute-value functions
G.6.4.1 The cpow functions

1 The cpow functions raise floating-point exceptions if appropriate for the calculation of the parts of
the result, and may also raise spurious floating-point exceptions.413)

G.6.4.2 The csqrt functions
1 — csqrt(conj(z)) = conj(csqrt(z)).

— csqrt(±0 + i0) returns +0 + i0.

— csqrt(x+ i∞) returns +∞+ i∞, for all x (including NaN).

— csqrt(x + iNaN) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite x.

— csqrt(−∞+ iy) returns +0 + i∞, for finite positive-signed y.

— csqrt(+∞+ iy) returns +∞+ i0, for finite positive-signed y.

— csqrt(−∞ + iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result is
unspecified).

— csqrt(+∞+ iNaN) returns +∞+ iNaN.

— csqrt(NaN + iy) returns NaN + iNaN and optionally raises the "invalid" floating-point
exception, for finite y.

— csqrt(NaN + iNaN) returns NaN + iNaN.
413)This allows cpow(z, c) to be implemented as cexp(cclog(z)) without precluding implementations that treat special cases

more carefully.

478 IEC 60559-compatible complex arithmetic § G.6.4.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

G.7 Type-generic math <tgmath.h>
1 Type-generic macros that accept complex arguments also accept imaginary arguments. If an argu-

ment is imaginary, the macro expands to an expression whose type is real, imaginary, or complex, as
appropriate for the particular function: if the argument is imaginary, then the types of cos, cosh,
fabs, carg, cimag, and creal are real; the types of sin, tan, sinh, tanh, asin, atan, asinh, and
atanh are imaginary; and the types of the others are complex.

2 Given an imaginary argument, each of the type-generic macros cos, sin, tan, cosh, sinh, tanh,
asin, atan, asinh, atanh is specified by a formula in terms of real functions:

cos(iy) = cosh(y)
sin(iy) = i sinh(y)
tan(iy) = i tanh(y)
cosh(iy) = cos(y)
sinh(iy) = i sin(y)
tanh(iy) = i tan(y)
asin(iy) = i asinh(y)
atan(iy) = i atanh(y)
asinh(iy) = i asin(y)
atanh(iy) = i atan(y)

§ G.7 IEC 60559-compatible complex arithmetic 479

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex H
(informative)

Language independent arithmetic

H.1 Introduction
1 This annex documents the extent to which the C language supports the ISO/IEC 10967–1 standard

for language-independent arithmetic (LIA–1). LIA–1 is more general than IEC 60559 (Annex F) in
that it covers integer and diverse floating-point arithmetics.

H.2 Types
1 The relevant C arithmetic types meet the requirements of LIA–1 types if an implementation adds

notification of exceptional arithmetic operations and meets the 1 unit in the last place (ULP) accuracy
requirement (LIA–1 subclause 5.2.8).

H.2.1 Boolean type
1 The LIA–1 data type Boolean is implemented by the C data type bool with values of true and

false, all from <stdbool.h>.

H.2.2 Integer types
1 The signed C integer types int, long int, long long int, and the corresponding unsigned types

are compatible with LIA–1. If an implementation adds support for the LIA–1 exceptional values
"integer_overflow" and "undefined", then those types are LIA–1 conformant types. C’s unsigned
integer types are "modulo" in the LIA–1 sense in that overflows or out-of-bounds results silently
wrap. An implementation that defines signed integer types as also being modulo need not detect
integer overflow, in which case, only integer divide-by-zero need be detected.

2 The parameters for the integer data types can be accessed by the following:

maxint INT_MAX, LONG_MAX, LLONG_MAX, UINT_MAX, ULONG_MAX, ULLONG_MAX

minint INT_MIN, LONG_MIN, LLONG_MIN

3 The parameter "bounded" is always true, and is not provided. The parameter "minint" is always 0
for the unsigned types, and is not provided for those types.

H.2.2.1 Integer operations
1 The integer operations on integer types are the following:

addI x + y

subI x - y

mulI x * y

divI, divtI x / y

remI, remtI x % y

negI -x

absI abs(x), labs(x), llabs(x)

eqI x == y

neqI x != y

lssI x < y

leqI x <= y

480 Language independent arithmetic § H.2.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

gtrI x > y

geqI x >= y

where x and y are expressions of the same integer type.

H.2.3 Floating-point types
1 The C floating-point types float, double, and long double are compatible with LIA–1. If an

implementation adds support for the LIA–1 exceptional values "underflow", "floating_overflow",
and "undefined", then those types are conformant with LIA–1. An implementation that uses
IEC 60559 floating-point formats and operations (see Annex F) along with IEC 60559 status flags
and traps has LIA–1 conformant types.

H.2.3.1 Floating-point parameters
1 The parameters for a floating-point data type can be accessed by the following:

r FLT_RADIX

p FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG

emax FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP

emin FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP

2 The derived constants for the floating-point types are accessed by the following:

fmax FLT_MAX, DBL_MAX, LDBL_MAX

fminN FLT_MIN, DBL_MIN, LDBL_MIN

epsilon FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON

rnd_style FLT_ROUNDS

H.2.3.2 Floating-point operations
1 The floating-point operations on floating-point types are the following:

addF x + y

subF x - y

mulF x * y

divF x / y

negF -x

absF fabsf(x), fabs(x), fabsl(x)

exponentF 1.f+logbf(x), 1.0+logb(x), 1.L+logbl(x)

scaleF scalbnf(x, n), scalbn(x, n), scalbnl(x, n),

scalblnf(x, li), scalbln(x, li), scalblnl(x, li)

intpartF modff(x, &y), modf(x, &y), modfl(x, &y)

fractpartF modff(x, &y), modf(x, &y), modfl(x, &y)

eqF x == y

neqF x != y

§ H.2.3.2 Language independent arithmetic 481

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

lssF x < y

leqF x <= y

gtrF x > y

geqF x >= y

where x and y are expressions of the same floating-point type, n is of type int, and li is of type
long int.

H.2.3.3 Rounding styles
1 This document requires all floating types to use the same radix and rounding style, so that only one

identifier for each is provided to map to LIA–1.

2 The FLT_ROUNDS parameter can be used to indicate the LIA–1 rounding styles:

truncate FLT_ROUNDS == 0

nearest FLT_ROUNDS == 1

other FLT_ROUNDS != 0 && FLT_ROUNDS != 1

provided that an implementation extends FLT_ROUNDS to cover the rounding style used in all
relevant LIA–1 operations, not just addition as in C.

H.2.4 Type conversions
1 The LIA–1 type conversions are the following type casts:

cvtI’ → I (int)i,(long int)i,(long long int)i,(unsigned int)i,(unsigned long int)i,
(unsigned long long int)i

cvtF → I (int)x,(long int)x,(long long int)x,(unsigned int)x,(unsigned long int)x,
(unsigned long long int)x

cvtI → F (float)i, (double)i, (long double)i

cvtF’ → F (float)x, (double)x, (long double)x

2 In the above conversions from floating to integer, the use of (cast)x can be replaced with
(cast)round(x), (cast)rint(x), (cast)nearbyint(x), (cast)trunc(x), (cast)ceil(x), or
(cast)floor(x). In addition, C’s floating-point to integer conversion functions, lrint(), llrint(),
lround(), and llround(), can be used. They all meet LIA–1’s requirements on floating to integer
rounding for in-range values. For out-of-range values, the conversions shall silently wrap for the
modulo types.

3 The fmod() function is useful for doing silent wrapping to unsigned integer types, e.g.,
fmod(fabs(rint(x)), 65536.0) or(0.0 <= (y = fmod(rint(x), 65536.0))? y: 65536.0 + y)
will compute an integer value in the range 0.0 to 65535.0 which can then be converted to
unsigned short int. But, the remainder() function is not useful for doing silent wrapping to
signed integer types, e.g., remainder(rint(x), 65536.0) will compute an integer value in the
range −32767.0 to +32768.0 which is not, in general, in the range of signed short int.

4 C’s conversions (casts) from floating-point to floating-point can meet LIA–1 requirements if an
implementation uses round-to-nearest (IEC 60559 default).

5 C’s conversions (casts) from integer to floating-point can meet LIA–1 requirements if an implemen-
tation uses round-to-nearest.

H.3 Notification
1 Notification is the process by which a user or program is informed that an exceptional arithmetic

operation has occurred. C’s operations are compatible with LIA–1 in that C allows an implementation
to cause a notification to occur when any arithmetic operation returns an exceptional value as defined
in LIA–1 clause 5.

482 Language independent arithmetic § H.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

H.3.1 Notification alternatives
1 LIA–1 requires at least the following two alternatives for handling of notifications: setting indicators

or trap-and-terminate. LIA–1 allows a third alternative: trap-and-resume.

2 An implementation need only support a given notification alternative for the entire program. An
implementation may support the ability to switch between notification alternatives during execution,
but is not required to do so. An implementation can provide separate selection for each kind of
notification, but this is not required.

3 C allows an implementation to provide notification. C’s SIGFPE (for traps) and FE_INVALID,
FE_DIVBYZERO, FE_OVERFLOW, FE_UNDERFLOW (for indicators) can provide LIA–1 notification.

4 C’s signal handlers are compatible with LIA–1. Default handling of SIGFPE can provide trap-
and-terminate behavior, except for those LIA–1 operations implemented by math library function
calls. User-provided signal handlers for SIGFPE allow for trap-and-resume behavior with the same
constraint.

H.3.1.1 Indicators
1 C’s <fenv.h> status flags are compatible with the LIA–1 indicators.

2 The following mapping is for floating-point types:

undefined FE_INVALID, FE_DIVBYZERO

floating_overflow FE_OVERFLOW

underflow FE_UNDERFLOW

3 The floating-point indicator interrogation and manipulation operations are:

set_indicators feraiseexcept(i)

clear_indicators feclearexcept(i)

test_indicators fetestexcept(i)

current_indicators fetestexcept(FE_ALL_EXCEPT)

where i is an expression of type int representing a subset of the LIA–1 indicators.

4 C allows an implementation to provide the following LIA–1 required behavior: at program termi-
nation if any indicator is set the implementation shall send an unambiguous and "hard to ignore"
message (see LIA–1 subclause 6.1.2)

5 LIA–1 does not make the distinction between floating-point and integer for "undefined". This
documentation makes that distinction because <fenv.h> covers only the floating-point indicators.

H.3.1.2 Traps
1 C is compatible with LIA–1’s trap requirements for arithmetic operations, but not for math library

functions (which are not permitted to invoke a user’s signal handler for SIGFPE). An implementation
can provide an alternative of notification through termination with a "hard-to-ignore" message (see
LIA–1 subclause 6.1.3).

2 LIA–1 does not require that traps be precise.

3 C does require that SIGFPE be the signal corresponding to LIA–1 arithmetic exceptions, if there is
any signal raised for them.

4 C supports signal handlers for SIGFPE and allows trapping of LIA–1 arithmetic exceptions. When
LIA–1 arithmetic exceptions do trap, C’s signal-handler mechanism allows trap-and-terminate
(either default implementation behavior or user replacement for it) or trap-and-resume, at the
programmer’s option.

§ H.3.1.2 Language independent arithmetic 483

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex I
(informative)

Common warnings

1 An implementation may generate warnings in many situations, none of which are specified as part
of this document. The following are a few of the more common situations.

2 — A new struct or union type appears in a function prototype (6.2.1, 6.7.2.3).

— A block with initialization of an object that has automatic storage duration is jumped into
(6.2.4).

— An implicit narrowing conversion is encountered, such as the assignment of a long int or a
double to an int, or a pointer to void to a pointer to any type other than a character type (6.3).

— A hexadecimal floating constant cannot be represented exactly in its evaluation format (6.4.4.2).

— An integer character constant includes more than one character or a wide character constant
includes more than one multibyte character (6.4.4.4).

— The characters /* are found in a comment (6.4.7).

— An "unordered" binary operator (not comma, &&, or ||) contains a side effect to an lvalue in
one operand, and a side effect to, or an access to the value of, the identical lvalue in the other
operand (6.5).

— A function is called but no prototype has been supplied (6.5.2.2).

— An object is defined but not used (6.7).

— A value is given to an object of an enumerated type other than by assignment of an enumeration
constant that is a member of that type, or an enumeration object that has the same type, or the
value of a function that returns the same enumerated type (6.7.2.2).

— An aggregate has a partly bracketed initialization (6.7.8).

— A statement cannot be reached (6.8).

— A statement with no apparent effect is encountered (6.8).

— A constant expression is used as the controlling expression of a selection statement (6.8.4).

— An incorrectly formed preprocessing group is encountered while skipping a preprocessing
group (6.10.1).

— An unrecognized #pragma directive is encountered (6.10.6).

484 Common warnings § H.3.1.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Annex J
(informative)

Portability issues

1 This annex collects some information about portability that appears in this document.

J.1 Unspecified behavior
1 The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type
volatile sig_atomic_t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.2.2).

— The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).

— The value of padding bytes when storing values in structures or unions (6.2.6.1).

— The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

— The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

— The values of any padding bits in integer representations (6.2.6.2).

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &&, ||, ?:, and comma operators (6.5).

— The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions (6.5.2.5).

— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

— Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.4).

§ J.1 Portability issues 485

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— Whether or not a size expression is evaluated when it is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the
operator (6.7.6.2).

— The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.9).

— The layout of storage for function parameters (6.9.1).

— When a fully expanded macro replacement list contains a function-like macro name as its
last preprocessing token and the next preprocessing token from the source file is a (, and
the fully expanded replacement of that macro ends with the name of the first macro and the
next preprocessing token from the source file is again a (, whether that is considered a nested
replacement (6.10.3).

— The order in which # and ## operations are evaluated during macro substitution (6.10.3.2,
6.10.3.3).

— The line number of a preprocessing token, in particular __LINE__, that spans multiple physical
lines (6.10.4).

— The line number of a preprocessing directive that spans multiple physical lines (6.10.4).

— The line number of a macro invocation that spans multiple physical or logical lines (6.10.4).

— The line number following a directive of the form #line __LINE__ new-line (6.10.4).

— The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on" (7.6.1).

— The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.6
(7.6.4.3).

— Whether math_errhandling is a macro or an identifier with external linkage (7.12).

— The results of the frexp functions when the specified value is not a floating-point number
(7.12.6.7).

— The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.6.8, F.10.3.8).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, F.10.6.5).

— The value stored by the remquo functions in the object pointed to by quo when y is zero
(7.12.10.3).

— Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.17).

— Whether setjmp is a macro or an identifier with external linkage (7.13).

— Whether va_copy and va_end are macros or identifiers with external linkage (7.16.1).

— The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.21.6.1, 7.29.2.1).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.21.7.10, 7.29.3.10).

— The details of the value stored by the fgetpos function (7.21.9.1).

— The details of the value returned by the ftell function for a text stream (7.21.9.4).

486 Portability issues § J.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— Whether the strtod, strtof, strtold, wcstod, wcstof, and wcstold functions convert a
minus-signed sequence to a negative number directly or by negating the value resulting from
converting the corresponding unsigned sequence (7.22.1.5, 7.29.4.1.1).

— The order and contiguity of storage allocated by successive calls to the calloc, malloc,
realloc, and aligned_alloc functions (7.22.3).

— The amount of storage allocated by a successful call to the calloc, malloc, realloc, or
aligned_alloc function when 0 bytes was requested (7.22.3).

— Whether a call to the atexit function that does not happen before the exit function is called
will succeed (7.22.4.2).

— Whether a call to the at_quick_exit function that does not happen before the quick_exit
function is called will succeed (7.22.4.3).

— Which of two elements that compare as equal is matched by the bsearch function (7.22.5.1).

— The order of two elements that compare as equal in an array sorted by the qsort function
(7.22.5.2).

— The order in which destructors are invoked by thrd_exit (7.26.5.5).

— Whether calling tss_delete on a key while another thread is executing destructors affects the
number of invocations of the destructors associated with the key on that thread (7.26.6.2).

— The encoding of the calendar time returned by the time function (7.27.2.4).

— The characters stored by the strftime or wcsftime function if any of the time values being
converted is outside the normal range (7.27.3.5, 7.29.5.1).

— Whether an encoding error occurs if a wchar_t value that does not correspond to a member of
the extended character set appears in the format string for a function in 7.29.2 or 7.29.5 and the
specified semantics do not require that value to be processed by wcrtomb (7.29.1).

— The conversion state after an encoding error occurs (7.29.6.3.2, 7.29.6.3.3, 7.29.6.4.1, 7.29.6.4.2,

— The resulting value when the "invalid" floating-point exception is raised during IEC 60559
floating to integer conversion (F.4).

— Whether conversion of non-integer IEC 60559 floating values to integer raises the "inexact"
floating-point exception (F.4).

— Whether or when library functions in <math.h> raise the "inexact" floating-point exception in
an IEC 60559 conformant implementation (F.10).

— Whether or when library functions in <math.h> raise an undeserved "underflow" floating-
point exception in an IEC 60559 conformant implementation (F.10).

— The exponent value stored by frexp for a NaN or infinity (F.10.3.7).

— The numeric result returned by the lrint, llrint, lround, and llround functions if the
rounded value is outside the range of the return type (F.10.6.5, F.10.6.7).

— The sign of one part of the complex result of several math functions for certain special cases
in IEC 60559 compatible implementations (G.6.1.1, G.6.2.2, G.6.2.3, G.6.2.4, G.6.2.5, G.6.2.6,
G.6.3.1, G.6.4.2).

§ J.1 Portability issues 487

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

J.2 Undefined behavior
1 The behavior is undefined in the following circumstances:

— A "shall" or "shall not" requirement that appears outside of a constraint is violated (Clause 4).

— A nonempty source file does not end in a new-line character which is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.1.1.2).

— Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.1.1.2).

— A program in a hosted environment does not define a function named main using one of the
specified forms (5.1.2.2.1).

— The execution of a program contains a data race (5.1.2.4).

— A character not in the basic source character set is encountered in a source file, except in an
identifier, a character constant, a string literal, a header name, a comment, or a preprocessing
token that is never converted to a token (5.2.1).

— An identifier, comment, string literal, character constant, or header name contains an invalid
multibyte character or does not begin and end in the initial shift state (5.2.1.2).

— The same identifier has both internal and external linkage in the same translation unit (6.2.2).

— An object is referred to outside of its lifetime (6.2.4).

— The value of a pointer to an object whose lifetime has ended is used (6.2.4).

— The value of an object with automatic storage duration is used while it is indeterminate (6.2.4,
6.7.9, 6.8).

— A trap representation is read by an lvalue expression that does not have character type (6.2.6.1).

— A trap representation is produced by a side effect that modifies any part of the object using an
lvalue expression that does not have character type (6.2.6.1).

— Two declarations of the same object or function specify types that are not compatible (6.2.7).

— A program requires the formation of a composite type from a variable length array type whose
size is specified by an expression that is not evaluated (6.2.7).

— Conversion to or from an integer type produces a value outside the range that can be repre-
sented (6.3.1.4).

— Demotion of one real floating type to another produces a value outside the range that can be
represented (6.3.1.5).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— A non-array lvalue with an incomplete type is used in a context that requires the value of the
designated object (6.3.2.1).

— An lvalue designating an object of automatic storage duration that could have been declared
with the register storage class is used in a context that requires the value of the designated
object, but the object is uninitialized. (6.3.2.1).

— An lvalue having array type is converted to a pointer to the initial element of the array, and
the array object has register storage class (6.3.2.1).

— An attempt is made to use the value of a void expression, or an implicit or explicit conversion
(except to void) is applied to a void expression (6.3.2.2).

488 Portability issues § J.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— Conversion of a pointer to an integer type produces a value outside the range that can be
represented (6.3.2.3).

— Conversion between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.2.3).

— An unmatched’ or " character is encountered on a logical source line during tokenization
(6.4).

— A reserved keyword token is used in translation phase 7 or 8 for some purpose other than as a
keyword (6.4.1).

— A universal character name in an identifier does not designate a character whose encoding
falls into one of the specified ranges (6.4.2.1).

— The initial character of an identifier is a universal character name designating a digit (6.4.2.1).

— Two identifiers differ only in nonsignificant characters (6.4.2.1).

— The identifier __func__ is explicitly declared (6.4.2.2).

— The program attempts to modify a string literal (6.4.5).

— The characters’ , \, ", //, or /* occur in the sequence between the< and > delimiters, or the
characters’ , \, //, or /* occur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.7).

— A side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object (6.5).

— An exceptional condition occurs during the evaluation of an expression (6.5).

— An object has its stored value accessed other than by an lvalue of an allowable type (6.5).

— For a call to a function without a function prototype in scope, the number of arguments does
not equal the number of parameters (6.5.2.2).

— For a call to a function without a function prototype in scope where the function is defined with
a function prototype, either the prototype ends with an ellipsis or the types of the arguments
after default argument promotion are not compatible with the types of the parameters (6.5.2.2).

— A function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called function (6.5.2.2).

— A member of an atomic structure or union is accessed (6.5.2.3).

— The operand of the unary* operator has an invalid value (6.5.3.2).

— A pointer is converted to other than an integer or pointer type (6.5.4).

— The value of the second operand of the / or % operator is zero (6.5.5).

— If the quotient a/b is not representable, the behavior of both a/b and a%b (6.5.5).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that does not point into, or just beyond, the same array object (6.5.6).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.6).

— Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.6).

§ J.2 Portability issues 489

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— An array subscript is out of range, even if an object is apparently accessible with the given
subscript (as in the lvalue expression a[1][7] given the declaration int a[4][5]) (6.5.6).

— The result of subtracting two pointers is not representable in an object of type ptrdiff_t
(6.5.6).

— An expression is shifted by a negative number or by an amount greater than or equal to the
width of the promoted expression (6.5.7).

— An expression having signed promoted type is left-shifted and either the value of the expres-
sion is negative or the result of shifting would not be representable in the promoted type
(6.5.7).

— Pointers that do not point to the same aggregate or union (nor just beyond the same array
object) are compared using relational operators (6.5.8).

— An object is assigned to an inexactly overlapping object or to an exactly overlapping object
with incompatible type (6.5.16.1).

— An expression that is required to be an integer constant expression does not have an integer
type; has operands that are not integer constants, enumeration constants, character constants,
sizeof expressions whose results are integer constants,_Alignof expressions, or immediately-
cast floating constants; or contains casts (outside operands to sizeof and _Alignof operators)
other than conversions of arithmetic types to integer types (6.6).

— A constant expression in an initializer is not, or does not evaluate to, one of the following: an
arithmetic constant expression, a null pointer constant, an address constant, or an address
constant for a complete object type plus or minus an integer constant expression (6.6).

— An arithmetic constant expression does not have arithmetic type; has operands that are not
integer constants, floating constants, enumeration constants, character constants, sizeof
expressions whose results are integer constants, or _Alignof expressions; or contains casts
(outside operands to sizeof or _Alignof operators) other than conversions of arithmetic
types to arithmetic types (6.6).

— The value of an object is accessed by an array-subscript [], member-access . or-> , address &,
or indirection* operator or a pointer cast in creating an address constant (6.6).

— An identifier for an object is declared with no linkage and the type of the object is incomplete
after its declarator, or after its init-declarator if it has an initializer (6.7).

— A function is declared at block scope with an explicit storage-class specifier other than extern
(6.7.1).

— A structure or union is defined without any named members (including those specified
indirectly via anonymous structures and unions) (6.7.2.1).

— An attempt is made to access, or generate a pointer to just past, a flexible array member of a
structure when the referenced object provides no elements for that array (6.7.2.1).

— When the complete type is needed, an incomplete structure or union type is not completed in
the same scope by another declaration of the tag that defines the content (6.7.2.3).

— An attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type (6.7.3).

— An attempt is made to refer to an object defined with a volatile-qualified type through use of
an lvalue with non-volatile-qualified type (6.7.3).

— The specification of a function type includes any type qualifiers (6.7.3).

— Two qualified types that are required to be compatible do not have the identically qualified
version of a compatible type (6.7.3).

490 Portability issues § J.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— An object which has been modified is accessed through a restrict-qualified pointer to a const-
qualified type, or through a restrict-qualified pointer and another pointer that are not both
based on the same object (6.7.3.1).

— A restrict-qualified pointer is assigned a value based on another restricted pointer whose
associated block neither began execution before the block associated with this pointer, nor
ended before the assignment (6.7.3.1).

— A function with external linkage is declared with an inline function specifier, but is not also
defined in the same translation unit (6.7.4).

— A function declared with a _Noreturn function specifier returns to its caller (6.7.4).

— The definition of an object has an alignment specifier and another declaration of that object
has a different alignment specifier (6.7.5).

— Declarations of an object in different translation units have different alignment specifiers
(6.7.5).

— Two pointer types that are required to be compatible are not identically qualified, or are not
pointers to compatible types (6.7.6.1).

— The size expression in an array declaration is not a constant expression and evaluates at
program execution time to a nonpositive value (6.7.6.2).

— In a context requiring two array types to be compatible, they do not have compatible element
types, or their size specifiers evaluate to unequal values (6.7.6.2).

— A declaration of an array parameter includes the keyword static within the [and] and the
corresponding argument does not provide access to the first element of an array with at least
the specified number of elements (6.7.6.3).

— A storage-class specifier or type qualifier modifies the keyword void as a function parameter
type list (6.7.6.3).

— In a context requiring two function types to be compatible, they do not have compatible return
types, or their parameters disagree in use of the ellipsis terminator or the number and type of
parameters (after default argument promotion, when there is no parameter type list) (6.7.6.3).

— The value of an unnamed member of a structure or union is used (6.7.9).

— The initializer for a scalar is neither a single expression nor a single expression enclosed in
braces (6.7.9).

— The initializer for a structure or union object that has automatic storage duration is neither an
initializer list nor a single expression that has compatible structure or union type (6.7.9).

— The initializer for an aggregate or union, other than an array initialized by a string literal, is
not a brace-enclosed list of initializers for its elements or members (6.7.9).

— An identifier with external linkage is used, but in the program there does not exist exactly
one external definition for the identifier, or the identifier is not used and there exist multiple
external definitions for the identifier (6.9).

— An adjusted parameter type in a function definition is not a complete object type (6.9.1).

— A function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation (6.9.1).

— The} that terminates a function is reached, and the value of the function call is used by the
caller (6.9.1).

— An identifier for an object with internal linkage and an incomplete type is declared with a
tentative definition (6.9.2).

§ J.2 Portability issues 491

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— A non-directive preprocessing directive is executed (6.10).

— The token defined is generated during the expansion of a #if or #elif preprocessing direc-
tive, or the use of the defined unary operator does not match one of the two specified forms
prior to macro replacement (6.10.1).

— The #include preprocessing directive that results after expansion does not match one of the
two header name forms (6.10.2).

— The character sequence in an #include preprocessing directive does not start with a letter
(6.10.2).

— There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directives (6.10.3).

— The result of the preprocessing operator # is not a valid character string literal (6.10.3.2).

— The result of the preprocessing operator ## is not a valid preprocessing token (6.10.3.3).

— The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms, or its digit sequence specifies zero or a number greater than 2147483647
(6.10.4).

— A non-STDC #pragma preprocessing directive that is documented as causing translation failure
or some other form of undefined behavior is encountered (6.10.6).

— A #pragma STDC preprocessing directive does not match one of the well-defined forms (6.10.6).

— The name of a predefined macro, or the identifier defined, is the subject of a #define or
#undef preprocessing directive (6.10.8).

— An attempt is made to copy an object to an overlapping object by use of a library function,
other than as explicitly allowed (e.g., memmove) (Clause 7).

— A file with the same name as one of the standard headers, not provided as part of the implemen-
tation, is placed in any of the standard places that are searched for included source files (7.1.2).

— A header is included within an external declaration or definition (7.1.2).

— A function, object, type, or macro that is specified as being declared or defined by some
standard header is used before any header that declares or defines it is included (7.1.2).

— A standard header is included while a macro is defined with the same name as a keyword
(7.1.2).

— The program attempts to declare a library function itself, rather than via a standard header,
but the declaration does not have external linkage (7.1.2).

— The program declares or defines a reserved identifier, other than as allowed by 7.1.4 (7.1.3).

— The program removes the definition of a macro whose name begins with an underscore and
either an uppercase letter or another underscore (7.1.3).

— An argument to a library function has an invalid value or a type not expected by a function
with a variable number of arguments (7.1.4).

— The pointer passed to a library function array parameter does not have a value such that all
address computations and object accesses are valid (7.1.4).

— The macro definition of assert is suppressed in order to access an actual function (7.2).

— The argument to the assert macro does not have a scalar type (7.2).

492 Portability issues § J.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— The CX_LIMITED_RANGE, FENV_ACCESS, or FP_CONTRACT pragma is used in any context other
than outside all external declarations or preceding all explicit declarations and statements
inside a compound statement (7.3.4, 7.6.1, 7.12.2).

— The value of an argument to a character handling function is neither equal to the value of EOF
nor representable as an unsigned char (7.4).

— A macro definition of errno is suppressed in order to access an actual object, or the program
defines an identifier with the name errno (7.5).

— Part of the program tests floating-point status flags, sets floating-point control modes, or
runs under non-default mode settings, but was translated with the state for the FENV_ACCESS
pragma "off" (7.6.1).

— The exception-mask argument for one of the functions that provide access to the floating-point
status flags has a nonzero value not obtained by bitwise OR of the floating-point exception
macros (7.6.4).

— The fesetexceptflag function is used to set floating-point status flags that were not specified
in the call to the fegetexceptflag function that provided the value of the corresponding
fexcept_t object (7.6.4.5).

— The argument to fesetenv or feupdateenv is neither an object set by a call to fegetenv or
feholdexcept, nor is it an environment macro (7.6.6.3, 7.6.6.4).

— The value of the result of an integer arithmetic or conversion function cannot be represented
(7.8.2.1, 7.8.2.2, 7.8.2.3, 7.8.2.4, 7.22.6.1, 7.22.6.2, 7.22.1).

— The program modifies the string pointed to by the value returned by the setlocale function
(7.11.1.1).

— A pointer returned by the setlocale function is used after a subsequent call to the function,
or after the calling thread has exited (7.11.1.1).

— The program modifies the structure pointed to by the value returned by the localeconv
function (7.11.2.1).

— A macro definition of math_errhandling is suppressed or the program defines an identifier
with the name math_errhandling (7.12).

— An argument to a floating-point classification or comparison macro is not of real floating type
(7.12.3, 7.12.17).

— A macro definition of setjmp is suppressed in order to access an actual function, or the
program defines an external identifier with the name setjmp (7.13).

— An invocation of the setjmp macro occurs other than in an allowed context (7.13.2.1).

— The longjmp function is invoked to restore a nonexistent environment (7.13.2.1).

— After a longjmp, there is an attempt to access the value of an object of automatic storage dura-
tion that does not have volatile-qualified type, local to the function containing the invocation
of the corresponding setjmp macro, that was changed between the setjmp invocation and
longjmp call (7.13.2.1).

— The program specifies an invalid pointer to a signal handler function (7.14.1.1).

— A signal handler returns when the signal corresponded to a computational exception (7.14.1.1).

— A signal handler called in response to SIGFPE, SIGILL, SIGSEGV, or any other implementation-
defined value corresponding to a computational exception returns (7.14.1.1).

— A signal occurs as the result of calling the abort or raise function, and the signal handler
calls the raise function (7.14.1.1).

§ J.2 Portability issues 493

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— A signal occurs other than as the result of calling the abort or raise function, and the signal
handler refers to an object with static or thread storage duration that is not a lock-free atomic
object other than by assigning a value to an object declared as volatile sig_atomic_t, or
calls any function in the standard library other than the abort function, the _Exit function,
the quick_exit function, the functions in <stdatomic.h> (except where explicitly stated
otherwise) when the atomic arguments are lock-free, the atomic_is_lock_free function with
any atomic argument, or the signal function (for the same signal number) (7.14.1.1).

— The value of errno is referred to after a signal occurred other than as the result of calling the
abort or raise function and the corresponding signal handler obtained a SIG_ERR return
from a call to the signal function (7.14.1.1).

— A signal is generated by an asynchronous signal handler (7.14.1.1).

— The signal function is used in a multi-threaded program (7.14.1.1).

— A function with a variable number of arguments attempts to access its varying arguments
other than through a properly declared and initialized va_list object, or before the va_start
macro is invoked (7.16, 7.16.1.1, 7.16.1.4).

— The macro va_arg is invoked using the parameter ap that was passed to a function that
invoked the macro va_arg with the same parameter (7.16).

— A macro definition of va_start, va_arg, va_copy, or va_end is suppressed in order to access
an actual function, or the program defines an external identifier with the name va_copy or
va_end (7.16.1).

— The va_start or va_copy macro is invoked without a corresponding invocation of the va_end
macro in the same function, or vice versa (7.16.1, 7.16.1.2, 7.16.1.3, 7.16.1.4).

— The type parameter to the va_arg macro is not such that a pointer to an object of that type can
be obtained simply by postfixing a* (7.16.1.1).

— The va_arg macro is invoked when there is no actual next argument, or with a specified
type that is not compatible with the promoted type of the actual next argument, with certain
exceptions (7.16.1.1).

— The va_copy or va_start macro is called to initialize a va_list that was previously initialized
by either macro without an intervening invocation of the va_end macro for the same va_list
(7.16.1.2, 7.16.1.4).

— The parameter parmN of a va_start macro is declared with the register storage class, with
a function or array type, or with a type that is not compatible with the type that results after
application of the default argument promotions (7.16.1.4).

— The macro definition of a generic function is suppressed in order to access an actual function
(7.17.1).

— The type parameter of an offsetof macro defines a new type (7.19).

— The member-designator parameter of an offsetof macro is an invalid right operand of the .
operator for the type parameter, or designates a bit-field (7.19).

— The argument in an instance of one of the integer-constant macros is not a decimal, octal, or
hexadecimal constant, or it has a value that exceeds the limits for the corresponding type
(7.20.4).

— A byte input/output function is applied to a wide-oriented stream, or a wide character
input/output function is applied to a byte-oriented stream (7.21.2).

— Use is made of any portion of a file beyond the most recent wide character written to a
wide-oriented stream (7.21.2).

494 Portability issues § J.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— The value of a pointer to a FILE object is used after the associated file is closed (7.21.3).

— The stream for the fflush function points to an input stream or to an update stream in which
the most recent operation was input (7.21.5.2).

— The string pointed to by the mode argument in a call to the fopen function does not exactly
match one of the specified character sequences (7.21.5.3).

— An output operation on an update stream is followed by an input operation without an
intervening call to the fflush function or a file positioning function, or an input operation
on an update stream is followed by an output operation with an intervening call to a file
positioning function (7.21.5.3).

— An attempt is made to use the contents of the array that was supplied in a call to the setvbuf
function (7.21.5.6).

— There are insufficient arguments for the format in a call to one of the formatted input/output
functions, or an argument does not have an appropriate type (7.21.6.1, 7.21.6.2, 7.29.2.1,
7.29.2.2).

— The format in a call to one of the formatted input/output functions or to the strftime or
wcsftime function is not a valid multibyte character sequence that begins and ends in its
initial shift state (7.21.6.1, 7.21.6.2, 7.27.3.5, 7.29.2.1, 7.29.2.2, 7.29.5.1).

— In a call to one of the formatted output functions, a precision appears with a conversion
specifier other than those described (7.21.6.1, 7.29.2.1).

— A conversion specification for a formatted output function uses an asterisk to denote an
argument-supplied field width or precision, but the corresponding argument is not provided
(7.21.6.1, 7.29.2.1).

— A conversion specification for a formatted output function uses a # or 0 flag with a conversion
specifier other than those described (7.21.6.1, 7.29.2.1).

— A conversion specification for one of the formatted input/output functions uses a length
modifier with a conversion specifier other than those described (7.21.6.1, 7.21.6.2, 7.29.2.1,
7.29.2.2).

— An s conversion specifier is encountered by one of the formatted output functions, and the
argument is missing the null terminator (unless a precision is specified that does not require
null termination) (7.21.6.1, 7.29.2.1).

— An n conversion specification for one of the formatted input/output functions includes any
flags, an assignment-suppressing character, a field width, or a precision (7.21.6.1, 7.21.6.2,
7.29.2.1, 7.29.2.2).

— A % conversion specifier is encountered by one of the formatted input/output functions, but
the complete conversion specification is not exactly %% (7.21.6.1, 7.21.6.2, 7.29.2.1, 7.29.2.2).

— An invalid conversion specification is found in the format for one of the formatted input/out-
put functions, or the strftime or wcsftime function (7.21.6.1, 7.21.6.2, 7.27.3.5, 7.29.2.1,
7.29.2.2, 7.29.5.1).

— The number of characters or wide characters transmitted by a formatted output function (or
written to an array, or that would have been written to an array) is greater than INT_MAX
(7.21.6.1, 7.29.2.1).

— The number of input items assigned by a formatted input function is greater than INT_MAX
(7.21.6.2, 7.29.2.2).

— The result of a conversion by one of the formatted input functions cannot be represented in
the corresponding object, or the receiving object does not have an appropriate type (7.21.6.2,
7.29.2.2).

§ J.2 Portability issues 495

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— A c, s, or [conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

— A c, s, or [conversion specifier with an l qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.21.6.2, 7.29.2.2).

— The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.21.6.2, 7.29.2.2).

— The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.21.6.8, 7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5, 7.29.2.6, 7.29.2.7, 7.29.2.8, 7.29.2.9, 7.29.2.10).

— The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.21.7.2, 7.29.3.2).

— The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.21.7.10).

— The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.21.8.1, 7.21.8.2).

— A partial element read by a call to the fread function is used (7.21.8.1).

— The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.21.9.2).

— The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.21.9.3).

— A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (7.22.3).

— The value of a pointer that refers to space deallocated by a call to the free or realloc function
is used (7.22.3).

— The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory management function, or the space has been deallocated by a call to
free or realloc (7.22.3.3, 7.22.3.5).

— The value of the object allocated by the malloc function is used (7.22.3.4).

— The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.22.3.5).

— The program calls the exit or quick_exit function more than once, or calls both functions
(7.22.4.4, 7.22.4.7).

— During the call to a function registered with the atexit or at_quick_exit function, a call is
made to the longjmp function that would terminate the call to the registered function (7.22.4.4,
7.22.4.7).

— The string set up by the getenv or strerror function is modified by the program (7.22.4.6,
7.24.6.2).

— A signal is raised while the quick_exit function is executing (7.22.4.7).

— A command is executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.22.4.8).

496 Portability issues § J.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— A searching or sorting utility function is called with an invalid pointer argument, even if the
number of elements is zero (7.22.5).

— The comparison function called by a searching or sorting utility function alters the contents of
the array being searched or sorted, or returns ordering values inconsistently (7.22.5).

— The array being searched by the bsearch function does not have its elements in proper order
(7.22.5.1).

— The current conversion state is used by a multibyte/wide character conversion function after
changing the LC_CTYPE category (7.22.7).

— A string or wide string utility function is instructed to access an array beyond the end of an
object (7.24.1, 7.29.4).

— A string or wide string utility function is called with an invalid pointer argument, even if the
length is zero (7.24.1, 7.29.4).

— The contents of the destination array are used after a call to the strxfrm, strftime, wcsxfrm,
or wcsftime function in which the specified length was too small to hold the entire null-
terminated result (7.24.4.5, 7.27.3.5, 7.29.4.4.4, 7.29.5.1).

— A sequence of calls of the strtok function is made from different threads (7.24.5.8).

— The first argument in the very first call to the strtok or wcstok is a null pointer (7.24.5.8,
7.29.4.5.7).

— A pointer returned by the strerror function is used after a subsequent call to the function, or
after the calling thread has exited (7.24.6.2).

— The type of an argument to a type-generic macro is not compatible with the type of the
corresponding parameter of the selected function (7.25).

— Arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal
floating type (7.25).

— Arguments for generic parameters of a type-generic macro are such that neither <math.h> and
<complex.h> define a function whose generic parameters have the determined corresponding
real type (7.25).

— A complex argument is supplied for a generic parameter of a type-generic macro that has no
corresponding complex function (7.25).

— A decimal floating argument is supplied for a generic parameter of a type-generic macro that
expects a complex argument (7.25).

— A standard floating or complex argument is supplied for a generic parameter of a type-generic
macro that expects a decimal floating type argument (7.25).

— A non-recursive mutex passed to mtx_lock is locked by the calling thread (7.26.4.3).

— The mutex passed to mtx_timedlock does not support timeout (7.26.4.4).

— The mutex passed to mtx_unlock is not locked by the calling thread (7.26.4.6).

— The thread passed to thrd_detach or thrd_join was previously detached or joined with
another thread (7.26.5.3, 7.26.5.6).

— The tss_create function is called from within a destructor (7.26.6.1).

— The key passed to tss_delete, tss_get, or tss_set was not returned by a call to tss_create
before the thread commenced executing destructors (7.26.6.2, 7.26.6.3, 7.26.6.4).

§ J.2 Portability issues 497

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— An attempt is made to access the pointer returned by the time conversion functions after the
thread that originally called the function to obtain it has exited (7.27.3).

— At least one member of the broken-down time passed to asctime contains a value outside its
normal range, or the calculated year exceeds four digits or is less than the year 1000 (7.27.3.1).

— The argument corresponding to an s specifier without an l qualifier in a call to the fwprintf
function does not point to a valid multibyte character sequence that begins in the initial shift
state (7.29.2.11).

— In a call to the wcstok function, the object pointed to by ptr does not have the value stored by
the previous call for the same wide string (7.29.4.5.7).

— An mbstate_t object is used inappropriately (7.29.6).

— The value of an argument of type wint_t to a wide character classification or case mapping
function is neither equal to the value of WEOF nor representable as a wchar_t (7.30.1).

— The iswctype function is called using a different LC_CTYPE category from the one in effect for
the call to the wctype function that returned the description (7.30.2.2.1).

— The towctrans function is called using a different LC_CTYPE category from the one in effect
for the call to the wctrans function that returned the description (7.30.3.2.1).

J.3 Implementation-defined behavior
1 A conforming implementation is required to document its choice of behavior in each of the areas

listed in this subclause. The following are implementation-defined:

J.3.1 Translation
1 — How a diagnostic is identified (3.10, 5.1.1.3).

— Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character in translation phase 3 (5.1.1.2).

J.3.2 Environment
1 — The mapping between physical source file multibyte characters and the source character set in

translation phase 1 (5.1.1.2).

— The name and type of the function called at program startup in a freestanding environment
(5.1.2.1).

— The effect of program termination in a freestanding environment (5.1.2.1).

— An alternative manner in which the main function may be defined (5.1.2.2.1).

— The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).

— What constitutes an interactive device (5.1.2.3).

— Whether a program can have more than one thread of execution in a freestanding environment
(5.1.2.4).

— The set of signals, their semantics, and their default handling (7.14).

— Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).

— Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup
(7.14.1.1).

— The set of environment names and the method for altering the environment list used by the
getenv function (7.22.4.6).

— The manner of execution of the string by the system function (7.22.4.8).

498 Portability issues § J.3.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

J.3.3 Identifiers
1 — Which additional multibyte characters may appear in identifiers and their correspondence to

universal character names (6.4.2).

— The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

J.3.4 Characters
1 — The number of bits in a byte (3.6).

— The values of the members of the execution character set (5.2.1).

— The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (5.2.2).

— The value of a char object into which has been stored any character other than a member of
the basic execution character set (6.2.5).

— Which of signed char or unsigned char has the same range, representation, and behavior
as "plain" char (6.2.5, 6.3.1.1).

— The mapping of members of the source character set (in character constants and string literals)
to members of the execution character set (6.4.4.4, 5.1.1.2).

— The value of an integer character constant containing more than one character or containing a
character or escape sequence that does not map to a single-byte execution character (6.4.4.4).

— The value of a wide character constant containing more than one multibyte character or a
single multibyte character that maps to multiple members of the extended execution character
set, or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).

— The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a corresponding
wide character code (6.4.4.4).

— Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the
treatment of the resulting multibyte character sequence (6.4.5).

— The current locale used to convert a wide string literal into corresponding wide character
codes (6.4.5).

— The value of a string literal containing a multibyte character or escape sequence not represented
in the execution character set (6.4.5).

— The encoding of any of wchar_t, char16_t, and char32_t where the corresponding stan-
dard encoding macro (__STDC_ISO_10646__, __STDC_UTF_16__, or __STDC_UTF_32__) is not
defined (6.10.8.2).

J.3.5 Integers
1 — Any extended integer types that exist in the implementation (6.2.5).

— The rank of any extended integer type relative to another extended integer type with the same
precision (6.3.1.1).

— The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.1.3).

— The results of some bitwise operations on signed integers (6.5).

§ J.3.5 Portability issues 499

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

J.3.6 Floating point
1 — The accuracy of the floating-point operations and of the library functions in <math.h> and

<complex.h> that return floating-point results (5.2.4.2.2).

— The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.2.4.2.2).

— The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).

— The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

— The evaluation methods characterized by non-standard negative values of DEC_EVAL_METHOD
(5.2.4.2.3).

— If decimal floating types are supported (6.2.5).

— The direction of rounding when an integer is converted to a floating-point number that cannot
exactly represent the original value (6.3.1.4).

— The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.1.5).

— How the nearest representable value or the larger or smaller representable value immediately
adjacent to the nearest representable value is chosen for certain floating constants (6.4.4.2).

— Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACT pragma (6.5).

— The default state for the FENV_ACCESS pragma (7.6.1).

— Additional floating-point exceptions, rounding modes, environments, and classifications, and
their macro names (7.6, 7.12).

— The default state for the FP_CONTRACT pragma (7.12.2).

J.3.7 Arrays and pointers
1 — The result of converting a pointer to an integer or vice versa (6.3.2.3).

— The size of the result of subtracting two pointers to elements of the same array (6.5.6).

J.3.8 Hints
1 — The extent to which suggestions made by using the register storage-class specifier are

effective (6.7.1).

— The extent to which suggestions made by using the inline function specifier are effective
(6.7.4).

J.3.9 Structures, unions, enumerations, and bit-fields
1 — Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int

bit-field (6.7.2, 6.7.2.1).

— Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).

— Whether atomic types are permitted for bit-fields (6.7.2.1).

— Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

— The order of allocation of bit-fields within a unit (6.7.2.1).

— The alignment of non-bit-field members of structures (6.7.2.1). This should present no problem
unless binary data written by one implementation is read by another.

— The integer type compatible with each enumerated type (6.7.2.2).

500 Portability issues § J.3.9

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

J.3.10 Qualifiers
1 — What constitutes an access to an object that has volatile-qualified type (6.7.3).

J.3.11 Preprocessing directives
1 — The locations within #pragma directives where header name preprocessing tokens are recog-

nized (6.4, 6.4.7).

— How sequences in both forms of header names are mapped to headers or external source file
names (6.4.7).

— Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(6.10.1).

— Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion may have a negative value (6.10.1).

— The places that are searched for an included < > delimited header, and how the places are
specified or the header is identified (6.10.2).

— How the named source file is searched for in an included " " delimited header (6.10.2).

— The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.2).

— The nesting limit for #include processing (6.10.2).

— Whether the # operator inserts a \ character before the \ character that begins a universal
character name in a character constant or string literal (6.10.3.2).

— The behavior on each recognized non-STDC #pragma directive (6.10.6).

— The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation
are not available (6.10.8.1).

J.3.12 Library functions
1 — Any library facilities available to a freestanding program, other than the minimal set required

by Clause 4 (5.1.2.1).

— The format of the diagnostic printed by the assert macro (7.2.1.1).

— The representation of the floating-point status flags stored by the fegetexceptflag function
(7.6.4.2).

— Whether the feraiseexcept function raises the "inexact" floating-point exception in addition
to the "overflow" or "underflow" floating-point exception (7.6.4.3).

— Strings other than "C" and "" that may be passed as the second argument to the setlocale
function (7.11.1.1).

— The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro
is less than 0 (7.12).

— The types defined for _Decimal32_t and _Decimal64_t when the value of the
DEC_EVAL_METHOD macro is less than 0 (7.12).

— Domain errors for the mathematics functions, other than those required by this document
(7.12.1).

— The values returned by the mathematics functions on domain errors or pole errors (7.12.1).

§ J.3.12 Portability issues 501

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— The values returned by the mathematics functions on underflow range errors, whether errno
is set to the value of the macro ERANGE when the integer expression math_errhandling &
MATH_ERRNO is nonzero, and whether the "underflow" floating-point exception is raised when
the integer expression math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.1).

— Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero (7.12.10.1).

— Whether a domain error occurs or zero is returned when a remainder function has a second
argument of zero (7.12.10.2).

— The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
(7.12.10.3).

— The byte order of decimal floating type encodings (7.12.16).

— Whether a domain error occurs or zero is returned when a remquo function has a second
argument of zero (7.12.10.3).

— Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.1.1).

— The null pointer constant to which the macro NULL expands (7.19).

— Whether the last line of a text stream requires a terminating new-line character (7.21.2).

— Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.21.2).

— The number of null characters that may be appended to data written to a binary stream (7.21.2).

— Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.21.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.21.3).

— The characteristics of file buffering (7.21.3).

— Whether a zero-length file actually exists (7.21.3).

— The rules for composing valid file names (7.21.3).

— Whether the same file can be simultaneously open multiple times (7.21.3).

— The nature and choice of encodings used for multibyte characters in files (7.21.3).

— The effect of the remove function on an open file (7.21.4.1).

— The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).

— Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).

— Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

— The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

— The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

— The interpretation of a- character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.21.6.2, 7.29.2.1).

— The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

502 Portability issues § J.3.12

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.21.9.1, 7.21.9.3, 7.21.9.4).

— The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.5,
7.29.4.1.1).

— Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underflow occurs (7.22.1.5, 7.29.4.1.1).

— The meaning of any d-char or d-wchar sequence in a string representing a NaN that is con-
verted by the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128 function
(7.22.1.6, 7.29.4.1.2).

— Whether or not the strtod32, strtod64, strtod128, wcstod32, wcstod64, or wcstod128
function sets errno to ERANGE when underflow occurs (7.22.1.6, 7.29.4.1.2).

— Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an allocated object when the size requested is zero (7.22.3).

— Whether open streams with unwritten buffered data are flushed,)open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.5).

— The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

— The value returned by the system function when its argument is not a null pointer (7.22.4.8).

— Whether the internal state of multibyte/wide character conversion functions has thread-storage
duration, and its initial value in newly created threads (7.22.7).

— The range and precision of times representable in clock_t and time_t (7.27).

— The local time zone and Daylight Saving Time (7.27.1).

— The era for the clock function (7.27.2.1).

— The TIME_UTC epoch (7.27.2.5).

— The replacement string for the %Z specifier to the strftime, and wcsftime functions in the
"C" locale (7.27.3.5, 7.29.5.1).

— Whether internal mbstate_t objects have thread storage duration (7.28.1, 7.29.6.3, 7.29.6.4).

— Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559
conformant implementation, unless explicitly specified otherwise (F.10).

J.3.13 Architecture
1 — The values or expressions assigned to the macros specified in the headers <float.h>,

<limits.h>, and <stdint.h> (5.2.4.2, 7.20).

— The result of attempting to indirectly access an object with automatic or thread storage duration
from a thread other than the one with which it is associated (6.2.4).

— The number, order, and encoding of bytes in any object (when not explicitly specified in this
document) (6.2.6.1).

— Whether any extended alignments are supported and the contexts in which they are supported
(6.2.8).

— Valid alignment values other than those returned by an _Alignof expression for fundamental
types, if any (6.2.8).

— The value of the result of the sizeof and _Alignof operators (6.5.3.4).

§ J.3.13 Portability issues 503

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

J.4 Locale-specific behavior
1 The following characteristics of a hosted environment are locale-specific and are required to be

documented by the implementation:

— Additional members of the source and execution character sets beyond the basic character set
(5.2.1).

— The presence, meaning, and representation of additional multibyte characters in the execution
character set beyond the basic character set (5.2.1.2).

— The shift states used for the encoding of multibyte characters (5.2.1.2).

— The direction of writing of successive printing characters (5.2.2).

— The decimal-point character (7.1.1).

— The set of printing characters (7.4, 7.30.2).

— The set of control characters (7.4, 7.30.2).

— The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace,
isupper, iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions
(7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.30.2.1.2, 7.30.2.1.3, 7.30.2.1.7, 7.30.2.1.9,
7.30.2.1.10, 7.30.2.1.11).

— The native environment (7.11.1.1).

— Additional subject sequences accepted by the numeric conversion functions (7.22.1, 7.29.4.1).

— The collation sequence of the execution character set (7.24.4.3, 7.29.4.4.2).

— The contents of the error message strings set up by the strerror function (7.24.6.2).

— The formats for time and date (7.27.3.5, 7.29.5.1).

— Character mappings that are supported by the towctrans function (7.30.1).

— Character classifications that are supported by the iswctype function (7.30.1).

J.5 Common extensions
1 The following extensions are widely used in many systems, but are not portable to all implemen-

tations. The inclusion of any extension that may cause a strictly conforming program to become
invalid renders an implementation nonconforming. Examples of such extensions are new keywords,
extra library functions declared in standard headers, or predefined macros with names that do not
begin with an underscore.

J.5.1 Environment arguments
1 In a hosted environment, the main function receives a third argument, char *envp[], that points to

a null-terminated array of pointers to char, each of which points to a string that provides information
about the environment for this execution of the program (5.1.2.2.1).

J.5.2 Specialized identifiers
1 Characters other than the underscore _, letters, and digits, that are not part of the basic source

character set (such as the dollar sign $, or characters in national character sets) may appear in an
identifier (6.4.2).

J.5.3 Lengths and cases of identifiers
1 All characters in identifiers (with or without external linkage) are significant (6.4.2).

504 Portability issues § J.5.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

J.5.4 Scopes of identifiers
1 A function identifier, or the identifier of an object the declaration of which contains the keyword

extern, has file scope (6.2.1).

J.5.5 Writable string literals
1 String literals are modifiable (in which case, identical string literals should denote distinct objects)

(6.4.5).

J.5.6 Other arithmetic types
1 Additional arithmetic types, such as __int128 or double double, and their appropriate conver-

sions are defined (6.2.5, 6.3.1). Additional floating types may have more range or precision than
long double, may be used for evaluating expressions of other floating types, and may be used to
define float_t or double_t. Additional floating types may also have less range or precision than
float.

J.5.7 Function pointer casts
1 A pointer to an object or to void may be cast to a pointer to a function, allowing data to be invoked

as a function (6.5.4).

2 A pointer to a function may be cast to a pointer to an object or to void, allowing a function to be
inspected or modified (for example, by a debugger) (6.5.4).

J.5.8 Extended bit-field types
1 A bit-field may be declared with a type other than _Bool, unsigned int, or signed int, with an

appropriate maximum width (6.7.2.1).

J.5.9 The fortran keyword
1 The fortran function specifier may be used in a function declaration to indicate that calls suitable

for FORTRAN should be generated, or that a different representation for the external name is to be
generated (6.7.4).

J.5.10 The asm keyword
1 The asm keyword may be used to insert assembly language directly into the translator output (6.8).

The most common implementation is via a statement of the form:

asm (character-string-literal);

J.5.11 Multiple external definitions
1 There may be more than one external definition for the identifier of an object, with or without the

explicit use of the keyword extern; if the definitions disagree, or more than one is initialized, the
behavior is undefined (6.9.2).

J.5.12 Predefined macro names
1 Macro names that do not begin with an underscore, describing the translation and execution

environments, are defined by the implementation before translation begins (6.10.8).

J.5.13 Floating-point status flags
1 If any floating-point status flags are set on normal termination after all calls to functions registered

by the atexit function have been made (see 7.22.4.4), the implementation writes some diagnostics
indicating the fact to the stderr stream, if it is still open,

J.5.14 Extra arguments for signal handlers
1 Handlers for specific signals are called with extra arguments in addition to the signal number

(7.14.1.1).

§ J.5.14 Portability issues 505

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

J.5.15 Additional stream types and file-opening modes
1 Additional mappings from files to streams are supported (7.21.2).

2 Additional file-opening modes may be specified by characters appended to the mode argument of
the fopen function (7.21.5.3).

J.5.16 Defined file position indicator
1 The file position indicator is decremented by each successful call to the ungetc or ungetwc function

for a text stream, except if its value was zero before a call (7.21.7.10, 7.29.3.10).

J.5.17 Math error reporting
1 Functions declared in <complex.h> and <math.h> raise SIGFPE to report errors instead of, or in

addition to, setting errno or raising floating-point exceptions (7.3, 7.12).

J.6 Reserved identifiers and keywords
1 A lot of identifier preprocessing tokens are used for specific purposes in regular clauses or appendices

from translation phase 3 onwards. Using any of these for a purpose different from their description
in this document, even if the use is in a context where they are normatively permitted, may have an
impact on the portability of code and should thus be avoided.

J.6.1 Rule based identifiers
1 The following 38 regular expressions characterize identifiers that are systematically reserved by

some clause this document.

atomic_[a-z][a-zA-Z0-9_]*
ATOMIC_[A-Z][a-zA-Z0-9_]*
[a-zA-Z][a-zA-Z0-9_]*
cnd_[a-z][a-zA-Z0-9_]*
DBL_[A-Z][a-zA-Z0-9_]*
DEC128_[A-Z][a-zA-Z0-9_]*
DEC32_[A-Z][a-zA-Z0-9_]*
DEC64_[A-Z][a-zA-Z0-9_]*
DEC_[A-Z][a-zA-Z0-9_]*
E[0-9A-Z][a-zA-Z0-9_]*
FE_[A-Z][a-zA-Z0-9_]*
FLT_[A-Z][a-zA-Z0-9_]*
FP_[A-Z][a-zA-Z0-9_]*
INT[a-zA-Z0-9_]*_C
INT[a-zA-Z0-9_]*_MAX
INT[a-zA-Z0-9_]*_MIN
int[a-zA-Z0-9_]*_t
INT[a-zA-Z0-9_]*_WIDTH
is[a-z][a-zA-Z0-9_]*

LC_[A-Z][a-zA-Z0-9_]*
LDBL_[A-Z][a-zA-Z0-9_]*
MATH_[A-Z][a-zA-Z0-9_]*
mem[a-z][a-zA-Z0-9_]*
mtx_[a-z][a-zA-Z0-9_]*
PRI[a-zX][a-zA-Z0-9_]*
SCN[a-zX][a-zA-Z0-9_]*
SIG[A-Z][a-zA-Z0-9_]*
SIG_[A-Z][a-zA-Z0-9_]*
str[a-z][a-zA-Z0-9_]*
thrd_[a-z][a-zA-Z0-9_]*
TIME_[A-Z][a-zA-Z0-9_]*
to[a-z][a-zA-Z0-9_]*
tss_[a-z][a-zA-Z0-9_]*
UINT[a-zA-Z0-9_]*_C
UINT[a-zA-Z0-9_]*_MAX
uint[a-zA-Z0-9_]*_t
UINT[a-zA-Z0-9_]*_WIDTH
wcs[a-z][a-zA-Z0-9_]*

2 The following 638 identifiers or keywords match these patterns and have particular semantics
provided by this document.

_Alignas
__alignas_is_defined
_Alignof
__alignof_is_defined
_Atomic
atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_char16_t

ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit
atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_exchange

506 Portability issues § J.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

atomic_exchange_explicit
atomic_fetch_

atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag
atomic_flag_clear
atomic_flag_clear_explicit
ATOMIC_FLAG_INIT
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit
atomic_init
atomic_int
atomic_int_fast16_t
atomic_int_fast32_t
atomic_int_fast64_t
atomic_int_fast8_t
atomic_int_least16_t
atomic_int_least32_t
atomic_int_least64_t
atomic_int_least8_t
ATOMIC_INT_LOCK_FREE
atomic_intmax_t
atomic_intptr_t
atomic_is_lock_free
atomic_llong
ATOMIC_LLONG_LOCK_FREE
atomic_load
atomic_load_explicit
atomic_long
ATOMIC_LONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
atomic_ptrdiff_t
atomic_schar
atomic_short
ATOMIC_SHORT_LOCK_FREE
atomic_signal_fence
atomic_size_t
atomic_store
atomic_store_explicit
atomic_thread_fence
atomic_uchar
atomic_uint
atomic_uint_fast16_t
atomic_uint_fast32_t
atomic_uint_fast64_t
atomic_uint_fast8_t
atomic_uint_least16_t
atomic_uint_least32_t

atomic_uint_least64_t
atomic_uint_least8_t
atomic_uintmax_t
atomic_uintptr_t
atomic_ullong
atomic_ulong
atomic_ushort
ATOMIC_VAR_INIT
atomic_wchar_t
ATOMIC_WCHAR_T_LOCK_FREE
_Bool
__bool_true_false_are_defined
cnd_broadcast
cnd_destroy
cnd_init
cnd_signal
cnd_t
cnd_timedwait
cnd_wait
_Complex
_Complex_I
__cplusplus
__DATE__

DBL_DECIMAL_DIG
DBL_DIG
DBL_EPSILON
DBL_HAS_SUBNORM
DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN
DBL_MIN_10_EXP
DBL_MIN_EXP
DBL_NORM_MAX
DBL_TRUE_MIN
DEC128_EPSILON
DEC128_MANT_DIG
DEC128_MAX
DEC128_MAX_EXP
DEC128_MIN
DEC128_MIN_EXP
DEC128_TRUE_MIN
DEC32_EPSILON
DEC32_MANT_DIG
DEC32_MAX
DEC32_MAX_EXP
DEC32_MIN
DEC32_MIN_EXP
DEC32_TRUE_MIN
DEC64_EPSILON
DEC64_MANT_DIG
DEC64_MAX
DEC64_MAX_EXP
DEC64_MIN
DEC64_MIN_EXP

§ J.6.1 Portability issues 507

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

DEC64_TRUE_MIN
DEC_EVAL_METHOD
_Decimal128
_Decimal32
_Decimal32_t
_Decimal64
_Decimal64_t
DEC_INFINITY
DEC_NAN
__deprecated__

EDOM
EILSEQ
EOF
EOL
ERANGE
_Exit
EXIT_FAILURE
EXIT_SUCCESS
_EXT__
__fallthrough__

FE_ALL_EXCEPT
FE_DEC_DOWNWARD
FE_DEC_DYNAMIC
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD
FE_DFL_ENV
FE_DFL_MODE
FE_DIVBYZERO
FE_DOWNWARD
FE_DYNAMIC
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_SNANS_ALWAYS_SIGNAL
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UNDERFLOW
FE_UPWARD
__FILE__

FLT_DECIMAL_DIG
FLT_DIG
FLT_EPSILON
FLT_EVAL_METHOD
FLT_HAS_SUBNORM
FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_NORM_MAX
FLT_RADIX

FLT_ROUNDS
FLT_TRUE_MIN
FP_CONTRACT
FP_FAST_D32ADDD128
FP_FAST_D32ADDD64
FP_FAST_D32DIVD128
FP_FAST_D32DIVD64
FP_FAST_D32FMAD128
FP_FAST_D32FMAD64
FP_FAST_D32MULD128
FP_FAST_D32MULD64
FP_FAST_D32SQRTD128
FP_FAST_D32SQRTD64
FP_FAST_D32SUBD128
FP_FAST_D32SUBD64
FP_FAST_D64ADDD128
FP_FAST_D64DIVD128
FP_FAST_D64FMAD128
FP_FAST_D64MULD128
FP_FAST_D64SQRTD128
FP_FAST_D64SUBD128
FP_FAST_DADDL
FP_FAST_DDIVL
FP_FAST_DFMAL
FP_FAST_DMULL
FP_FAST_DSQRTL
FP_FAST_DSUBL
FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_FDIV
FP_FAST_FDIVL
FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_FMA
FP_FAST_FMAD128
FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAF
FP_FAST_FMAL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_FSUB
FP_FAST_FSUBL
FP_ILOGB0
FP_ILOGBNAN
FP_INFINITE
FP_INT_DOWNWARD
FP_INT_TONEAREST
FP_INT_TONEARESTFROMZERO
FP_INT_TOWARDZERO
FP_INT_UPWARD
FP_LLOGB0
FP_LLOGBNAN
FP_NAN

508 Portability issues § J.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

FP_NORMAL
FP_SUBNORMAL
FP_ZERO
__func__
_Generic
_Imaginary
_Imaginary_I
INT16_C
INT16_MAX
INT16_MIN
int16_t
INT16_WIDTH
INT32_C
INT32_MAX
INT32_MIN
int32_t
INT32_WIDTH
INT64_C
INT64_MAX
INT64_MIN
int64_t
INT64_WIDTH
INT8_C
INT8_MAX
INT8_MIN
int8_t
INT8_WIDTH
int_fast16_t
int_fast32_t
int_fast64_t
int_fast8_t
int_least16_t
int_least32_t
int_least64_t
int_least8_t
INT_MAX
INTMAX_C
INTMAX_MAX
INTMAX_MIN
intmax_t
INTMAX_WIDTH
INT_MIN
INTPTR_MAX
INTPTR_MIN
intptr_t
INTPTR_WIDTH
INT_WIDTH
_IOFBF
_IOLBF
_IONBF
isalnum
isalpha
isblank
iscanonical
iscntrl
isdigit

iseqsig
isfinite
isgraph
isgreater
isgreaterequal
isinf
isless
islessequal
islessgreater
islower
isnan
isnormal
isprint
ispunct
issignaling
isspace
issubnormal
isunordered
isupper
iswalnum
iswalpha
iswblank
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
isxdigit
iszero
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
LDBL_DECIMAL_DIG
LDBL_DIG
LDBL_EPSILON
LDBL_HAS_SUBNORM
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP
LDBL_MAX_EXP
LDBL_MIN
LDBL_MIN_10_EXP
LDBL_MIN_EXP
LDBL_NORM_MAX
LDBL_TRUE_MIN
__LINE__

MATH_ERREXCEPT
MATH_ERRNO

§ J.6.1 Portability issues 509

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

__maybe_unused__

memccpy
memchr
memcmp
memcpy
memcpy_s
memmove
memmove_s
memory_order
memory_order_acq_rel
memory_order_acquire
memory_order_consume
memory_order_relaxed
memory_order_release
memory_order_seq_cst
memset
memset_s
mtx_destroy
mtx_init
mtx_lock
mtx_plain
mtx_recursive
mtx_t
mtx_timed
mtx_timedlock
mtx_trylock
mtx_unlock
__nodiscard__
_Noreturn
_Pragma
PRId32
PRId64
PRIdFAST32
PRIdFAST64
PRIdLEAST32
PRIdLEAST64
PRIdMAX
PRIdPTR
PRIi32
PRIi64
PRIiFAST32
PRIiFAST64
PRIiLEAST32
PRIiLEAST64
PRIiMAX
PRIiPTR
PRIo32
PRIo64
PRIoFAST32
PRIoFAST64
PRIoLEAST32
PRIoLEAST64
PRIoMAX
PRIoPTR
PRIu32
PRIu64

PRIuFAST32
PRIuFAST64
PRIuLEAST32
PRIuLEAST64
PRIuMAX
PRIuPTR
PRIX32
PRIX64
PRIXFAST32
PRIXFAST64
PRIXLEAST32
PRIXLEAST64
PRIXMAX
PRIXPTR
SCNdMAX
SCNdPTR
SCNiMAX
SCNiPTR
SCNoMAX
SCNoPTR
SCNuMAX
SCNuPTR
SCNxMAX
SCNxPTR
SIGABRT
SIG_ATOMIC_MAX
SIG_ATOMIC_MIN
SIG_ATOMIC_WIDTH
SIG_DFL
SIG_ERR
SIGFPE
SIG_IGN
SIGILL
SIGINT
SIGSEGV
SIGTERM
_Static_assert
__STDC__
__STDC_ANALYZABLE__
__STDC_HOSTED__
__STDC_IEC_559__
__STDC_IEC_559_COMPLEX__
__STDC_IEC_60559_BFP__
__STDC_IEC_60559_COMPLEX__
__STDC_IEC_60559_DFP__
__STDC_ISO_10646__
__STDC_LIB_EXT1__
__STDC_MB_MIGHT_NEQ_WC__
__STDC_NO_ATOMICS__
__STDC_NO_COMPLEX__
__STDC_NO_THREADS__
__STDC_NO_VLA__
__STDC_UTF_16__
__STDC_UTF_32__
__STDC_VERSION__
__STDC_VERSION_FENV_H__

510 Portability issues § J.6.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

__STDC_VERSION_MATH_H__
__STDC_VERSION_STDINT_H__
__STDC_VERSION_STDLIB_H__
__STDC_VERSION_TGMATH_H__
__STDC_VERSION_TIME_H__
__STDC_WANT_IEC_60559_
__STDC_WANT_IEC_60559_EXT__
__STDC_WANT_LIB_EXT1__

strcat
strcat_s
strchr
strcmp
strcoll
strcpy
strcpy_s
strcspn
strdup
strerror
strerrorlen_s
strerror_s
strfromd
strfromd128
strfromd32
strfromd64
strfromf
strfroml
strftime
strlen
strncat
strncat_s
strncmp
strncpy
strncpy_s
strndup
strnlen_s
strpbrk
strrchr
strspn
strstr
strto
strtod
strtod128
strtod32
strtod64
strtof
strtoimax
strtok
strtok_s
strtol
strtold
strtoll
strtoul
strtoull
strtoumax
struct
strxfrm

thrd_busy
thrd_create
thrd_current
thrd_detach
thrd_equal
thrd_error
thrd_exit
thrd_join
thrd_nomem
thrd_sleep
thrd_start_t
thrd_success
thrd_t
thrd_timedout
thrd_yield
_Thread_local
__TIME__

TIME_UTC
tolower
totalorder
totalorderd128
totalorderd32
totalorderd64
totalorderf
totalorderl
totalordermag
totalordermagd128
totalordermagd32
totalordermagd64
totalordermagf
totalordermagl
toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set
tss_t
UINT16_C
UINT16_MAX
uint16_t
UINT16_WIDTH
UINT32_C
UINT32_MAX
uint32_t
UINT32_WIDTH
UINT64_C
UINT64_MAX
uint64_t
UINT64_WIDTH
UINT8_C
UINT8_MAX
uint8_t

§ J.6.1 Portability issues 511

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

UINT8_WIDTH
uint_fast16_t
uint_fast32_t
uint_fast64_t
uint_fast8_t
uint_least16_t
uint_least32_t
uint_least64_t
uint_least8_t
UINT_MAX
UINTMAX_C
UINTMAX_MAX
uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t
UINTPTR_WIDTH
UINT_WIDTH
__VA_ARGS__

wcscat
wcscat_s
wcschr
wcscmp
wcscoll
wcscpy
wcscpy_s
wcscspn
wcsftime
wcslen
wcsncat

wcsncat_s
wcsncmp
wcsncpy
wcsncpy_s
wcsnlen_s
wcspbrk
wcsrchr
wcsrtombs
wcsrtombs_s
wcsspn
wcsstr
wcsto
wcstod
wcstod128
wcstod32
wcstod64
wcstof
wcstoimax
wcstok
wcstok_s
wcstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm

J.6.2 Particular identifiers or keywords
1 The following 1195 identifiers or keywords are not covered by the above and have particular

semantics provided by this document.

abort
abort_handler_s
abs
acos
acosd128
acosd32
acosd64
acosf
acosh
acoshd128
acoshd32
acoshd64
acoshf
acoshl
acosl
acospi
acospid128
acospid32
acospid64
acospif
acospil

alignas
aligned_alloc
alignof
and
and_eq
asctime
asctime_r
asctime_s
asin
asind128
asind32
asind64
asinf
asinh
asinhd128
asinhd32
asinhd64
asinhf
asinhl
asinl
asinpi

asinpid128
asinpid32
asinpid64
asinpif
asinpil
assert
atan
atan2
atan2d128
atan2d32
atan2d64
atan2f
atan2l
atan2pi
atan2pid128
atan2pid32
atan2pid64
atan2pif
atan2pil
atand128
atand32

512 Portability issues § J.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

atand64
atanf
atanh
atanhd128
atanhd32
atanhd64
atanhf
atanhl
atanl
atanpi
atanpid128
atanpid32
atanpid64
atanpif
atanpil
atexit
atof
atoi
atol
atoll
at_quick_exit
auto
bitand
bitor
bool
BOOL_MAX
BOOL_WIDTH
break
bsearch
bsearch_s
btowc
BUFSIZ
c16rtomb
c32rtomb
cabs
cabsf
cabsl
cacos
cacosf
cacosh
cacoshf
cacoshl
cacosl
cacospi
calloc
call_once
canonicalize
canonicalized128
canonicalized32
canonicalized64
canonicalizef
canonicalizel
carg
cargf
cargl
case

casin
casinf
casinh
casinhf
casinhl
casinl
casinpi
catan
catanf
catanh
catanhf
catanhl
catanl
catanpi
cbrt
cbrtd128
cbrtd32
cbrtd64
cbrtf
cbrtl
ccompoundn
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ccospi
ceil
ceild128
ceild32
ceild64
ceilf
ceill
cerf
cerfc
cexp
cexp10
cexp10m1
cexp2
cexp2m1
cexpf
cexpl
cexpm1
char
char16_t
char32_t
CHAR_BIT
CHAR_MAX
CHAR_MIN
CHAR_WIDTH
cimag
cimagf
cimagl
clearerr
clgamma

clock
CLOCKS_PER_SEC
clock_t
clog
clog10
clog10p1
clog1p
clog2
clog2p1
clogf
clogl
clogp1
CMPLX
CMPLXF
CMPLXL
compl
complex
compoundn
compoundnd128
compoundnd32
compoundnd64
compoundnf
compoundnl
conj
conjf
conjl
const
constraint_handler_t
continue
copysign
copysignd128
copysignd32
copysignd64
copysignf
copysignl
cos
cosd128
cosd32
cosd64
cosf
cosh
coshd128
coshd32
coshd64
coshf
coshl
cosl
cospi
cospid128
cospid32
cospid64
cospif
cospil
cpow
cpowf
cpowl

§ J.6.2 Portability issues 513

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

cpown
cpowr
cproj
cprojf
cprojl
cr_acos
cr_acosh
cr_acospi
cr_asin
cr_asinh
cr_asinpi
cr_atan
cr_atan2
cr_atan2pi
cr_atanh
cr_atanpi
cr_compoundn
cr_cos
cr_cosh
cr_cospi
CR_DECIMAL_DIG
cr_eal
cr_ealf
cr_eall
cr_exp
cr_exp10
cr_exp10m1
cr_exp2
cr_exp2m1
cr_expm1
cr_hypot
cr_log
cr_log10
cr_log10p1
cr_log1p
cr_log2
cr_log2p1
cr_logp1
cr_ootn
cr_pow
cr_pown
cr_powr
cr_rootn
cr_rsqrt
cr_sin
cr_sinh
cr_sinpi
cr_sqrt
cr_tan
cr_tanh
cr_tanpi
csin
csinf
csinh
csinhf
csinhl

csinl
csinpi
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanh
ctanhf
ctanhl
ctanl
ctanpi
ctgamma
ctime
ctime_r
ctime_s
currency_symbol
CX_LIMITED_RANGE
d32add
d32addd128
d32addd64
d32div
d32divd128
d32divd64
d32fma
d32fmad128
d32fmad64
d32mul
d32muld128
d32muld64
d32sqrt
d32sqrtd128
d32sqrtd64
d32sub
d32subd128
d32subd64
d64add
d64addd128
d64div
d64divd128
d64fma
d64fmad128
d64mul
d64muld128
d64sqrt
d64sqrtd128
d64sub
d64subd128
dadd
daddl
ddiv
ddivl
DECIMAL_DIG
decimal_point
decodebin
decodebind

decodebind128
decodebind32
decodebind64
decodedec
decodedecd
decodedecd128
decodedecd32
decodedecd64
DEFAULT
define
defined
deprecated
dfma
dfmal
difftime
div
div_t
dmul
dmull
do
double
double_t
dsqrt
dsqrtl
dsub
dsubl
elif
else
encodebin
encodebind
encodebind128
encodebind32
encodebind64
encodedec
encodedecd
encodedecd128
encodedecd32
encodedecd64
endif
enum
erf
erfc
erfcd128
erfcd32
erfcd64
erfcf
erfcl
erfd128
erfd32
erfd64
erff
erfl
errno
errno_t
error
exit

514 Portability issues § J.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

exp
exp10
exp10d128
exp10d32
exp10d64
exp10f
exp10l
exp10m1
exp10m1d128
exp10m1d32
exp10m1d64
exp10m1f
exp10m1l
exp2
exp2d128
exp2d32
exp2d64
exp2f
exp2l
exp2m1
exp2m1d128
exp2m1d32
exp2m1d64
exp2m1f
exp2m1l
expd128
expd32
expd64
expf
expl
expm1
expm1d128
expm1d32
expm1d64
expm1f
expm1l
extern
fabs
fabsd128
fabsd32
fabsd64
fabsf
fabsl
fadd
faddl
fallthrough
false
fclose
fdim
fdimd128
fdimd32
fdimd64
fdimf
fdiml
fdiv
fdivl

feclearexcept
fe_dec_getround
fe_dec_setround
fegetenv
fegetexceptflag
fegetmode
fegetround
feholdexcept
femode_t
FENV_ACCESS
FENV_DEC_ROUND
FENV_ROUND
fenv_t
feof
feraiseexcept
ferror
fesetenv
fesetexcept
fesetexceptflag
fesetmode
fesetround
fetestexcept
fetestexceptflag
feupdateenv
fexcept_t
fflush
ffma
ffmal
fgetc
fgetpos
fgets
fgetwc
fgetws
FILE
FILENAME_MAX
float
float_t
floor
floord128
floord32
floord64
floorf
floorl
fma
fmad128
fmad32
fmad64
fmaf
fmal
fmax
fmaxd128
fmaxd32
fmaxd64
fmaxf
fmaxl
fmaximum

fmaximumd128
fmaximumd32
fmaximumd64
fmaximumf
fmaximuml
fmaximum_mag
fmaximum_magd128
fmaximum_magd32
fmaximum_magd64
fmaximum_magf
fmaximum_magl
fmaximum_mag
fmaximum_mag_numd128
fmaximum_mag_numd32
fmaximum_mag_numd64
fmaximum_mag_numf
fmaximum_mag_numl
fmaximum_num
fmaximum_numd128
fmaximum_numd32
fmaximum_numd64
fmaximum_numf
fmaximum_numl
fmin
fmind128
fmind32
fmind64
fminf
fminl
fminimum
fminimumd128
fminimumd32
fminimumd64
fminimumf
fminimuml
fminimum_mag
fminimum_magd128
fminimum_magd32
fminimum_magd64
fminimum_magf
fminimum_magl
fminimum_mag
fminimum_mag_numd128
fminimum_mag_numd32
fminimum_mag_numd64
fminimum_mag_numf
fminimum_mag_numl
fminimum_num
fminimum_numd128
fminimum_numd32
fminimum_numd64
fminimum_numf
fminimum_numl
fmod
fmodd128
fmodd32

§ J.6.2 Portability issues 515

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

fmodd64
fmodf
fmodl
fmul
fmull
fopen
FOPEN_MAX
fopen_s
for
fpclassify
fpos_t
fprintf
fprintf_s
fputc
fputs
fputwc
fputws
frac_digits
fread
free
freopen
freopen_s
frexp
frexpd128
frexpd32
frexpd64
frexpf
frexpl
fromfp
fromfpd128
fromfpd32
fromfpd64
fromfpf
fromfpl
fromfpx
fromfpxd128
fromfpxd32
fromfpxd64
fromfpxf
fromfpxl
fscanf
fscanf_s
fseek
fsetpos
fsqrt
fsqrtl
fsub
fsubl
ftell
fwide
fwprintf
fwprintf_s
fwrite
fwscanf
fwscanf_s
getc

getchar
getenv
getenv_s
getpayload
getpayloadd128
getpayloadd32
getpayloadd64
getpayloadf
getpayloadl
gets
gets_s
getwc
getwchar
gmtime
gmtime_r
gmtime_s
goto
grouping
HUGE_VAL
HUGE_VAL_D128
HUGE_VAL_D32
HUGE_VAL_D64
HUGE_VALF
HUGE_VALL
hypot
hypotd128
hypotd32
hypotd64
hypotf
hypotl
I
if
ifdef
ifndef
ignore_handler_s
ilogb
ilogbd128
ilogbd32
ilogbd64
ilogbf
ilogbl
imaginary
imaxabs
imaxdiv
imaxdiv_t
include
INFINITY
inline
int_curr_symbol
int_frac_digits
int_n_cs_precedes
int_n_sep_by_space
int_n_sign_posn
int_p_cs_precedes
int_p_sep_by_space
int_p_sign_posn

jmp_buf
kill_dependency
labs
lconv
ldexp
ldexpd128
ldexpd32
ldexpd64
ldexpf
ldexpl
ldiv
ldiv_t
lgamma
lgammad128
lgammad32
lgammad64
lgammaf
lgammal
line
llabs
lldiv
lldiv_t
llogb
llogbd128
llogbd32
llogbd64
llogbf
llogbl
LLONG_MAX
LLONG_MIN
LLONG_WIDTH
llquantexp
llquantexpd
llquantexpd128
llquantexpd32
llquantexpd64
llrint
llrintd128
llrintd32
llrintd64
llrintf
llrintl
llround
llroundd128
llroundd32
llroundd64
llroundf
llroundl
localeconv
localtime
localtime_r
localtime_s
log
log10
log10d128
log10d32

516 Portability issues § J.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

log10d64
log10f
log10l
log10p1
log10p1d128
log10p1d32
log10p1d64
log10p1f
log10p1l
log1p
log1pd128
log1pd32
log1pd64
log1pf
log1pl
log2
log2d128
log2d32
log2d64
log2f
log2l
log2p1
log2p1d128
log2p1d32
log2p1d64
log2p1f
log2p1l
logb
logbd128
logbd32
logbd64
logbf
logbl
logd128
logd32
logd64
logf
logl
logp1
logp1d128
logp1d32
logp1d64
logp1f
logp1l
long
longjmp
LONG_MAX
LONG_MIN
LONG_WIDTH
lrint
lrintd128
lrintd32
lrintd64
lrintf
lrintl
lround

lroundd128
lroundd32
lroundd64
lroundf
lroundl
L_tmpnam
L_tmpnam_s
main
malloc
math_errhandling
max_align_t
maybe_unused
MB_CUR_MAX
mblen
MB_LEN_MAX
mbrlen
mbrtoc16
mbrtoc32
mbrtowc
mbsinit
mbsrtowcs
mbsrtowcs_s
mbstate_t
mbstowcs
mbstowcs_s
mbtowc
mktime
modf
modfd128
modfd32
modfd64
modff
modfl
mon_decimal_point
mon_grouping
mon_thousands_sep
nan
nand128
nand32
nand64
nanf
nanl
n_cs_precedes
NDEBUG
nearbyint
nearbyintd128
nearbyintd32
nearbyintd64
nearbyintf
nearbyintl
negative_sign
nextafter
nextafterd128
nextafterd32
nextafterd64
nextafterf

nextafterl
nextdown
nextdownd128
nextdownd32
nextdownd64
nextdownf
nextdownl
nexttoward
nexttowardd128
nexttowardd32
nexttowardd64
nexttowardf
nexttowardl
nextup
nextupd128
nextupd32
nextupd64
nextupf
nextupl
nodiscard
noreturn
not
not_eq
n_sep_by_space
n_sign_posn
NULL
OFF
offsetof
ON
once_flag
ONCE_FLAG_INIT
or
or_eq
p_cs_precedes
perror
positive_sign
pow
powd128
powd32
powd64
powf
powl
pown
pownd128
pownd32
pownd64
pownf
pownl
powr
powrd128
powrd32
powrd64
powrf
powrl
pragma
printf

§ J.6.2 Portability issues 517

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

printf_s
p_sep_by_space
p_sign_posn
PTRDIFF_MAX
PTRDIFF_MIN
ptrdiff_t
PTRDIFF_WIDTH
putc
putchar
puts
putwc
putwchar
qsort
qsort_s
quantize
quantized
quantized128
quantized32
quantized64
quantum
quantumd
quantumd128
quantumd32
quantumd64
quick_exit
raise
rand
RAND_MAX
realloc
register
remainder
remainderd128
remainderd32
remainderd64
remainderf
remainderl
remove
remquo
remquof
remquol
rename
restrict
return
rewind
rint
rintd128
rintd32
rintd64
rintf
rintl
rootn
rootnd128
rootnd32
rootnd64
rootnf
rootnl

round
roundd128
roundd32
roundd64
roundeven
roundevend128
roundevend32
roundevend64
roundevenf
roundevenl
roundf
roundl
RSIZE_MAX
rsize_t
rsqrt
rsqrtd128
rsqrtd32
rsqrtd64
rsqrtf
rsqrtl
samequantum
samequantumd
samequantumd128
samequantumd32
samequantumd64
scalbln
scalblnd128
scalblnd32
scalblnd64
scalblnf
scalblnl
scalbn
scalbnd128
scalbnd32
scalbnd64
scalbnf
scalbnl
scanf
scanf_s
SCHAR_MAX
SCHAR_MIN
SCHAR_WIDTH
SEEK_CUR
SEEK_END
SEEK_SET
setbuf
set_constraint_handler_s
setjmp
setlocale
setpayload
setpayloadd128
setpayloadd32
setpayloadd64
setpayloadf
setpayloadl
setpayloadsig

setpayloadsigd128
setpayloadsigd32
setpayloadsigd64
setpayloadsigf
setpayloadsigl
setvbuf
short
SHRT_MAX
SHRT_MIN
SHRT_WIDTH
sig_atomic_t
signal
signbit
signed
sin
sind128
sind32
sind64
sinf
sinh
sinhd128
sinhd32
sinhd64
sinhf
sinhl
sinl
sinpi
sinpid128
sinpid32
sinpid64
sinpif
sinpil
SIZE_MAX
sizeof
size_t
SIZE_WIDTH
SNAN
SNAND128
SNAND32
SNAND64
SNANF
SNANL
snprintf
snprintf_s
snwprintf_s
sprintf
sprintf_s
sqrt
sqrtd128
sqrtd32
sqrtd64
sqrtf
sqrtl
srand
sscanf
sscanf_s

518 Portability issues § J.6.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

static
static_assert
STDC
stderr
stdin
stdout
switch
swprintf
swprintf_s
swscanf
swscanf_s
system
tan
tand128
tand32
tand64
tanf
tanh
tanhd128
tanhd32
tanhd64
tanhf
tanhl
tanl
tanpi
tanpid128
tanpid32
tanpid64
tanpif
tanpil
tgamma
tgammad128
tgammad32
tgammad64
tgammaf
tgammal
thousands_sep
thread_local
time
timespec
timespec_get
timespec_getres
time_t
tm
tm_hour
tm_isdst
tm_mday
tm_min
tm_mon
tmpfile
tmpfile_s
TMP_MAX
TMP_MAX_S
tmpnam

tmpnam_s
tm_sec
tm_wday
tm_yday
tm_year
true
trunc
truncd128
truncd32
truncd64
truncf
truncl
TSS_DTOR_ITERATIONS
tv_nsec
tv_sec
typedef
UCHAR_MAX
UCHAR_WIDTH
ufromfp
ufromfpd128
ufromfpd32
ufromfpd64
ufromfpf
ufromfpl
ufromfpx
ufromfpxd128
ufromfpxd32
ufromfpxd64
ufromfpxf
ufromfpxl
ULLONG_MAX
ULLONG_WIDTH
ULONG_MAX
ULONG_WIDTH
undef
ungetc
ungetwc
union
unsigned
USHRT_MAX
USHRT_WIDTH
va_arg
va_copy
va_end
va_list
va_start
vfprintf
vfprintf_s
vfscanf
vfscanf_s
vfwprintf
vfwprintf_s
vfwscanf
vfwscanf_s

void
volatile
vprintf
vprintf_s
vscanf
vscanf_s
vsnprintf
vsnprintf_s
vsnwprintf_s
vsprintf
vsprintf_s
vsscanf
vsscanf_s
vswprintf
vswprintf_s
vswscanf
vswscanf_s
vwprintf
vwprintf_s
vwscanf
vwscanf_s
WCHAR_MAX
WCHAR_MIN
wchar_t
WCHAR_WIDTH
wcrtomb
wcrtomb_s
wctob
wctomb
wctomb_s
wctrans
wctrans_t
wctype
wctype_t
WEOF
while
WINT_MAX
WINT_MIN
wint_t
WINT_WIDTH
wmemchr
wmemcmp
wmemcpy
wmemcpy_s
wmemmove
wmemmove_s
wmemset
wprintf
wprintf_s
wscanf
wscanf_s
xor
xor_eq

§ J.6.2 Portability issues 519

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex K
(normative)

Bounds-checking interfaces

K.1 Background
1 Traditionally, the C Library has contained many functions that trust the programmer to provide

output character arrays big enough to hold the result being produced. Not only do these functions
not check that the arrays are big enough, they frequently lack the information needed to perform
such checks. While it is possible to write safe, robust, and error-free code using the existing library,
the library tends to promote programming styles that lead to mysterious failures if a result is too big
for the provided array.

2 A common programming style is to declare character arrays large enough to handle most practical
cases. However, if these arrays are not large enough to handle the resulting strings, data can be
written past the end of the array overwriting other data and program structures. The program never
gets any indication that a problem exists, and so never has a chance to recover or to fail gracefully.

3 Worse, this style of programming has compromised the security of computers and networks. Buffer
overflows can often be exploited to run arbitrary code with the permissions of the vulnerable
(defective) program.

4 If the programmer writes runtime checks to verify lengths before calling library functions, then
those runtime checks frequently duplicate work done inside the library functions, which discover
string lengths as a side effect of doing their job.

5 This annex provides alternative library functions that promote safer, more secure programming. The
alternative functions verify that output buffers are large enough for the intended result and return a
failure indicator if they are not. Data is never written past the end of an array. All string results are
null terminated.

6 This annex also addresses another problem that complicates writing robust code: functions that are
not reentrant because they return pointers to static objects owned by the function. Such functions
can be troublesome since a previously returned result can change if the function is called again,
perhaps by another thread.

K.2 Scope
1 This annex specifies a series of optional extensions that can be useful in the mitigation of security

vulnerabilities in programs, and comprise new functions, macros, and types declared or defined in
existing standard headers.

2 An implementation that defines __STDC_LIB_EXT1__ shall conform to the specifications in this
annex.414)

3 Subclause K.3 should be read as if it were merged into the parallel structure of named subclauses of
Clause 7.

K.3 Library
K.3.1 Introduction
K.3.1.1 Standard headers

1 The functions, macros, and types declared or defined in K.3 and its subclauses are not declared
or defined by their respective headers if __STDC_WANT_LIB_EXT1__ is defined as a macro which
expands to the integer constant 0 at the point in the source file where the appropriate header is first
included.

2 The functions, macros, and types declared or defined in K.3 and its subclauses are declared and
defined by their respective headers if __STDC_WANT_LIB_EXT1__ is defined as a macro which ex-
pands to the integer constant 1 at the point in the source file where the appropriate header is first

414)Implementations that do not define __STDC_LIB_EXT1__ are not required to conform to these specifications.

520 Bounds-checking interfaces § K.3.1.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

included.415)

3 It is implementation-defined whether the functions, macros, and types declared or defined in K.3 and
its subclauses are declared or defined by their respective headers if __STDC_WANT_LIB_EXT1__ is not
defined as a macro at the point in the source file where the appropriate header is first included.416)

4 Within a preprocessing translation unit, __STDC_WANT_LIB_EXT1__ shall be defined identically for
all inclusions of any headers from Subclause K.3. If __STDC_WANT_LIB_EXT1__ is defined differently
for any such inclusion, the implementation shall issue a diagnostic as if a preprocessor error directive
were used.

K.3.1.2 Reserved identifiers
1 Each macro name in any of the following subclauses is reserved for use as specified if it is defined

by any of its associated headers when included; unless explicitly stated otherwise (see 7.1.4).

2 All identifiers with external linkage in any of the following subclauses are reserved for use as
identifiers with external linkage if any of them are used by the program. None of them are reserved
if none of them are used.

3 Each identifier with file scope listed in any of the following subclauses is reserved for use as a
macro name and as an identifier with file scope in the same name space if it is defined by any of its
associated headers when included.

K.3.1.3 Use of errno
1 An implementation may set errno for the functions defined in this annex, but is not required to.

K.3.1.4 Runtime-constraint violations
1 Most functions in this annex include as part of their specification a list of runtime-constraints. These

runtime-constraints are requirements on the program using the library.417)

2 Implementations shall verify that the runtime-constraints for a function are not violated by the
program. If a runtime-constraint is violated, the implementation shall call the currently registered
runtime-constraint handler (see set_constraint_handler_s in <stdlib.h>). Multiple runtime-
constraint violations in the same call to a library function result in only one call to the runtime-
constraint handler. It is unspecified which one of the multiple runtime-constraint violations cause
the handler to be called.

3 If the runtime-constraints section for a function states an action to be performed when a runtime-
constraint violation occurs, the function shall perform the action before calling the runtime-constraint
handler. If the runtime-constraints section lists actions that are prohibited when a runtime-constraint
violation occurs, then such actions are prohibited to the function both before calling the handler and
after the handler returns.

4 The runtime-constraint handler might not return. If the handler does return, the library function
whose runtime-constraint was violated shall return some indication of failure as given by the returns
section in the function’s specification.

K.3.2 Errors <errno.h>
1 The header <errno.h> defines a type.

2 The type is

errno_t

415)Future revisions of this document might define meanings for other values of __STDC_WANT_LIB_EXT1__.
416)Subclause 7.1.3 reserves certain names and patterns of names that an implementation can use in headers. All other names

are not reserved, and a conforming implementation is not permitted to use them. While some of the names defined in K.3 and
its subclauses are reserved, others are not. If an unreserved name is defined in a header when __STDC_WANT_LIB_EXT1__ is
defined as 0, the implementation is not conforming.
417)Although runtime-constraints replace many cases of undefined behavior, undefined behavior still exists in this annex.

Implementations are free to detect any case of undefined behavior and treat it as a runtime-constraint violation by calling the
runtime-constraint handler. This license comes directly from the definition of undefined behavior.

§ K.3.2 Bounds-checking interfaces 521

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

which is type int.418)

K.3.3 Common definitions <stddef.h>
1 The header <stddef.h> defines a type.

2 The type is

rsize_t

which is the type size_t.419)

K.3.4 Integer types <stdint.h>
1 The header <stdint.h> defines a macro.

2 The macro is

RSIZE_MAX

which expands to a value420) of type size_t. Functions that have parameters of type rsize_t con-
sider it a runtime-constraint violation if the values of those parameters are greater than RSIZE_MAX.

Recommended practice
3 Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For

example, negative numbers appear as very large positive numbers when converted to an unsigned
type like size_t. Also, some implementations do not support objects as large as the maximum
value that can be represented by type size_t.

4 For those reasons, it is sometimes beneficial to restrict the range of object sizes to detect programming
errors. For implementations targeting machines with large address spaces, it is recommended that
RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX >> 1),
even if this limit is smaller than the size of some legitimate, but very large, objects. Implementations
targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, which
means that there is no object size that is considered a runtime-constraint violation.

K.3.5 Input/output <stdio.h>
1 The header <stdio.h> defines several macros and two types.

2 The macros are

L_tmpnam_s

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the tmpnam_s function;

TMP_MAX_S

which expands to an integer constant expression that is the maximum number of unique file names
that can be generated by the tmpnam_s function.

3 The types are

errno_t

which is type int; and

418)As a matter of programming style, errno_t can be used as the type of something that deals only with the values that
might be found in errno. For example, a function which returns the value of errno could be declared as having the return
type errno_t.
419)See the description of the RSIZE_MAX macro in <stdint.h>.
420)The macro RSIZE_MAX need not expand to a constant expression.

522 Bounds-checking interfaces § K.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

rsize_t

which is the type size_t.

K.3.5.1 Operations on files
K.3.5.1.1 The tmpfile_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t tmpfile_s(FILE * restrict * restrict streamptr);

Runtime-constraints
2 streamptr shall not be a null pointer.

3 If there is a runtime-constraint violation, tmpfile_s does not attempt to create a file.

Description
4 The tmpfile_s function creates a temporary binary file that is different from any other existing file

and that will automatically be removed when it is closed or at program termination. If the program
terminates abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode with the meaning that mode has in the fopen_s function
(including the mode’s effect on exclusive access and file permissions).

5 If the file was created successfully, then the pointer to FILE pointed to by streamptr will be set to
the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by
streamptr will be set to a null pointer.

Recommended practice
It should be possible to open at least TMP_MAX_S temporary files during the lifetime of the program
(this limit may be shared with tmpnam_s) and there should be no limit on the number simultaneously
open other than this limit and any limit on the number of open files (FOPEN_MAX).

Returns
6 The tmpfile_s function returns zero if it created the file. If it did not create the file or there was a

runtime-constraint violation, tmpfile_s returns a nonzero value.

K.3.5.1.2 The tmpnam_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t tmpnam_s(char *s, rsize_t maxsize);

Runtime-constraints
2 s shall not be a null pointer. maxsize shall be less than or equal to RSIZE_MAX. maxsize shall be

greater than the length of the generated file name string.

Description
3 The tmpnam_s function generates a string that is a valid file name and that is not the same as the

name of an existing file.421) The function is potentially capable of generating TMP_MAX_S different
strings, but any or all of them may already be in use by existing files and thus not be suitable return
values. The lengths of these strings shall be less than the value of the L_tmpnam_s macro.

4 The tmpnam_s function generates a different string each time it is called.

421)Files created using strings generated by the tmpnam_s function are temporary only in the sense that their names are not
expected to collide with those generated by conventional naming rules for the implementation. It is still necessary to use the
remove function to remove such files when their use is ended, and before program termination.

§ K.3.5.1.2 Bounds-checking interfaces 523

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

5 It is assumed that s points to an array of at least maxsize characters. This array will be set to
generated string, as specified below.

6 The implementation shall behave as if no library function except tmpnam calls the tmpnam_s func-
tion.422)

Recommended practice
7 After a program obtains a file name using the tmpnam_s function and before the program creates a

file with that name, the possibility exists that someone else may create a file with that same name.
To avoid this race condition, the tmpfile_s function should be used instead of tmpnam_s when
possible. One situation that requires the use of the tmpnam_s function is when the program needs to
create a temporary directory rather than a temporary file.

8 Implementations should take care in choosing the patterns used for names returned by tmpnam_s.
For example, making a thread ID part of the names avoids the race condition and possible conflict
when multiple programs run simultaneously by the same user generate the same temporary file
names.

Returns
9 If no suitable string can be generated, or if there is a runtime-constraint violation, the tmpnam_s

function:

— if s is not null and maxsize is both greater than zero and not greater than RSIZE_MAX, writes a
null character to s[0]

— returns a nonzero value.

10 Otherwise, the tmpnam_s function writes the string in the array pointed to by s and returns zero.

Environmental limits
11 The value of the macro TMP_MAX_S shall be at least 25.

K.3.5.2 File access functions
K.3.5.2.1 The fopen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t fopen_s(FILE * restrict * restrict streamptr,

const char * restrict filename, const char * restrict mode);

Runtime-constraints
2 None of streamptr, filename, or mode shall be a null pointer.

3 If there is a runtime-constraint violation, fopen_s does not attempt to open a file. Furthermore, if
streamptr is not a null pointer, fopen_s sets*streamptr to the null pointer.

Description
4 The fopen_s function opens the file whose name is the string pointed to by filename, and associates

a stream with it.

5 The mode string shall be as described for fopen, with the addition that modes starting with the
character’w’ or’a’ may be preceded by the character’u’ , see below:

uw truncate to zero length or create text file for writing, default permissions

uwx create text file for writing, default permissions

ua append; open or create text file for writing at end-of-file, default permissions

422)An implementation can have tmpnam call tmpnam_s (perhaps so there is only one naming convention for temporary files),
but this is not required.

524 Bounds-checking interfaces § K.3.5.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

uwb truncate to zero length or create binary file for writing, default permissions

uwbx create binary file for writing, default permissions

uab append; open or create binary file for writing at end-of-file, default permissions

uw+ truncate to zero length or create text file for update, default permissions

uw+x create text file for update, default permissions

ua+ append; open or create text file for update, writing at end-of-file, default permis-
sions

uw+b or uwb+ truncate to zero length or create binary file for update, default permissions

uw+bx or uwb+x create binary file for update, default permissions

ua+b or uab+ append; open or create binary file for update, writing at end-of-file, default permis-
sions

6 Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created.

7 To the extent that the underlying system supports the concepts, files opened for writing shall be
opened with exclusive (also known as non-shared) access. If the file is being created, and the first
character of the mode string is not’u’ , to the extent that the underlying system supports it, the file
shall have a file permission that prevents other users on the system from accessing the file. If the
file is being created and first character of the mode string is’u’ , then by the time the file has been
closed, it shall have the system default file access permissions.423)

8 If the file was opened successfully, then the pointer to FILE pointed to by streamptr will be set to
the pointer to the object controlling the opened file. Otherwise, the pointer to FILE pointed to by
streamptr will be set to a null pointer.

Returns
9 The fopen_s function returns zero if it opened the file. If it did not open the file or if there was a

runtime-constraint violation, fopen_s returns a nonzero value.

K.3.5.2.2 The freopen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
errno_t freopen_s(FILE * restrict * restrict newstreamptr,

const char * restrict filename, const char * restrict mode,
FILE * restrict stream);

Runtime-constraints
2 None of newstreamptr, mode, and stream shall be a null pointer.

3 If there is a runtime-constraint violation, freopen_s neither attempts to close any file associated with
stream nor attempts to open a file. Furthermore, if newstreamptr is not a null pointer, fopen_s
sets*newstreamptr to the null pointer.

Description
4 The freopen_s function opens the file whose name is the string pointed to by filename and

associates the stream pointed to by stream with it. The mode argument has the same meaning as in
the fopen_s function (including the mode’s effect on exclusive access and file permissions).

5 If filename is a null pointer, the freopen_s function attempts to change the mode of the stream
to that specified by mode, as if the name of the file currently associated with the stream had been

423)These are the same permissions that the file would have been created with by fopen.

§ K.3.5.2.2 Bounds-checking interfaces 525

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

used. It is implementation-defined which changes of mode are permitted (if any), and under what
circumstances.

6 The freopen_s function first attempts to close any file that is associated with stream. Failure to
close the file is ignored. The error and end-of-file indicators for the stream are cleared.

7 If the file was opened successfully, then the pointer to FILE pointed to by newstreamptr will be set
to the value of stream. Otherwise, the pointer to FILE pointed to by newstreamptr will be set to a
null pointer.

Returns
8 The freopen_s function returns zero if it opened the file. If it did not open the file or there was a

runtime-constraint violation, freopen_s returns a nonzero value.

K.3.5.3 Formatted input/output functions
1 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes

copying to take place between objects that overlap, the objects take on unspecified values.

K.3.5.3.1 The fprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fprintf_s(FILE * restrict stream, const char * restrict format, ...);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier424) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
fprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the425) fprintf_s function does not attempt to produce
further output, and it is unspecified to what extent fprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The fprintf_s function is equivalent to the fprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The fprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.3.2 The fscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int fscanf_s(FILE * restrict stream, const char * restrict format, ...);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the426) fscanf_s function does not attempt to perform
further input, and it is unspecified to what extent fscanf_s performed input before discovering the
runtime-constraint violation.
424)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.
425)Because an implementation can treat any undefined behavior as a runtime-constraint violation, an implementation can

treat any unsupported specifiers in the string pointed to by format as a runtime-constraint violation.
426)Because an implementation can treat any undefined behavior as a runtime-constraint violation, an implementation can

treat any unsupported specifiers in the string pointed to by format as a runtime-constraint violation.

526 Bounds-checking interfaces § K.3.5.3.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
4 The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion specifiers

apply to a pair of arguments (unless assignment suppression is indicated by a *). The first of these
arguments is the same as for fscanf. That argument is immediately followed in the argument list
by the second argument, which has type rsize_t and gives the number of elements in the array
pointed to by the first argument of the pair. If the first argument points to a scalar object, it is
considered to be an array of one element.427)

5 A matching failure occurs if the number of elements in a receiving object is insufficient to hold the
converted input (including any trailing null character).

Returns
6 The fscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the fscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

7 EXAMPLE 1 The call:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf_s(stdin, "%d%f%s", &i, &x, name, (rsize_t) 50);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

8 EXAMPLE 2 The call:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
/* ... */
int n; char s[5];
n = fscanf_s(stdin, "%s", s, sizeof s);

with the input line:

hello

will assign to n the value 0 since a matching failure occurred because the sequence hello\0 requires an array of six characters
to store it.

K.3.5.3.3 The printf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int printf_s(const char * restrict format, ...);

427)If the format is known at translation time, an implementation can issue a diagnostic for any argument used to store
the result from a c, s, or [conversion specifier if that argument is not followed by an argument of a type compatible with
rsize_t. A limited amount of checking can be done if even if the format is not known at translation time. For example, an
implementation could issue a diagnostic for each argument after format that has of type pointer to one of char, signed char,
unsigned char, or void that is not followed by an argument of a type compatible with rsize_t. The diagnostic could warn
that unless the pointer is being used with a conversion specifier using the hh length modifier, a length argument is expected
to follow the pointer argument. Another useful diagnostic could flag any non-pointer argument following format that did
not have a type compatible with rsize_t.

§ K.3.5.3.3 Bounds-checking interfaces 527

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Runtime-constraints

2 format shall not be a null pointer. The %n specifier428) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to printf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the printf_s function does not attempt to produce further
output, and it is unspecified to what extent printf_s produced output before discovering the
runtime-constraint violation.

Description
4 The printf_s function is equivalent to the printf function except for the explicit runtime-

constraints listed above.

Returns
5 The printf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.3.4 The scanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int scanf_s(const char * restrict format, ...);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the scanf_s function does not attempt to perform further
input, and it is unspecified to what extent scanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The scanf_s function is equivalent to fscanf_s with the argument stdin interposed before the

arguments to scanf_s.

Returns
5 The scanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the scanf_s function returns the
number of input items assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

K.3.5.3.5 The snprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int snprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The %n specifier429) (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to snprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

428)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

429)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

528 Bounds-checking interfaces § K.3.5.3.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the snprintf_s function sets s[0] to the null character.

Description
4 The snprintf_s function is equivalent to the snprintf function except for the explicit runtime-

constraints listed above.

5 The snprintf_s function, unlike sprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The snprintf_s function returns the number of characters that would have been written had n

been sufficiently large, not counting the terminating null character, or a negative value if a runtime-
constraint violation occurred. Thus, the null-terminated output has been completely written if and
only if the returned value is both nonnegative and less than n.

K.3.5.3.6 The sprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int sprintf_s(char * restrict s, rsize_t n, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The number of characters (including the trailing null) required for the result to be written to the
array pointed to by s shall not be greater than n. The %n specifier430) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
sprintf_s corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the sprintf_s function sets s[0] to the null character.

Description
4 The sprintf_s function is equivalent to the sprintf function except for the parameter n and the

explicit runtime-constraints listed above.

5 The sprintf_s function, unlike snprintf_s, treats a result too big for the array pointed to by s as a
runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the sprintf_s function returns the number of characters

written in the array, not counting the terminating null character. If an encoding error occurred,
sprintf_s returns a negative value. If any other runtime-constraint violation occurred, sprintf_s
returns zero.

430)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

§ K.3.5.3.6 Bounds-checking interfaces 529

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

K.3.5.3.7 The sscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
int sscanf_s(const char * restrict s, const char * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the sscanf_s function does not attempt to perform further
input, and it is unspecified to what extent sscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The sscanf_s function is equivalent to fscanf_s, except that input is obtained from a string

(specified by the argument s) rather than from a stream. Reaching the end of the string is equivalent
to encountering end-of-file for the fscanf_s function. If copying takes place between objects that
overlap, the objects take on unspecified values.

Returns
5 The sscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the sscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.8 The vfprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfprintf_s(FILE *restrict stream, const char *restrict format, va_list arg);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier431) (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument to
vfprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vfprintf_s function is equivalent to the vfprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vfprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

431)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

530 Bounds-checking interfaces § K.3.5.3.8

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

K.3.5.3.9 The vfscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE *restrict stream, const char *restrict format, va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf_s function does not invoke the va_end macro.432)

Returns
5 The vfscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.10 The vprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vprintf_s(const char * restrict format, va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier433) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vprintf_s function is equivalent to the vprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

K.3.5.3.11 The vscanf_s function

432)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value of arg after the return is indeterminate.
433)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

§ K.3.5.3.11 Bounds-checking interfaces 531

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format, va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vscanf_s function does not attempt to perform further
input, and it is unspecified to what extent vscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The vscanf_s function is equivalent to scanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vscanf_s function does not invoke the va_end macro.434)

Returns
5 The vscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.12 The vsnprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsnprintf_s(char *restrict s, rsize_t n, const char *restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The %n specifier435) (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to vsnprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the null character.

Description
4 The vsnprintf_s function is equivalent to the vsnprintf function except for the explicit runtime-

constraints listed above.

5 The vsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The vsnprintf_s function returns the number of characters that would have been written had n

been sufficiently large, not counting the terminating null character, or a negative value if a runtime-
constraint violation occurred. Thus, the null-terminated output has been completely written if and

434)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value of arg after the return is indeterminate.
435)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

532 Bounds-checking interfaces § K.3.5.3.12

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

only if the returned value both is nonnegative and less than n.

K.3.5.3.13 The vsprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsprintf_s(char * restrict s, rsize_t n, const char * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The number of characters (including the trailing null) required for the result to be written to the array
pointed to by s shall not be greater than n. The %n specifier436) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vsprintf_s
corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsprintf_s function sets s[0] to the null character.

Description
4 The vsprintf_s function is equivalent to the vsprintf function except for the parameter n and the

explicit runtime-constraints listed above.

5 The vsprintf_s function, unlike vsnprintf_s, treats a result too big for the array pointed to by s
as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the vsprintf_s function returns the number of char-

acters written in the array, not counting the terminating null character. If an encoding error oc-
curred, vsprintf_s returns a negative value. If any other runtime-constraint violation occurred,
vsprintf_s returns zero.

K.3.5.3.14 The vsscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s(const char *restrict s, const char *restrict format, va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vsscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vsscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vsscanf_s function is equivalent to sscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf_s function does not invoke the va_end macro.437)

436)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

437)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value of arg after the return is indeterminate.

§ K.3.5.3.14 Bounds-checking interfaces 533

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
5 The vsscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4 Character input/output functions
K.3.5.4.1 The gets_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
char *gets_s(char *s, rsize_t n);

Runtime-constraints
2 s shall not be a null pointer. n shall neither be equal to zero nor be greater than RSIZE_MAX. A new-

line character, end-of-file, or read error shall occur within reading n-1 characters from stdin.438)

3 If there is a runtime-constraint violation, characters are read and discarded from stdin until a
new-line character is read, or end-of-file or a read error occurs, and if s is not a null pointer, s[0] is
set to the null character.

Description
4 The gets_s function reads at most one less than the number of characters specified by n from the

stream pointed to by stdin, into the array pointed to by s. No additional characters are read after a
new-line character (which is discarded) or after end-of-file. The discarded new-line character does
not count towards number of characters read. A null character is written immediately after the last
character read into the array.

5 If end-of-file is encountered and no characters have been read into the array, or if a read error
occurs during the operation, then s[0] is set to the null character, and the other elements of s take
unspecified values.

Recommended practice
6 The fgets function allows properly-written programs to safely process input lines too long to store

in the result array. In general this requires that callers of fgets pay attention to the presence or
absence of a new-line character in the result array. Consider using fgets (along with any needed
processing based on new-line characters) instead of gets_s.

Returns
7 The gets_s function returns s if successful. If there was a runtime-constraint violation, or if end-of-

file is encountered and no characters have been read into the array, or if a read error occurs during
the operation, then a null pointer is returned.

438)The gets_s function, unlike the historical gets function, makes it a runtime-constraint violation for a line of input to
overflow the buffer to store it. Unlike the fgets function, gets_s maintains a one-to-one relationship between input lines
and successful calls to gets_s. Programs that use gets expect such a relationship.

534 Bounds-checking interfaces § K.3.5.4.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

K.3.6 General utilities <stdlib.h>
1 The header <stdlib.h> defines three types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t; and

constraint_handler_t

which has the following definition

typedef void (*constraint_handler_t)(
const char * restrict msg,
void * restrict ptr,
errno_t error);

K.3.6.1 Runtime-constraint handling
K.3.6.1.1 The set_constraint_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
constraint_handler_t set_constraint_handler_s(constraint_handler_t handler);

Description
2 The set_constraint_handler_s function sets the runtime-constraint handler to be handler. The

runtime-constraint handler is the function to be called when a library function detects a runtime-
constraint violation. Only the most recent handler registered with set_constraint_handler_s is
called when a runtime-constraint violation occurs.

3 When the handler is called, it is passed the following arguments in the following order:

1. A pointer to a character string describing the runtime-constraint violation.

2. A null pointer or a pointer to an implementation-defined object.

3. If the function calling the handler has a return type declared as errno_t, the return value of
the function is passed. Otherwise, a positive value of type errno_t is passed.

4 The implementation has a default constraint handler that is used if no calls to the
set_constraint_handler_s function have been made. The behavior of the default handler is
implementation-defined, and it may cause the program to exit or abort.

5 If the handler argument to set_constraint_handler_s is a null pointer, the implementation
default handler becomes the current constraint handler.

Returns

6 The set_constraint_handler_s function returns a pointer to the previously registered handler.439)

439)If the previous handler was registered by calling set_constraint_handler_s with a null pointer argument, a pointer to
the implementation default handler is returned (not NULL).

§ K.3.6.1.1 Bounds-checking interfaces 535

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

K.3.6.1.2 The abort_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
void abort_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);

Description
2 A pointer to the abort_handler_s function shall be a suitable argument to the

set_constraint_handler_s function.

3 The abort_handler_s function writes a message on the standard error stream in an implementation-
defined format. The message shall include the string pointed to by msg. The abort_handler_s
function then calls the abort function.440)

Returns
4 The abort_handler_s function does not return to its caller.

K.3.6.1.3 The ignore_handler_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
void ignore_handler_s(const char * restrict msg, void * restrict ptr,

errno_t error);

Description
2 A pointer to the ignore_handler_s function shall be a suitable argument to the

set_constraint_handler_s function.

3 The ignore_handler_s function simply returns to its caller.441)

Returns
4 The ignore_handler_s function returns no value.

K.3.6.2 Communication with the environment
K.3.6.2.1 The getenv_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t getenv_s(size_t * restrict len, char * restrict value, rsize_t maxsize,

const char * restrict name);

Runtime-constraints
2 name shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX. If maxsize is not

equal to zero, then value shall not be a null pointer.

440)Many implementations invoke a debugger when the abort function is called.
441)If the runtime-constraint handler is set to the ignore_handler_s function, any library function in which a runtime-

constraint violation occurs will return to its caller. The caller can determine whether a runtime-constraint violation occurred
based on the library function’s specification (usually, the library function returns a nonzero errno_t).

536 Bounds-checking interfaces § K.3.6.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3 If there is a runtime-constraint violation, the integer pointed to by len is set to 0 (if len is not null),
and the environment list is not searched.

Description
4 The getenv_s function searches an environment list, provided by the host environment, for a string

that matches the string pointed to by name.

5 If that name is found then getenv_s performs the following actions. If len is not a null pointer, the
length of the string associated with the matched list member is stored in the integer pointed to by
len. If the length of the associated string is less than maxsize, then the associated string is copied to
the array pointed to by value.

6 If that name is not found then getenv_s performs the following actions. If len is not a null pointer,
zero is stored in the integer pointed to by len. If maxsize is greater than zero, then value[0] is set
to the null character.

7 The set of environment names and the method for altering the environment list are implementation-
defined. The getenv_s function need not avoid data races with other threads of execution that
modify the environment list.442)

Returns
8 The getenv_s function returns zero if the specified name is found and the associated string was

successfully stored in value. Otherwise, a nonzero value is returned.

K.3.6.3 Searching and sorting utilities
1 These utilities make use of a comparison function to search or sort arrays of unspecified type. Where

an argument declared as size_t nmemb specifies the length of the array for a function, if nmemb has
the value zero on a call to that function, then the comparison function is not called, a search finds no
matching element, sorting performs no rearrangement, and the pointer to the array may be null.

2 The implementation shall ensure that the second argument of the comparison function (when called
from bsearch_s), or both arguments (when called from qsort_s), are pointers to elements of the
array.443) The first argument when called from bsearch_s shall equal key.

3 The comparison function shall not alter the contents of either the array or search key. The implemen-
tation may reorder elements of the array between calls to the comparison function, but shall not
otherwise alter the contents of any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions in the array)
are passed more than once to the comparison function, the results shall be consistent with one
another. That is, for qsort_s they shall define a total ordering on the array, and for bsearch_s the
same object shall always compare the same way with the key.

5 A sequence point occurs immediately before and immediately after each call to the comparison
function, and also between any call to the comparison function and any movement of the objects
passed as arguments to that call.

K.3.6.3.1 The bsearch_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
void *bsearch_s(const void *key, const void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *k, const void *y, void *context),
void *context);

442)Many implementations provide non-standard functions that modify the environment list.
443)That is, if the value passed is p, then the following expressions are always valid and nonzero:

((char *)p - (char *)base) % size == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

§ K.3.6.3.1 Bounds-checking interfaces 537

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Runtime-constraints
2 Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to zero, then none of

key, base, or compar shall be a null pointer.

3 If there is a runtime-constraint violation, the bsearch_s function does not search the array.

Description
4 The bsearch_s function searches an array of nmemb objects, the initial element of which is pointed

to by base, for an element that matches the object pointed to by key. The size of each element of the
array is specified by size.

5 The comparison function pointed to by compar is called with three arguments. The first two point
to the key object and to an array element, in that order. The function shall return an integer less
than, equal to, or greater than zero if the key object is considered, respectively, to be less than,
to match, or to be greater than the array element. The array shall consist of: all the elements
that compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.444) The third argument to the comparison function is the
context argument passed to bsearch_s. The sole use of context by bsearch_s is to pass it to the
comparison function.445)

Returns
6 The bsearch_s function returns a pointer to a matching element of the array, or a null pointer if no

match is found or there is a runtime-constraint violation. If two elements compare as equal, which
element is matched is unspecified.

K.3.6.3.2 The qsort_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t qsort_s(void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *x, const void *y, void *context),
void *context);

Runtime-constraints
2 Neither nmemb nor size shall be greater than RSIZE_MAX. If nmemb is not equal to zero, then neither

base nor compar shall be a null pointer.

3 If there is a runtime-constraint violation, the qsort_s function does not sort the array.

Description
4 The qsort_s function sorts an array of nmemb objects, the initial element of which is pointed to by

base. The size of each object is specified by size.

5 The contents of the array are sorted into ascending order according to a comparison function pointed
to by compar, which is called with three arguments. The first two point to the objects being compared.
The function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second. The third argument to
the comparison function is the context argument passed to qsort_s. The sole use of context by
qsort_s is to pass it to the comparison function.446)

6 If two elements compare as equal, their relative order in the resulting sorted array is unspecified.

444)In practice, this means that the entire array has been sorted according to the comparison function.
445)The context argument is for the use of the comparison function in performing its duties. For example, it might specify a

collating sequence used by the comparison function.
446)The context argument is for the use of the comparison function in performing its duties. For example, it might specify a

collating sequence used by the comparison function.

538 Bounds-checking interfaces § K.3.6.3.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
7 The qsort_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.6.4 Multibyte/wide character conversion functions
1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current

locale. For a state-dependent encoding, each function is placed into its initial conversion state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. A
call with s as a null pointer causes these functions to set the int pointed to by their status argument
to a nonzero value if encodings have state dependency, and zero otherwise. 447)

Changing the LC_CTYPE category causes the conversion state of these functions to be indeterminate.

K.3.6.4.1 The wctomb_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wctomb_s(int *restrict status, char *restrict s, rsize_t smax,

wchar_t wc);

Runtime-constraints
2 Let n denote the number of bytes needed to represent the multibyte character corresponding to the

wide character given by wc (including any shift sequences).

3 If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater than
RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

4 If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to by status,
and if s is not a null pointer, no more than smax elements in the array pointed to by s will be
accessed.

Description
5 The wctomb_s function determines n and stores the multibyte character representation of wc in the

array whose first element is pointed to by s (if s is not a null pointer). The number of characters
stored never exceeds MB_CUR_MAX or smax. If wc is a null wide character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state, and the function is left in the
initial conversion state.

6 The implementation shall behave as if no library function calls the wctomb_s function.

7 If s is a null pointer, the wctomb_s function stores into the int pointed to by status a nonzero or zero
value, if multibyte character encodings, respectively, do or do not have state-dependent encodings.

8 If s is not a null pointer, the wctomb_s function stores into the int pointed to by status either n or
-1 if wc, respectively, does or does not correspond to a valid multibyte character.

9 In no case will the int pointed to by status be set to a value greater than the MB_CUR_MAX macro.

Returns
10 The wctomb_s function returns zero if successful, and a nonzero value if there was a runtime-

constraint violation or wc did not correspond to a valid multibyte character.

K.3.6.5 Multibyte/wide string conversion functions
1 The behavior of the multibyte string functions is affected by the LC_CTYPE category of the current

locale.

K.3.6.5.1 The mbstowcs_s function
447)If the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but

are grouped with an adjacent multibyte character.

§ K.3.6.5.1 Bounds-checking interfaces 539

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #include <stdlib.h>
errno_t mbstowcs_s(size_t *restrict retval, wchar_t *restrict dst,

rsize_t dstmax, const char * restrict src, rsize_t len);

Runtime-constraints
2 Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor

dstmax shall be greater than RSIZE_MAX/sizeof(wchar_t). If dst is a null pointer, then dstmax
shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null
pointer and len is not less than dstmax, then a null character shall occur within the first dstmax
multibyte characters of the array pointed to by src.

3 If there is a runtime-constraint violation, then mbstowcs_s does the following. If retval is not
a null pointer, then mbstowcs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX/sizeof(wchar_t), then mbstowcs_s
sets dst[0] to the null wide character.

Description
4 The mbstowcs_s function converts a sequence of multibyte characters that begins in the initial shift

state from the array pointed to by src into a sequence of corresponding wide characters. If dst is
not a null pointer, the converted characters are stored into the array pointed to by dst. Conversion
continues up to and including a terminating null character, which is also stored. Conversion stops
earlier in two cases: when a sequence of bytes is encountered that does not form a valid multibyte
character, or (if dst is not a null pointer) when len wide characters have been stored into the array
pointed to by dst.448) If dst is not a null pointer and no null wide character was stored into the
array pointed to by dst, then dst[len] is set to the null wide character. Each conversion takes place
as if by a call to the mbrtowc function.

5 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence of
bytes that do not form a valid multibyte character, an encoding error occurs: the mbstowcs_s func-
tion stores the value (size_t)(-1) into*retval . Otherwise, the mbstowcs_s function stores into
*retval the number of multibyte characters successfully converted, not including the terminating
null character (if any).

6 All elements following the terminating null wide character (if any) written by mbstowcs_s in the
array of dstmax wide characters pointed to by dst take unspecified values when mbstowcs_s
returns.449)

7 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
8 The mbstowcs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.6.5.2 The wcstombs_s function
Synopsis

1 #include <stdlib.h>
errno_t wcstombs_s(size_t * restrict retval, char * restrict dst, rsize_t dstmax,

const wchar_t * restrict src, rsize_t len);

Runtime-constraints
2 Neither retval nor src shall be a null pointer. If dst is not a null pointer, then len shall not

be greater than RSIZE_MAX/sizeof(wchar_t) and dstmax shall be nonzero and not greater than
RSIZE_MAX. If dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer and

448)Thus, the value of len is ignored if dst is a null pointer.
449)This allows an implementation to attempt converting the multibyte string before discovering a terminating null character

did not occur where required.

540 Bounds-checking interfaces § K.3.6.5.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

len is not less than dstmax, then the conversion shall have been stopped (see below) because a
terminating null wide character was reached or because an encoding error occurred.

3 If there is a runtime-constraint violation, then wcstombs_s does the following. If retval is not
a null pointer, then wcstombs_s sets *retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX, then wcstombs_s sets dst[0] to the
null character.

Description
4 The wcstombs_s function converts a sequence of wide characters from the array pointed to by

src into a sequence of corresponding multibyte characters that begins in the initial shift state. If
dst is not a null pointer, the converted characters are then stored into the array pointed to by dst.
Conversion continues up to and including a terminating null wide character, which is also stored.
Conversion stops earlier in two cases:

— when a wide character is reached that does not correspond to a valid multibyte character;

— (if dst is not a null pointer) when the next multibyte character would exceed the limit of n
total bytes to be stored into the array pointed to by dst. If the wide character being converted
is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of
len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then
a null character is stored into the array pointed to by dst immediately following any multibyte
characters already stored. Each conversion takes place as if by a call to the wcrtomb function.450)

5 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide
character that does not correspond to a valid multibyte character, an encoding error occurs: the
wcstombs_s function stores the value (size_t)(-1) into *retval . Otherwise, the wcstombs_s
function stores into*retval the number of bytes in the resulting multibyte character sequence, not
including the terminating null character (if any).

6 All elements following the terminating null character (if any) written by wcstombs_s in the array of
dstmax elements pointed to by dst take unspecified values when wcstombs_s returns.451)

7 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
8 The wcstombs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.7 String handling <string.h>
1 The header <string.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

K.3.7.1 Copying functions
K.3.7.1.1 The memcpy_s function
450)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary

to reach the initial shift state immediately before the null byte. However, if the conversion stops before a terminating null
wide character has been reached, the result will be null terminated, but might not end in the initial shift state.

451)When len is not less than dstmax, the implementation might fill the array before discovering a runtime-constraint
violation.

§ K.3.7.1.1 Bounds-checking interfaces 541

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memcpy_s(void * restrict s1, rsize_t s1max, const void * restrict s2,

rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX. n

shall not be greater than s1max. Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, the memcpy_s function stores zeros in the first s1max
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX.

Description
4 The memcpy_s function copies n characters from the object pointed to by s2 into the object pointed

to by s1.

Returns
5 The memcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.1.2 The memmove_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memmove_s(void *s1, rsize_t s1max, const void *s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX. n

shall not be greater than s1max.

3 If there is a runtime-constraint violation, the memmove_s function stores zeros in the first s1max
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX.

Description
4 The memmove_s function copies n characters from the object pointed to by s2 into the object pointed

to by s1. This copying takes place as if the n characters from the object pointed to by s2 are first
copied into a temporary array of n characters that does not overlap the objects pointed to by s1 or
s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
5 The memmove_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

542 Bounds-checking interfaces § K.3.7.1.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

K.3.7.1.3 The strcpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strcpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX. s1max shall

not equal zero. s1max shall be greater than strnlen_s(s2, s1max). Copying shall not take place
between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strcpy_s sets s1[0] to the null character.

Description
4 The strcpy_s function copies the string pointed to by s2 (including the terminating null character)

into the array pointed to by s1.

5 All elements following the terminating null character (if any) written by strcpy_s in the array of
s1max characters pointed to by s1 take unspecified values when strcpy_s returns.452)

Returns
6 The strcpy_s function returns zero453) if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.1.4 The strncpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strncpy_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX.

s1max shall not equal zero. If n is not less than s1max, then s1max shall be greater than
strnlen_s(s2, s1max). Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strncpy_s sets s1[0] to the null character.

Description
4 The strncpy_s function copies not more than n successive characters (characters that follow a null

character are not copied) from the array pointed to by s2 to the array pointed to by s1. If no null
character was copied from s2, then s1[n] is set to a null character.

5 All elements following the terminating null character (if any) written by strncpy_s in the array
of s1max characters pointed to by s1 take unspecified values when strncpy_s returns a nonzero
value.454)

452)This allows an implementation to copy characters from s2 to s1 while simultaneously checking if any of those characters
are null. Such an approach might write a character to every element of s1 before discovering that the first element was set to
the null character.
453)A zero return value implies that all of the requested characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.
454)This allows an implementation to copy characters from s2 to s1 while simultaneously checking if any of those characters

are null. Such an approach might write a character to every element of s1 before discovering that the first element was set to
the null character.

§ K.3.7.1.4 Bounds-checking interfaces 543

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns

6 The strncpy_s function returns zero455) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

7 EXAMPLE 1 The strncpy_s function can be used to copy a string without the danger that the result will not be null
terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
/* ... */
char src1[100] = "hello";
char src2[7] = {’g’, ’o’, ’o’, ’d’, ’b’, ’y’, ’e’};
char dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = strncpy_s(dst1, 6, src1, 100);
r2 = strncpy_s(dst2, 5, src2, 7);
r3 = strncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence hello\0.

The second call will assign to r2 a nonzero value and to dst2 the sequence \0.

The third call will assign to r3 the value zero and to dst3 the sequence good\0.

K.3.7.2 Concatenation functions
K.3.7.2.1 The strcat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strcat_s(char * restrict s1, rsize_t s1max, const char * restrict s2);

Runtime-constraints
2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to strcat_s.

3 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than RSIZE_MAX. s1max shall
not equal zero. m shall not equal zero.456) m shall be greater than strnlen_s(s2,m). Copying shall
not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strcat_s sets s1[0] to the null character.

Description
5 The strcat_s function appends a copy of the string pointed to by s2 (including the terminating

null character) to the end of the string pointed to by s1. The initial character from s2 overwrites the
null character at the end of s1.

6 All elements following the terminating null character (if any) written by strcat_s in the array of
s1max characters pointed to by s1 take unspecified values when strcat_s returns.457)

Returns

7 The strcat_s function returns zero458) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.7.2.2 The strncat_s function
455)A zero return value implies that all of the requested characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.
456)Zero means that s1 was not null terminated upon entry to strcat_s.
457)This allows an implementation to append characters from s2 to s1 while simultaneously checking if any of those

characters are null. Such an approach might write a character to every element of s1 before discovering that the first element
was set to the null character.

458)A zero return value implies that all of the requested characters from the string pointed to by s2 were appended to the
string pointed to by s1 and that the result in s1 is null terminated.

544 Bounds-checking interfaces § K.3.7.2.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strncat_s(char * restrict s1, rsize_t s1max, const char * restrict s2,

rsize_t n);

Runtime-constraints
2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to strncat_s.

3 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than RSIZE_MAX.
s1max shall not equal zero. m shall not equal zero.459) If n is not less than m, then m shall be greater
than strnlen_s(s2,m). Copying shall not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX, then strncat_s sets s1[0] to the null character.

Description
5 The strncat_s function appends not more than n successive characters (characters that follow a

null character are not copied) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character from s2 overwrites the null character at the end of s1. If no null character
was copied from s2, then s1[s1max-m+n] is set to a null character.

6 All elements following the terminating null character (if any) written by strncat_s in the array of
s1max characters pointed to by s1 take unspecified values when strncat_s returns.460)

Returns

7 The strncat_s function returns zero461) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

8 EXAMPLE 1 The strncat_s function can be used to copy a string without the danger that the result will not be null
terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
/* ... */
char s1[100] = "good";
char s2[6] = "hello";
char s3[6] = "hello";
char s4[7] = "abc";
char s5[1000] = "bye";
int r1, r2, r3, r4;
r1 = strncat_s(s1, 100, s5, 1000);
r2 = strncat_s(s2, 6, "", 1);
r3 = strncat_s(s3, 6, "X", 2);
r4 = strncat_s(s4, 7, "defghijklmn", 3);

After the first call r1 will have the value zero and s1 will contain the sequence goodbye\0.

After the second call r2 will have the value zero and s2 will contain the sequence hello\0.

After the third call r3 will have a nonzero value and s3 will contain the sequence \0.

After the fourth call r4 will have the value zero and s4 will contain the sequence abcdef\0.

K.3.7.3 Search functions
K.3.7.3.1 The strtok_s function

459)Zero means that s1 was not null terminated upon entry to strncat_s.
460)This allows an implementation to append characters from s2 to s1 while simultaneously checking if any of those

characters are null. Such an approach might write a character to every element of s1 before discovering that the first element
was set to the null character.

461)A zero return value implies that all of the requested characters from the string pointed to by s2 were appended to the
string pointed to by s1 and that the result in s1 is null terminated.

§ K.3.7.3.1 Bounds-checking interfaces 545

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
char *strtok_s(char * restrict s1, rsize_t * restrict s1max,

const char * restrict s2, char ** restrict ptr);

Runtime-constraints
2 None of s1max, s2, or ptr shall be a null pointer. If s1 is a null pointer, then *ptr shall not be a

null pointer. The value of*s1max shall not be greater than RSIZE_MAX. The end of the token found
shall occur within the first*s1max characters of s1 for the first call, and shall occur within the first
*s1max characters of where searching resumes on subsequent calls.

3 If there is a runtime-constraint violation, the strtok_s function does not indirect through the s1 or
s2 pointers, and does not store a value in the object pointed to by ptr.

Description
4 A sequence of calls to the strtok_s function breaks the string pointed to by s1 into a sequence of

tokens, each of which is delimited by a character from the string pointed to by s2. The fourth argu-
ment points to a caller-provided char pointer into which the strtok_s function stores information
necessary for it to continue scanning the same string.

5 The first call in a sequence has a non-null first argument and s1max points to an object whose value
is the number of elements in the character array pointed to by the first argument. The first call stores
an initial value in the object pointed to by ptr and updates the value pointed to by s1max to reflect
the number of elements that remain in relation to ptr. Subsequent calls in the sequence have a null
first argument and the objects pointed to by s1max and ptr are required to have the values stored
by the previous call in the sequence, which are then updated. The separator string pointed to by s2
may be different from call to call.

6 The first call in the sequence searches the string pointed to by s1 for the first character that is not
contained in the current separator string pointed to by s2. If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok_s function returns a null pointer. If such
a character is found, it is the start of the first token.

7 The strtok_s function then searches from there for the first character in s1 that is contained in the
current separator string. If no such character is found, the current token extends to the end of the
string pointed to by s1, and subsequent searches in the same string for a token return a null pointer.
If such a character is found, it is overwritten by a null character, which terminates the current token.

8 In all cases, the strtok_s function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start
searching just past the element overwritten by a null character (if any).

Returns
9 The strtok_s function returns a pointer to the first character of a token, or a null pointer if there is

no token or there is a runtime-constraint violation.
10 EXAMPLE

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
static char str1[] = "?a???b,,,#c";
static char str2[] = "\t \t";
char *t, *ptr1, *ptr2;
rsize_t max1 = sizeof (str1);
rsize_t max2 = sizeof (str2);

t = strtok_s(str1, &max1, "?", &ptr1); // t points to the token "a"
t = strtok_s(NULL, &max1, ",", &ptr1); // t points to the token "??b"
t = strtok_s(str2, &max2, " \t", &ptr2); // t is a null pointer
t = strtok_s(NULL, &max1, "#,", &ptr1); // t points to the token "c"

546 Bounds-checking interfaces § K.3.7.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

t = strtok_s(NULL, &max1, "?", &ptr1); // t is a null pointer

K.3.7.4 Miscellaneous functions
K.3.7.4.1 The memset_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)

Runtime-constraints
2 s shall not be a null pointer. Neither smax nor n shall be greater than RSIZE_MAX. n shall not be

greater than smax.

3 If there is a runtime-constraint violation, then if s is not a null pointer and smax is not greater than
RSIZE_MAX, the memset_s function stores the value of c (converted to an unsigned char) into each
of the first smax characters of the object pointed to by s.

Description
4 The memset_s function copies the value of c (converted to an unsigned char) into each of the first

n characters of the object pointed to by s. Unlike memset, any call to the memset_s function shall be
evaluated strictly according to the rules of the abstract machine as described in (5.1.2.3). That is, any
call to the memset_s function shall assume that the memory indicated by s and n may be accessible
in the future and thus contains the values indicated by c.

Returns
5 The memset_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.7.4.2 The strerror_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
errno_t strerror_s(char *s, rsize_t maxsize, errno_t errnum);

Runtime-constraints
2 s shall not be a null pointer. maxsize shall not be greater than RSIZE_MAX. maxsize shall not equal

zero.

3 If there is a runtime-constraint violation, then the array (if any) pointed to by s is not modified.

Description
4 The strerror_s function maps the number in errnum to a locale-specific message string. Typically,

the values for errnum come from errno, but strerror_s shall map any value of type int to a
message.

5 If the length of the desired string is less than maxsize, then the string is copied to the array pointed
to by s.

6 Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied from the string
to the array pointed to by s and then s[maxsize-1] is set to the null character. Then, if maxsize
is greater than 3, then s[maxsize-2], s[maxsize-3], and s[maxsize-4] are set to the character
period (.).

Returns
7 The strerror_s function returns zero if the length of the desired string was less than maxsize and

there was no runtime-constraint violation. Otherwise, the strerror_s function returns a nonzero
value.

§ K.3.7.4.2 Bounds-checking interfaces 547

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

K.3.7.4.3 The strerrorlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
size_t strerrorlen_s(errno_t errnum);

Description
2 The strerrorlen_s function calculates the length of the (untruncated) locale-specific message

string that the strerror_s function maps to errnum.

Returns
3 The strerrorlen_s function returns the number of characters (not including the null character) in

the full message string.

K.3.7.4.4 The strnlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
size_t strnlen_s(const char *s, size_t maxsize);

Description
2 The strnlen_s function computes the length of the string pointed to by s.

Returns

3 If s is a null pointer,462) then the strnlen_s function returns zero.

4 Otherwise, the strnlen_s function returns the number of characters that precede the terminating
null character. If there is no null character in the first maxsize characters of s then strnlen_s
returns maxsize. At most the first maxsize characters of s shall be accessed by strnlen_s.

K.3.8 Date and time <time.h>
1 The header <time.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

K.3.8.1 Components of time
1 A broken-down time is normalized if the values of the members of the tm structure are in their normal

rages.463)

K.3.8.2 Time conversion functions
1 Like the strftime function, the asctime_s and ctime_s functions do not return a pointer to a static

object, and other library functions are permitted to call them.

K.3.8.2.1 The asctime_s function

462)Note that the strnlen_s function has no runtime-constraints. This lack of runtime-constraints along with the values
returned for a null pointer or an unterminated string argument make strnlen_s useful in algorithms that gracefully handle
such exceptional data.
463)The normal ranges are defined in 7.27.1.

548 Bounds-checking interfaces § K.3.8.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t asctime_s(char *s, rsize_t maxsize, const struct tm *timeptr);

Runtime-constraints
2 Neither s nor timeptr shall be a null pointer. maxsize shall not be less than 26 and shall not be

greater than RSIZE_MAX. The broken-down time pointed to by timeptr shall be normalized. The
calendar year represented by the broken-down time pointed to by timeptr shall not be less than
calendar year 0 and shall not be greater than calendar year 9999.

3 If there is a runtime-constraint violation, there is no attempt to convert the time, and s[0] is set to a
null character if s is not a null pointer and maxsize is not zero and is not greater than RSIZE_MAX.

Description
4 The asctime_s function converts the normalized broken-down time in the structure pointed to by

timeptr into a 26 character (including the null character) string in the form

Sun Sep 16 01:03:52 1973\n\0

The fields making up this string are (in order):

1. The name of the day of the week represented by timeptr->tm_wday using the following three
character weekday names: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

2. The character space.

3. The name of the month represented by timeptr->tm_mon using the following three character
month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec.

4. The character space.

5. The value of timeptr->tm_mday as if printed using the fprintf format "%2d".

6. The character space.

7. The value of timeptr->tm_hour as if printed using the fprintf format "%.2d".

8. The character colon.

9. The value of timeptr->tm_min as if printed using the fprintf format "%.2d".

10. The character colon.

11. The value of timeptr->tm_sec as if printed using the fprintf format "%.2d".

12. The character space.

13. The value of timeptr->tm_year + 1900 as if printed using the fprintf format "%4d".

14. The character new line.

15. The null character.

Recommended practice
The strftime function allows more flexible formatting and supports locale-specific behavior. If you
do not require the exact form of the result string produced by the asctime_s function, consider
using the strftime function instead.

Returns
5 The asctime_s function returns zero if the time was successfully converted and stored into the

array pointed to by s. Otherwise, it returns a nonzero value.

§ K.3.8.2.1 Bounds-checking interfaces 549

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

K.3.8.2.2 The ctime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
errno_t ctime_s(char *s, rsize_t maxsize, const time_t *timer);

Runtime-constraints
2 Neither s nor timer shall be a null pointer. maxsize shall not be less than 26 and shall not be greater

than RSIZE_MAX.

3 If there is a runtime-constraint violation, s[0] is set to a null character if s is not a null pointer and
maxsize is not equal zero and is not greater than RSIZE_MAX.

Description
4 The ctime_s function converts the calendar time pointed to by timer to local time in the form of a

string. It is equivalent to

asctime_s(s, maxsize, localtime_s(timer, &(struct tm){ 0 }))

Recommended practice
The strftime function allows more flexible formatting and supports locale-specific behavior. If you
do not require the exact form of the result string produced by the ctime_s function, consider using
the strftime function instead.

Returns
5 The ctime_s function returns zero if the time was successfully converted and stored into the array

pointed to by s. Otherwise, it returns a nonzero value.

K.3.8.2.3 The gmtime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
struct tm *gmtime_s(const time_t * restrict timer, struct tm * restrict result);

Runtime-constraints
2 Neither timer nor result shall be a null pointer.

3 If there is a runtime-constraint violation, there is no attempt to convert the time.

Description
4 The gmtime_s function converts the calendar time pointed to by timer into a broken-down time,

expressed as UTC. The broken-down time is stored in the structure pointed to by result.

Returns
5 The gmtime_s function returns result, or a null pointer if the specified time cannot be converted to

UTC or there is a runtime-constraint violation.

K.3.8.2.4 The localtime_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
struct tm *localtime_s(const time_t *restrict timer, struct tm *restrict result);

Runtime-constraints
2 Neither timer nor result shall be a null pointer.

550 Bounds-checking interfaces § K.3.8.2.4

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

3 If there is a runtime-constraint violation, there is no attempt to convert the time.

Description
4 The localtime_s function converts the calendar time pointed to by timer into a broken-down time,

expressed as local time. The broken-down time is stored in the structure pointed to by result.

Returns
5 The localtime_s function returns result, or a null pointer if the specified time cannot be converted

to local time or there is a runtime-constraint violation.

K.3.9 Extended multibyte and wide character utilities <wchar.h>
1 The header <wchar.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

3 Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the objects take on unspecified values.

K.3.9.1 Formatted wide character input/output functions
K.3.9.1.1 The fwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int fwprintf_s(FILE * restrict stream, const wchar_t * restrict format, ...);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier464) (modified or not by flags,
field width, or precision) shall not appear in the wide string pointed to by format. Any argument to
fwprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the fwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent fwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The fwprintf_s function is equivalent to the fwprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The fwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.2 The fwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

464)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.1.2 Bounds-checking interfaces 551

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#include <wchar.h>
int fwscanf_s(FILE * restrict stream, const wchar_t * restrict format, ...);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the fwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent fwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The fwscanf_s function is equivalent to fwscanf except that the c, s, and [conversion specifiers

apply to a pair of arguments (unless assignment suppression is indicated by a *). The first of these
arguments is the same as for fwscanf. That argument is immediately followed in the argument
list by the second argument, which has type size_t and gives the number of elements in the array
pointed to by the first argument of the pair. If the first argument points to a scalar object, it is
considered to be an array of one element.465)

5 A matching failure occurs if the number of elements in a receiving object is insufficient to hold the
converted input (including any trailing null character).

Returns
6 The fwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the fwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.3 The snwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int snwprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than

RSIZE_MAX/sizeof(wchar_t). The %n specifier466) (modified or not by flags, field width, or pre-
cision) shall not appear in the wide string pointed to by format. Any argument to snwprintf_s
corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero
and not greater than RSIZE_MAX/sizeof(wchar_t), then the snwprintf_s function sets s[0] to
the null wide character.

Description
4 The snwprintf_s function is equivalent to the swprintf function except for the explicit runtime-

constraints listed above.
465)If the format is known at translation time, an implementation can issue a diagnostic for any argument used to store

the result from a c, s, or [conversion specifier if that argument is not followed by an argument of a type compatible with
rsize_t. A limited amount of checking can be done if even if the format is not known at translation time. For example, an
implementation could issue a diagnostic for each argument after format that has of type pointer to one of char, signed char,
unsigned char, or void that is not followed by an argument of a type compatible with rsize_t. The diagnostic could warn
that unless the pointer is being used with a conversion specifier using the hh length modifier, a length argument is expected
to follow the pointer argument. Another useful diagnostic could flag any non-pointer argument following format that did
not have a type compatible with rsize_t.
466)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

552 Bounds-checking interfaces § K.3.9.1.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

5 The snwprintf_s function, unlike swprintf_s, will truncate the result to fit within the array pointed
to by s.

Returns
6 The snwprintf_s function returns the number of wide characters that would have been written

had n been sufficiently large, not counting the terminating wide null character, or a negative value
if a runtime-constraint violation occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is both nonnegative and less than n.

K.3.9.1.4 The swprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int swprintf_s(wchar_t * restrict s, rsize_t n, const wchar_t * restrict format,

...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than

RSIZE_MAX/sizeof(wchar_t). The number of wide characters (including the trailing null) required
for the result to be written to the array pointed to by s shall not be greater than n. The %n specifier467)

(modified or not by flags, field width, or precision) shall not appear in the wide string pointed to by
format. Any argument to swprintf_s corresponding to a %s specifier shall not be a null pointer.
No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX/sizeof(wchar_t), then the swprintf_s function sets s[0] to the null
wide character.

Description
4 The swprintf_s function is equivalent to the swprintf function except for the explicit runtime-

constraints listed above.

5 The swprintf_s function, unlike snwprintf_s, treats a result too big for the array pointed to by s
as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the swprintf_s function returns the number of wide

characters written in the array, not counting the terminating null wide character. If an encoding
error occurred or if n or more wide characters are requested to be written, swprintf_s returns a
negative value. If any other runtime-constraint violation occurred, swprintf_s returns zero.

K.3.9.1.5 The swscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int swscanf_s(const wchar_t * restrict s, const wchar_t * restrict format, ...);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the swscanf_s function does not attempt to perform
further input, and it is unspecified to what extent swscanf_s performed input before discovering
the runtime-constraint violation.
467)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.1.5 Bounds-checking interfaces 553

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
4 The swscanf_s function is equivalent to fwscanf_s, except that the argument s specifies a wide

string from which the input is to be obtained, rather than from a stream. Reaching the end of the
wide string is equivalent to encountering end-of-file for the fwscanf_s function.

Returns
5 The swscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the swscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.6 The vfwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Runtime-constraints

2 Neither stream nor format shall be a null pointer. The %n specifier468) (modified or not by flags,
field width, or precision) shall not appear in the wide string pointed to by format. Any argument to
vfwprintf_s corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vfwprintf_s function is equivalent to the vfwprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vfwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.7 The vfwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream, const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfwscanf_s performed input before discovering
the runtime-constraint violation.

468)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

554 Bounds-checking interfaces § K.3.9.1.7

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Description
4 The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vfwscanf_s function does not invoke the va_end macro.469)

Returns
5 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.8 The vsnwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vsnwprintf_s(wchar_t *restrict s, rsize_t n, const wchar_t *restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than

RSIZE_MAX/sizeof(wchar_t). The %n specifier470) (modified or not by flags, field width, or preci-
sion) shall not appear in the wide string pointed to by format. Any argument to vsnwprintf_s
corresponding to a %s specifier shall not be a null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX/sizeof(wchar_t), then the vsnwprintf_s function sets s[0] to the
null wide character.

Description
4 The vsnwprintf_s function is equivalent to the vswprintf function except for the explicit runtime-

constraints listed above.

5 The vsnwprintf_s function, unlike vswprintf_s, will truncate the result to fit within the array
pointed to by s.

Returns
6 The vsnwprintf_s function returns the number of wide characters that would have been written

had n been sufficiently large, not counting the terminating null character, or a negative value if
a runtime-constraint violation occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is both nonnegative and less than n.

K.3.9.1.9 The vswprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vswprintf_s(wchar_t *restrict s, rsize_t n, const wchar_t *restrict format,

va_list arg);

469)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value of arg after the return is
indeterminate.
470)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

§ K.3.9.1.9 Bounds-checking interfaces 555

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than

RSIZE_MAX/sizeof(wchar_t). The number of wide characters (including the trailing null) required
for the result to be written to the array pointed to by s shall not be greater than n. The %n specifier471)

(modified or not by flags, field width, or precision) shall not appear in the wide string pointed to by
format. Any argument to vswprintf_s corresponding to a %s specifier shall not be a null pointer.
No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero
and not greater than RSIZE_MAX/sizeof(wchar_t), then the vswprintf_s function sets s[0] to
the null wide character.

Description
4 The vswprintf_s function is equivalent to the vswprintf function except for the explicit runtime-

constraints listed above.

5 The vswprintf_s function, unlike vsnwprintf_s, treats a result too big for the array pointed to by
s as a runtime-constraint violation.

Returns
6 If no runtime-constraint violation occurred, the vswprintf_s function returns the number of wide

characters written in the array, not counting the terminating null wide character. If an encoding
error occurred or if n or more wide characters are requested to be written, vswprintf_s returns a
negative value. If any other runtime-constraint violation occurred, vswprintf_s returns zero.

K.3.9.1.10 The vswscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s, const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vswscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vswscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vswscanf_s function is equivalent to swscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vswscanf_s function does not invoke the va_end macro.472)

Returns
5 The vswscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vswscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.11 The vwprintf_s function

471)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".
472)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value of arg after the return is

indeterminate.

556 Bounds-checking interfaces § K.3.9.1.11

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vwprintf_s(const wchar_t * restrict format, va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier473) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to vwprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vwprintf_s function is equivalent to the vwprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.12 The vwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s(const wchar_t * restrict format, va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwscanf_s function does not invoke the va_end macro.474)

Returns
5 The vwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.13 The wprintf_s function
Synopsis

1
473)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".
474)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value of arg after the return is

indeterminate.

§ K.3.9.1.13 Bounds-checking interfaces 557

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int wprintf_s(const wchar_t * restrict format, ...);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier475) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to wprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the wprintf_s function does not attempt to produce
further output, and it is unspecified to what extent wprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The wprintf_s function is equivalent to the wprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The wprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.14 The wscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int wscanf_s(const wchar_t * restrict format, ...);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the wscanf_s function does not attempt to perform further
input, and it is unspecified to what extent wscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The wscanf_s function is equivalent to fwscanf_s with the argument stdin interposed before the

arguments to wscanf_s.

Returns
5 The wscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the wscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.2 General wide string utilities
K.3.9.2.1 Wide string copying functions
K.3.9.2.1.1 The wcscpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcscpy_s(wchar_t *restrict s1, rsize_t s1max,

const wchar_t *restrict s2);

475)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

558 Bounds-checking interfaces § K.3.9.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than

RSIZE_MAX/sizeof(wchar_t). s1max shall not equal zero. s1max shall be greater than
wcsnlen_s(s2, s1max). Copying shall not take place between objects that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcscpy_s sets s1[0] to the null wide
character.

Description
4 The wcscpy_s function copies the wide string pointed to by s2 (including the terminating null wide

character) into the array pointed to by s1.

5 All elements following the terminating null wide character (if any) written by wcscpy_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcscpy_s returns.476)

Returns

6 The wcscpy_s function returns zero477) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.9.2.1.2 The wcsncpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcsncpy_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than

RSIZE_MAX/sizeof(wchar_t). s1max shall not equal zero. If n is not less than s1max, then
s1max shall be greater than wcsnlen_s(s2, s1max). Copying shall not take place between objects
that overlap.

3 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcsncpy_s sets s1[0] to the null
wide character.

Description
4 The wcsncpy_s function copies not more than n successive wide characters (wide characters that

follow a null wide character are not copied) from the array pointed to by s2 to the array pointed to
by s1. If no null wide character was copied from s2, then s1[n] is set to a null wide character.

5 All elements following the terminating null wide character (if any) written by wcsncpy_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcsncpy_s returns.478)

Returns

6 The wcsncpy_s function returns zero479) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

7 EXAMPLE 1 The wcsncpy_s function can be used to copy a wide string without the danger that the result will not be null
terminated or that wide characters will be written past the end of the destination array.

476)This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking if any of those wide
characters are null. Such an approach might write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
477)A zero return value implies that all of the requested wide characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.
478)This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking if any of those wide

characters are null. Such an approach might write a wide character to every element of s1 before discovering that the first
element was set to the null wide character.
479)A zero return value implies that all of the requested wide characters from the string pointed to by s2 fit within the array

pointed to by s1 and that the result in s1 is null terminated.

§ K.3.9.2.1 Bounds-checking interfaces 559

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
/* ... */
wchar_t src1[100] = L"hello";
wchar_t src2[7] = {L’g’, L’o’, L’o’, L’d’, L’b’, L’y’, L’e’};
wchar_t dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = wcsncpy_s(dst1, 6, src1, 100);
r2 = wcsncpy_s(dst2, 5, src2, 7);
r3 = wcsncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence of wide characters hello\0.

The second call will assign to r2 a nonzero value and to dst2 the sequence of wide characters \0.

The third call will assign to r3 the value zero and to dst3 the sequence of wide characters good\0.

K.3.9.2.1.3 The wmemcpy_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wmemcpy_s(wchar_t *restrict s1, rsize_t s1max,

const wchar_t *restrict s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than

RSIZE_MAX/sizeof(wchar_t). n shall not be greater than s1max. Copying shall not take
place between objects that overlap.

3 If there is a runtime-constraint violation, the wmemcpy_s function stores zeros in the first s1max wide
characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX/sizeof(wchar_t).

Description
4 The wmemcpy_s function copies n successive wide characters from the object pointed to by s2 into

the object pointed to by s1.

Returns
5 The wmemcpy_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.9.2.1.4 The wmemmove_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wmemmove_s(wchar_t *s1, rsize_t s1max, const wchar_t *s2, rsize_t n);

Runtime-constraints
2 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than

RSIZE_MAX/sizeof(wchar_t). n shall not be greater than s1max.

3 If there is a runtime-constraint violation, the wmemmove_s function stores zeros in the first s1max
wide characters of the object pointed to by s1 if s1 is not a null pointer and s1max is not greater than
RSIZE_MAX/sizeof(wchar_t).

Description
4 The wmemmove_s function copies n successive wide characters from the object pointed to by s2 into

the object pointed to by s1. This copying takes place as if the n wide characters from the object

560 Bounds-checking interfaces § K.3.9.2.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap
the objects pointed to by s1 or s2, and then the n wide characters from the temporary array are
copied into the object pointed to by s1.

Returns
5 The wmemmove_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.9.2.2 Wide string concatenation functions
K.3.9.2.2.1 The wcscat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcscat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2);

Runtime-constraints
2 Let m denote the value s1max - wcsnlen_s(s1, s1max) upon entry to wcscat_s.

3 Neither s1 nor s2 shall be a null pointer. s1max shall not be greater than
RSIZE_MAX/sizeof(wchar_t). s1max shall not equal zero. m shall not equal zero.480) m
shall be greater than wcsnlen_s(s2,m). Copying shall not take place between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcscat_s sets s1[0] to the null wide
character.

Description
5 The wcscat_s function appends a copy of the wide string pointed to by s2 (including the terminating

null wide character) to the end of the wide string pointed to by s1. The initial wide character from
s2 overwrites the null wide character at the end of s1.

6 All elements following the terminating null wide character (if any) written by wcscat_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcscat_s returns.481)

Returns

7 The wcscat_s function returns zero482) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.9.2.2.2 The wcsncat_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
errno_t wcsncat_s(wchar_t * restrict s1, rsize_t s1max,

const wchar_t * restrict s2, rsize_t n);

Runtime-constraints
2 Let m denote the value s1max - wcsnlen_s(s1, s1max) upon entry to wcsncat_s.

3 Neither s1 nor s2 shall be a null pointer. Neither s1max nor n shall be greater than
RSIZE_MAX/sizeof(wchar_t). s1max shall not equal zero. m shall not equal zero.483) If n

480)Zero means that s1 was not null terminated upon entry to wcscat_s.
481)This allows an implementation to append wide characters from s2 to s1 while simultaneously checking if any of those

wide characters are null. Such an approach might write a wide character to every element of s1 before discovering that the
first element was set to the null wide character.
482)A zero return value implies that all of the requested wide characters from the wide string pointed to by s2 were appended

to the wide string pointed to by s1 and that the result in s1 is null terminated.
483)Zero means that s1 was not null terminated upon entry to wcsncat_s.

§ K.3.9.2.2 Bounds-checking interfaces 561

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

is not less than m, then m shall be greater than wcsnlen_s(s2,m). Copying shall not take place
between objects that overlap.

4 If there is a runtime-constraint violation, then if s1 is not a null pointer and s1max is greater than
zero and not greater than RSIZE_MAX/sizeof(wchar_t), then wcsncat_s sets s1[0] to the null
wide character.

Description
5 The wcsncat_s function appends not more than n successive wide characters (wide characters that

follow a null wide character are not copied) from the array pointed to by s2 to the end of the wide
string pointed to by s1. The initial wide character from s2 overwrites the null wide character at the
end of s1. If no null wide character was copied from s2, then s1[s1max-m+n] is set to a null wide
character.

6 All elements following the terminating null wide character (if any) written by wcsncat_s in the array
of s1max wide characters pointed to by s1 take unspecified values when wcsncat_s returns.484)

Returns

7 The wcsncat_s function returns zero485) if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

8 EXAMPLE 1 The wcsncat_s function can be used to copy a wide string without the danger that the result will not be null
terminated or that wide characters will be written past the end of the destination array.

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
/* ... */
wchar_t s1[100] = L"good";
wchar_t s2[6] = L"hello";
wchar_t s3[6] = L"hello";
wchar_t s4[7] = L"abc";
wchar_t s5[1000] = L"bye";
int r1, r2, r3, r4;
r1 = wcsncat_s(s1, 100, s5, 1000);
r2 = wcsncat_s(s2, 6, L"", 1);
r3 = wcsncat_s(s3, 6, L"X", 2);
r4 = wcsncat_s(s4, 7, L"defghijklmn", 3);

After the first call r1 will have the value zero and s1 will be the wide character sequence goodbye\0.

After the second call r2 will have the value zero and s2 will be the wide character sequence hello\0.

After the third call r3 will have a nonzero value and s3 will be the wide character sequence \0.

After the fourth call r4 will have the value zero and s4 will be the wide character sequence abcdef\0.

K.3.9.2.3 Wide string search functions
K.3.9.2.3.1 The wcstok_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
wchar_t *wcstok_s(wchar_t * restrict s1, rsize_t * restrict s1max,

const wchar_t * restrict s2, wchar_t ** restrict ptr);

Runtime-constraints
2 None of s1max, s2, or ptr shall be a null pointer. If s1 is a null pointer, then*ptr shall not be a null

pointer. The value of*s1max shall not be greater than RSIZE_MAX/sizeof(wchar_t). The end of

484)This allows an implementation to append wide characters from s2 to s1 while simultaneously checking if any of those
wide characters are null. Such an approach might write a wide character to every element of s1 before discovering that the
first element was set to the null wide character.
485)A zero return value implies that all of the requested wide characters from the wide string pointed to by s2 were appended

to the wide string pointed to by s1 and that the result in s1 is null terminated.

562 Bounds-checking interfaces § K.3.9.2.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

the token found shall occur within the first*s1max wide characters of s1 for the first call, and shall
occur within the first*s1max wide characters of where searching resumes on subsequent calls.

3 If there is a runtime-constraint violation, the wcstok_s function does not indirect through the s1 or
s2 pointers, and does not store a value in the object pointed to by ptr.

Description
4 A sequence of calls to the wcstok_s function breaks the wide string pointed to by s1 into a sequence

of tokens, each of which is delimited by a wide character from the wide string pointed to by s2.
The fourth argument points to a caller-provided wchar_t pointer into which the wcstok_s function
stores information necessary for it to continue scanning the same wide string.

5 The first call in a sequence has a non-null first argument and s1max points to an object whose value
is the number of elements in the wide character array pointed to by the first argument. The first call
stores an initial value in the object pointed to by ptr and updates the value pointed to by s1max
to reflect the number of elements that remain in relation to ptr. Subsequent calls in the sequence
have a null first argument and the objects pointed to by s1max and ptr are required to have the
values stored by the previous call in the sequence, which are then updated. The separator wide
string pointed to by s2 may be different from call to call.

6 The first call in the sequence searches the wide string pointed to by s1 for the first wide character
that is not contained in the current separator wide string pointed to by s2. If no such wide character
is found, then there are no tokens in the wide string pointed to by s1 and the wcstok_s function
returns a null pointer. If such a wide character is found, it is the start of the first token.

7 The wcstok_s function then searches from there for the first wide character in s1 that is contained
in the current separator wide string. If no such wide character is found, the current token extends
to the end of the wide string pointed to by s1, and subsequent searches in the same wide string
for a token return a null pointer. If such a wide character is found, it is overwritten by a null wide
character, which terminates the current token.

8 In all cases, the wcstok_s function stores sufficient information in the pointer pointed to by ptr so
that subsequent calls, with a null pointer for s1 and the unmodified pointer value for ptr, shall start
searching just past the element overwritten by a null wide character (if any).

Returns
9 The wcstok_s function returns a pointer to the first wide character of a token, or a null pointer if

there is no token or there is a runtime-constraint violation.
10 EXAMPLE

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptr1, *ptr2;
rsize_t max1 = wcslen(str1)+1;
rsize_t max2 = wcslen(str2)+1;

t = wcstok_s(str1, &max1, "?", &ptr1); // t points to the token "a"
t = wcstok_s(NULL, &max1, ",", &ptr1); // t points to the token "??b"
t = wcstok_s(str2, &max2, " \t", &ptr2); // t is a null pointer
t = wcstok_s(NULL, &max1, "#,", &ptr1); // t points to the token "c"
t = wcstok_s(NULL, &max1, "?", &ptr1); // t is a null pointer

K.3.9.2.4 Miscellaneous functions
K.3.9.2.4.1 The wcsnlen_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);

§ K.3.9.2.4 Bounds-checking interfaces 563

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Description
2 The wcsnlen_s function computes the length of the wide string pointed to by s.

Returns

3 If s is a null pointer,486) then the wcsnlen_s function returns zero.

4 Otherwise, the wcsnlen_s function returns the number of wide characters that precede the termi-
nating null wide character. If there is no null wide character in the first maxsize wide characters of
s then wcsnlen_s returns maxsize. At most the first maxsize wide characters of s shall be accessed
by wcsnlen_s.

K.3.9.3 Extended multibyte/wide character conversion utilities
K.3.9.3.1 Restartable multibyte/wide character conversion functions

1 Unlike wcrtomb, wcrtomb_s does not permit the ps parameter (the pointer to the conversion state)
to be a null pointer.

K.3.9.3.1.1 The wcrtomb_s function
Synopsis

1 #include <wchar.h>
errno_t wcrtomb_s(size_t * restrict retval, char * restrict s, rsize_t smax,

wchar_t wc, mbstate_t * restrict ps);

Runtime-constraints
2 Neither retval nor ps shall be a null pointer. If s is not a null pointer, then smax shall not equal

zero and shall not be greater than RSIZE_MAX. If s is not a null pointer, then smax shall be not be less
than the number of bytes to be stored in the array pointed to by s. If s is a null pointer, then smax
shall equal zero.

3 If there is a runtime-constraint violation, then wcrtomb_s does the following. If s is not a null pointer
and smax is greater than zero and not greater than RSIZE_MAX, then wcrtomb_s sets s[0] to the null
character. If retval is not a null pointer, then wcrtomb_s sets*retval to (size_t)(-1).

Description
4 If s is a null pointer, the wcrtomb_s function is equivalent to the call

wcrtomb_s(&retval, buf, sizeof buf, L’\0’, ps)

where retval and buf are internal variables of the appropriate types, and the size of buf is greater
than MB_CUR_MAX.

5 If s is not a null pointer, the wcrtomb_s function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by wc (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

6 If wc does not correspond to a valid multibyte character, an encoding error occurs: the wcrtomb_s
function stores the value (size_t)(-1) into *retval and the conversion state is unspecified.
Otherwise, the wcrtomb_s function stores into *retval the number of bytes (including any shift
sequences) stored in the array pointed to by s.

486)Note that the wcsnlen_s function has no runtime-constraints. This lack of runtime-constraints along with the values
returned for a null pointer or an unterminated wide string argument make wcsnlen_s useful in algorithms that gracefully
handle such exceptional data.

564 Bounds-checking interfaces § K.3.9.3.1

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Returns
7 The wcrtomb_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.9.3.2 Restartable multibyte/wide string conversion functions
1 Unlike mbsrtowcs and wcsrtombs, mbsrtowcs_s and wcsrtombs_s do not permit the ps parameter

(the pointer to the conversion state) to be a null pointer.

K.3.9.3.2.1 The mbsrtowcs_s function
Synopsis

1 #include <wchar.h>
errno_t mbsrtowcs_s(size_t * restrict retval, wchar_t * restrict dst,

rsize_t dstmax, const char ** restrict src, rsize_t len,
mbstate_t * restrict ps);

Runtime-constraints
2 None of retval, src, *src , or ps shall be null pointers. If dst is not a null pointer, then neither

len nor dstmax shall be greater than RSIZE_MAX/sizeof(wchar_t). If dst is a null pointer, then
dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a
null pointer and len is not less than dstmax, then a null character shall occur within the first dstmax
multibyte characters of the array pointed to by*src .

3 If there is a runtime-constraint violation, then mbsrtowcs_s does the following. If retval is not
a null pointer, then mbsrtowcs_s sets*retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX/sizeof(wchar_t), then mbsrtowcs_s
sets dst[0] to the null wide character.

Description
4 The mbsrtowcs_s function converts a sequence of multibyte characters that begins in the conversion

state described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide characters. If dst is not a null pointer, the converted characters are
stored into the array pointed to by dst. Conversion continues up to and including a terminating null
character, which is also stored. Conversion stops earlier in two cases: when a sequence of bytes is
encountered that does not form a valid multibyte character, or (if dst is not a null pointer) when len
wide characters have been stored into the array pointed to by dst.487) If dst is not a null pointer
and no null wide character was stored into the array pointed to by dst, then dst[len] is set to the
null wide character. Each conversion takes place as if by a call to the mbrtowc function.

5 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
multibyte character converted (if any). If conversion stopped due to reaching a terminating null
character and if dst is not a null pointer, the resulting state described is the initial conversion state.

6 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a sequence
of bytes that do not form a valid multibyte character, an encoding error occurs: the mbsrtowcs_s
function stores the value (size_t)(-1) into *retval and the conversion state is unspecified.
Otherwise, the mbsrtowcs_s function stores into *retval the number of multibyte characters
successfully converted, not including the terminating null character (if any).

7 All elements following the terminating null wide character (if any) written by mbsrtowcs_s in the
array of dstmax wide characters pointed to by dst take unspecified values when mbsrtowcs_s
returns.488)

8 If copying takes place between objects that overlap, the objects take on unspecified values.

487)Thus, the value of len is ignored if dst is a null pointer.
488)This allows an implementation to attempt converting the multibyte string before discovering a terminating null character

did not occur where required.

§ K.3.9.3.2 Bounds-checking interfaces 565

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Returns
9 The mbsrtowcs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

K.3.9.3.2.2 The wcsrtombs_s function
Synopsis

1 #include <wchar.h>
errno_t wcsrtombs_s(size_t * restrict retval, char * restrict dst,

rsize_t dstmax, const wchar_t ** restrict src, rsize_t len,
mbstate_t * restrict ps);

Runtime-constraints
2 None of retval, src,*src , or ps shall be null pointers. If dst is not a null pointer, then neither len

shall be greater than RSIZE_MAX/sizeof(wchar_t) nor dstmax shall be greater than RSIZE_MAX. If
dst is a null pointer, then dstmax shall equal zero. If dst is not a null pointer, then dstmax shall not
equal zero. If dst is not a null pointer and len is not less than dstmax, then the conversion shall
have been stopped (see below) because a terminating null wide character was reached or because an
encoding error occurred.

3 If there is a runtime-constraint violation, then wcsrtombs_s does the following. If retval is not
a null pointer, then wcsrtombs_s sets*retval to (size_t)(-1). If dst is not a null pointer and
dstmax is greater than zero and not greater than RSIZE_MAX, then wcsrtombs_s sets dst[0] to the
null character.

Description
4 The wcsrtombs_s function converts a sequence of wide characters from the array indirectly pointed

to by src into a sequence of corresponding multibyte characters that begins in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters are then
stored into the array pointed to by dst. Conversion continues up to and including a terminating
null wide character, which is also stored. Conversion stops earlier in two cases:

— when a wide character is reached that does not correspond to a valid multibyte character;

— (if dst is not a null pointer) when the next multibyte character would exceed the limit of n
total bytes to be stored into the array pointed to by dst. If the wide character being converted
is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of
len or dstmax-1.

If the conversion stops without converting a null wide character and dst is not a null pointer, then
a null character is stored into the array pointed to by dst immediately following any multibyte
characters already stored. Each conversion takes place as if by a call to the wcrtomb function.489)

5 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide character) or the address just past the
last wide character converted (if any). If conversion stopped due to reaching a terminating null wide
character, the resulting state described is the initial conversion state.

6 Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide
character that does not correspond to a valid multibyte character, an encoding error occurs: the
wcsrtombs_s function stores the value (size_t)(-1) into *retval and the conversion state is
unspecified. Otherwise, the wcsrtombs_s function stores into*retval the number of bytes in the
resulting multibyte character sequence, not including the terminating null character (if any).

7 All elements following the terminating null character (if any) written by wcsrtombs_s in the array

489)If conversion stops because a terminating null wide character has been reached, the bytes stored include those necessary
to reach the initial shift state immediately before the null byte. However, if the conversion stops before a terminating null
wide character has been reached, the result will be null terminated, but might not end in the initial shift state.

566 Bounds-checking interfaces § K.3.9.3.2

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

of dstmax elements pointed to by dst take unspecified values when wcsrtombs_s returns.490)

8 If copying takes place between objects that overlap, the objects take on unspecified values.

Returns
9 The wcsrtombs_s function returns zero if no runtime-constraint violation and no encoding error

occurred. Otherwise, a nonzero value is returned.

490)When len is not less than dstmax, the implementation might fill the array before discovering a runtime-constraint
violation.

§ K.3.9.3.2 Bounds-checking interfaces 567

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex L
(normative)

Analyzability

L.1 Scope
1 This annex specifies optional behavior that can aid in the analyzability of C programs.

2 An implementation that defines __STDC_ANALYZABLE__ shall conform to the specifications in this
annex.491)

L.2 Definitions
L.2.1

1 out-of-bounds store

an (attempted) access (3.1) that, at run time, for a given computational state, would modify (or, for
an object declared volatile, fetch) one or more bytes that lie outside the bounds permitted by this
document.

L.2.2
1 bounded undefined behavior

undefined behavior (3.4.3) that does not perform an out-of-bounds store.
2 Note 1 to entry: The behavior might perform a trap.

3 Note 2 to entry: Any values produced or stored might be indeterminate values.

L.2.3
1 critical undefined behavior

undefined behavior that is not bounded undefined behavior.
2 Note 1 to entry: The behavior might perform an out-of-bounds store or perform a trap.

L.3 Requirements
1 If the program performs a trap (3.19.5), the implementation is permitted to invoke a runtime-

constraint handler. Any such semantics are implementation-defined.

2 All undefined behavior shall be limited to bounded undefined behavior, except for the following
which are permitted to result in critical undefined behavior:

— An object is referred to outside of its lifetime (6.2.4).

— A store is performed to an object that has two incompatible declarations (6.2.7),

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.2.7, 6.3.2.3, 6.5.2.2).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— The program attempts to modify a string literal (6.4.5).

— The operand of the unary* operator has an invalid value (6.5.3.2).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.6).

— An attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type (6.7.3).

491)Implementations that do not define __STDC_ANALYZABLE__ are not required to conform to these specifications.

568 Analyzability § L.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— An argument to a function or macro defined in the standard library has an invalid value or a
type not expected by a function with variable number of arguments (7.1.4).

— The longjmp function is called with a jmp_buf argument where the most recent invocation
of the setjmp macro in the same invocation of the program with the corresponding jmp_buf
argument is nonexistent, or the invocation was from another thread of execution, or the
function containing the invocation has terminated execution in the interim, or the invocation
was within the scope of an identifier with variably modified type and execution has left that
scope in the interim (7.13.2.1).

— The value of a pointer that refers to space deallocated by a call to the free or realloc function is
used (7.22.3).

— A string or wide string utility function accesses an array beyond the end of an object (7.24.1,
7.29.4).

§ L.3 Analyzability 569

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Annex M
(informative)

Change History

M.1 Fifth Edition
1 Major changes in this fifth edition (__STDC_VERSION__ yyyymmL) include:

— remove obsolete sign representations and integer width constraints

— added a one-argument version of _Static_assert

— support for function definitions with identifier lists has been removed

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: asctime_r, ctime_r, gmtime_r, localtime_r, memccpy,
strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added deprecated, fallthrough, maybe_unused, and nodiscard attributes

— added the u8 character prefix

M.2 Fourth Edition
1 There were no major changes in the fourth edition (__STDC_VERSION__ 201710L), only technical

corrections and clarifications.

M.3 Third Edition
1 Major changes in the third edition (__STDC_VERSION__ 201112L) included:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread-local storage (<stdatomic.h> and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 19769:2004)

— type-generic expressions

— static assertions

— anonymous structures and unions

— no-return functions

570 Change History § M.3

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

— macros to create complex numbers (<complex.h>)

— support for opening files for exclusive access

— removed the gets function (<stdio.h>)

— added the aligned_alloc, at_quick_exit, and quick_exit functions (<stdlib.h>)

— (conditional) support for bounds-checking interfaces (originally specified in ISO/IEC TR 24731–
1:2007)

— (conditional) support for analyzability

M.4 Second Edition
1 Major changes in the second edition (__STDC_VERSION__ 199901L) included:

— restricted character set support via digraphs and <iso646.h> (originally specified in
ISO/IEC 9899:1990/Amd 1:1995)

— wide character library support in <wchar.h> and <wctype.h> (originally specified in
ISO/IEC 9899:1990/Amd 1:1995)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators

— complex (and imaginary) support in <complex.h>

— type-generic math macros in <tgmath.h>

— the long long int type and library functions

— extended integer types

— increased minimum translation limits

— additional floating-point characteristics in <float.h>

— remove implicit int

— reliable integer division

— universal character names (\u and \U)

— extended identifiers

— hexadecimal floating-point constants and %a and %A printf/scanf conversion specifiers

— compound literals

— designated initializers

— // comments

— specified width integer types and corresponding library functions in <inttypes.h> and
<stdint.h>

— remove implicit function declaration

— preprocessor arithmetic done in intmax_t/uintmax_t

§ M.4 Change History 571

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

— mixed declarations and statements

— new block scopes for selection and iteration statements

— integer constant type rules

— integer promotion rules

— macros with a variable number of arguments (__VA_ARGS__)

— the vscanf family of functions in <stdio.h> and <wchar.h>

— additional math library functions in <math.h>

— treatment of error conditions by math library functions (math_errhandling)

— floating-point environment access in <fenv.h>

— IEC 60559 (also known as IEC 559 or IEEE arithmetic) support

— trailing comma allowed in enum declaration

— %lf conversion specifier allowed in printf

— inline functions

— the snprintf family of functions in <stdio.h>

— boolean type in <stdbool.h>

— idempotent type qualifiers

— empty macro arguments

— new structure type compatibility rules (tag compatibility)

— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— __func__ predefined identifier

— va_copy macro

— additional strftime conversion specifiers

— LIA compatibility annex

— deprecate ungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to lvalues

— relaxed constraints on aggregate and union initialization

— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice versa)

M.5 First Edition, Amendment 1
1 Major changes in the amendment to the first edition (__STDC_VERSION__ 199409L) included:

— addition of the predefined __STDC_VERSION__ macro

— restricted character set support via digraphs and <iso646.h>

— wide character library support in <wchar.h> and <wctype.h>

572 Change History § M.5

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

Bibliography

[1] ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information inter-
change.

[2] ISO/IEC 9945–2:1993, Information technology — Portable Operating System Interface (POSIX) —
Part 2: Shell and Utilities.

[3] ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards.

[4] ISO/IEC 10967–1:2012, Information technology — Language independent arithmetic — Part 1:
Integer and floating point arithmetic.

[5] ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character
data types.

[6] ISO/IEC TR 24731–1:2007, Information technology — Programming languages, their environments
and system software interfaces — Extensions to the C library — Part 1: Bounds-checking interfaces.

[7] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

[8] ISO/IEC 60559:2011, Floating-point arithmetic.

[9] ANSI/IEEE 854–1987, American National Standard for Radix-Independent Floating-Point Arith-
metic.

[10] ANSI X3/TR–1–82 (1982), American National Dictionary for Information Processing Systems,
Information Processing Systems Technical Report.

[11] "The C Reference Manual" by Dennis M. Ritchie, a version of which was published in The
C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc.,
(1978). Copyright owned by AT&T.

[12] 1984 /usr/group Standard by the /usr/group Standards Committee, Santa Clara, California,
USA, November 1984.

Bibliography 573

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

Index
! (exclamation-mark punctuator), 60
! (logical negation operator), 72
!= (inequality operator), 77
!= (not-equal punctuator), 60
(hash punctuator), 60
preprocessing directive, 145
punctuator, 133
(hash-hash punctuator), 60
#define preprocessing directive, 138
#elif preprocessing directive, 135
#else preprocessing directive, 136
#endif preprocessing directive, 136
#error preprocessing directive, 8, 144
#if preprocessing directive, 20, 23, 135, 151
#ifdef preprocessing directive, 135
#ifndef preprocessing directive, 135
#include preprocessing directive, 9, 136
#line preprocessing directive, 143
#pragma preprocessing directive, 144
#undef preprocessing directive, 140, 151
⌈x⌉, 7
⌊x⌋, 7
& (bitwise AND operator), 78
&& (logical AND operator), 15, 79
&= (bitwise AND assignment operator), 82
’ ’ (space character), 9, 17, 47, 163, 165, 386
((opening parenthesis punctuator), 60
() (cast operator), 74
() (function-call operator), 66
() (parentheses punctuator), 106, 124, 125
(){} (compound-literal operator), 69
) (closing parenthesis punctuator), 60
* (asterisk punctuator), 60, 104, 105
* (indirection operator), 66, 72
* (multiplication operator), 74, 470
*= (asterisk-equal punctuator), 60
*= (multiplication assignment operator), 82
+ (addition operator), 66, 72, 75, 472
+ (plus punctuator), 60
+ (unary plus operator), 72
+ format flag, 275, 352
++ (plus-plus punctuator), 60
++ (postfix increment operator), 45, 69
++ (prefix increment operator), 45, 71
+= (addition assignment operator), 82
+= (plus-equal punctuator), 60
, (comma operator), 15, 83
, (comma punctuator), 60, 65, 86, 90, 93, 95,

111
- (minus punctuator), 60
- (subtraction operator), 75, 472
- (unary minus operator), 72, 443

- format flag, 275, 352
-- (minus-minus punctuator), 60
-- (postfix decrement operator), 45, 69
-- (prefix decrement operator), 45, 71
-= (minus-equal punctuator), 60
-= (subtraction assignment operator), 82
-> (minus-greater punctuator), 60
-> (structure/union pointer operator), 67
. (dot punctuator), 60, 111
. (structure/union member operator), 45, 67
... (ellipsis punctuator), 60, 67, 107, 138
/ (division operator), 74, 470
/ (slash punctuator), 60
/* */ (comment delimiters), 61
// (comment delimiter), 61
/= (division assignment operator), 82
/= (slash-equal punctuator), 60
: (colon punctuator), 60, 90
:> (alternative spelling of]), 60
:> (colon greater punctuator), 60
; (semicolon punctuator), 60, 86, 89, 123, 125,

126
< (less punctuator), 60
< (less-than operator), 77
<: (alternative spelling of [), 60
<: (less-colon punctuator), 60
<< (left-shift operator), 76
<< (less-less punctuator), 60
<<= (left-shift assignment operator), 82
<<= (less-less equal punctuator), 60
<= (less-equal punctuator), 60
<= (less-than-or-equal-to operator), 77
<% (alternative spelling of {), 60
<% (less-percent punctuator), 60
<assert.h> header, 149, 150, 153, 177, 408
<complex.h> header, 22, 27, 113, 147, 149, 154–

161, 326, 327, 391, 408, 470, 471, 472,
473, 497, 500, 506, 571

<ctype.h> header, 149, 163, 164, 165, 391, 409
<errno.h> header, 149, 167, 391, 409, 521
<fenv.h> header, 8, 12, 14, 23, 27, 31, 83, 149,

168, 170–172, 174–179, 195, 391, 409,
440, 443, 446–448, 457, 461, 463, 483,
572

<float.h> header, iii, 8, 20, 21, 23, 26, 27, 28,
149, 180, 193, 279, 302, 356, 369, 391,
410, 436, 445, 503, 570, 571

<inttypes.h> header, 149, 181, 182, 183, 391,
411, 571

<iso646.h> header, 8, 149, 184, 411, 571, 572
<limits.h> header, iii, 8, 20, 21, 35, 37, 149,

185, 411, 436, 503

574 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

<locale.h> header, 149, 186, 187, 391, 411
<math.h> header, 8, 22, 27, 31, 64, 149, 172,

173, 192, 193, 195–198, 199–231, 232,
233, 234–239, 279, 326–328, 357, 391,
392, 411, 439, 440, 445, 451, 457, 461,
463, 465–467, 470, 471, 487, 497, 500,
503, 506, 572

<setjmp.h> header, 149, 240, 241, 422
<signal.h> header, 150, 242, 243, 392, 422
<stdalign.h> header, 8, 150, 245, 422, 570
<stdarg.h> header, 8, 107, 150, 246, 247, 248,

288–290, 362–364, 422, 530–533, 554–
557

<stdatomic.h> header, 147, 149, 150, 243, 249,
250, 252–258, 392, 423, 494, 570

<stdbool.h> header, 8, 150, 259, 392, 423, 480,
572

<stddef.h> header, 8, 46, 58, 59, 73, 75, 76,
116, 150, 183, 260, 286, 424, 522

<stdint.h> header, 8, 20, 21, 135, 150, 181,
214–216, 222, 261, 262, 264, 392, 424,
503, 522, 571

<stdio.h> header, 14, 22, 27, 31, 50, 137, 150,
172, 173, 265, 269–274, 279, 281, 285–
298, 342, 352, 357, 361, 362, 364–367,
392, 424, 500, 522, 523–534, 551, 554,
571, 572

<stdlib.h> header, 8, 22, 27, 31, 150, 152, 172,
173, 299, 300–302, 304–311, 313–316,
392, 426, 500, 521, 535, 536–540, 570,
571

<stdnoreturn.h> header, 8, 150, 317, 427
<string.h> header, 150, 318, 319–325, 392,

427, 541, 542–548
<tgmath.h> header, 31, 150, 326, 329, 428, 439,

451, 479, 571
<threads.h> header, 147, 149, 150, 330, 331–

338, 393, 429, 570
<time.h> header, 150, 330, 340, 341–345, 379,

393, 429, 548, 549, 550
<uchar.h> header, 58, 59, 150, 348, 349, 350,

430, 570
<wchar.h> header, 22, 27, 31, 150, 172, 173,

181, 266, 351, 352, 357, 361–368, 370–
375, 377–383, 393, 430, 500, 551, 552–
566, 571, 572

<wctype.h> header, 150, 385, 386–390, 393,
432, 571, 572

= (equal-sign punctuator), 60, 86, 93, 111
= (simple assignment operator), 81
== (equal-equal punctuator), 60
== (equality operator), 77
> (greater punctuator), 60
> (greater-than operator), 77
>= (greater-equal punctuator), 60
>= (greater-than-or-equal-to operator), 77

>> (greater greater punctuator), 60
>> (right-shift operator), 76
>>= (greater-greater-equal punctuator), 60
>>= (right-shift assignment operator), 82
? (question-mark punctuator), 60
?: (conditional operator), 15, 80
?? (trigraph sequences), 18
[(opening bracket punctuator), 60
[] (array subscript operator), 66, 72
[] (brackets punctuator), 105, 111
format flag, 275, 353
% (percent punctuator), 60
% (remainder operator), 74
%: (alternative spelling of #), 60
%: (percent-colon punctuator), 60
%:%: (alternative spelling of ##), 60
%:%: (percent-percent punctuator), 60
%= (percent-equal punctuator), 60
%= (remainder assignment operator), 82
%> (alternative spelling of }), 60
%> (percent-greater punctuator), 60
%A conversion specifier, 277, 345, 355
%B conversion specifier, 345
%C conversion specifier, 345
%D conversion specifier, 345
%E conversion specifier, 276, 354
%F conversion specifier, 276, 345, 354
%G conversion specifier, 276, 345, 354
%H conversion specifier, 346
%I conversion specifier, 346
%M conversion specifier, 346
%R conversion specifier, 346
%S conversion specifier, 346
%T conversion specifier, 346
%U conversion specifier, 346
%V conversion specifier, 346
%W conversion specifier, 346
%X conversion specifier, 276, 346, 354
%Y conversion specifier, 346
%Z conversion specifier, 346
%[conversion specifier, 284, 360
%% conversion specifier, 278, 284, 356, 360
%a conversion specifier, 277, 283, 345, 355, 359
%b conversion specifier, 345
%c conversion specifier, 278, 283, 345, 355, 359
%d conversion specifier, 276, 283, 345, 354, 359
%e conversion specifier, 276, 283, 345, 354, 359
%f conversion specifier, 276, 283, 354, 359
%g conversion specifier, 276, 283, 345, 354, 359
%h conversion specifier, 346
%i conversion specifier, 276, 354
%j conversion specifier, 346
%m conversion specifier, 346
%n conversion specifier, 278, 284, 346, 356, 360
%o conversion specifier, 276, 283, 354, 359
%p conversion specifier, 278, 284, 346, 356, 360

Index 575

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

%r conversion specifier, 346
%s conversion specifier, 278, 283, 356, 359
%t conversion specifier, 346
%u conversion specifier, 276, 283, 346, 354, 359
%w conversion specifier, 346
%x conversion specifier, 276, 283, 346, 354, 359
%y conversion specifier, 346
%z conversion specifier, 346
& (address operator), 45, 72
& (ampersand punctuator), 60
&= (ampersand-equal punctuator), 60
&& (ampersand-ampersand punctuator), 60
\ (backslash character), 9, 17, 57
\ (backslash escape sequence), 57, 147
\" (double-quote escape sequence), 57, 59, 147
\’ (single-quote escape sequence), 57, 59
\0 (null character), 17, 58, 59

padding of binary stream, 267
\? (question-mark escape sequence), 57
\U (universal character names), 50
\a (alert escape sequence), 19, 57
\b (backspace escape sequence), 19, 57
\ (escape character), 57
\f (form-feed escape sequence), 19, 57, 165
\n (new-line escape sequence), 19, 57, 165
\octal digits (octal-character escape sequence),

57
\r (carriage-return escape sequence), 19, 57,

165
\t (horizontal-tab escape sequence), 19, 57,

163, 165, 386
\u (universal character names), 50
\v (vertical-tab escape sequence), 19, 57, 165
_Alignas, 41, 48, 102, 103, 245, 394, 402, 506
_Alignof operator, 41, 42, 46, 48, 71, 72, 73, 84,

103, 105, 129, 245, 394, 399, 490, 503,
506

_Atomic type qualifier, 96
_Atomic type specifier, 96
_Bool type, ii, iii, 20, 35, 42–44, 48, 81, 88, 90,

91, 235, 254, 256, 258, 259, 394, 401,
421, 423, 445, 469, 500, 505, 507

_Bool type conversions, 43
_C identifier suffix, 264, 392, 424, 506
_Complex type, 88, 154
_Complex types, 23, 37, 45, 48, 88, 89, 154, 394,

401, 469, 470, 471, 507
_Complex_I macro, 154, 408, 473, 507
_DECIMAL_DIG identifier prefix, 26, 279, 302,

356, 369, 446
_Decimal32_t type, 192, 501, 508
_Decimal64_t type, 192, 501, 508
_EXT__ identifier suffix, 439, 508
_Exit function, 243, 309, 310, 426, 494, 503,

508
_Generic, 48, 64, 65, 328, 394, 399, 509

_H__ identifier prefix, 150
_IOFBF macro, 265, 273, 424, 509
_IOLBF macro, 265, 273, 424, 509
_IONBF macro, 265, 273, 424, 509
_Imaginary type, 154
_Imaginary types, 469
_Imaginary_I macro, 154, 161, 408, 472, 473,

509
_MAX identifier suffix, 21, 43, 262, 264, 392, 411,

424, 506
_MIN identifier suffix, 21, 262, 264, 392, 411,

424, 506
_Noreturn, x, 48, 101, 102, 240, 308–310, 317,

336, 394, 402, 422, 426, 427, 429, 491,
510

_PRINTF_NAN_LEN_MAX macro, 266, 424
_Pragma operator, 147
_Static_assert, xiii, 48, 116, 153, 394, 403,

510, 570
_Thread_local storage-class specifier, 34, 48,

87, 106, 330, 394, 401, 511
_WIDTH identifier suffix, 21, 262, 263, 264, 392,

424, 506
__STDC_ identifier prefix, 148
__STDC_VERSION_ identifier prefix, 150
__STDC_WANT_IEC_60559_ identifier prefix,

439, 511
__DATE__ macro, 146, 501, 507
__FILE__ macro, 145, 146, 153, 508
__LINE__ macro, 143–145, 146, 153, 486, 509
__STDC_ANALYZABLE__ macro, 146, 510, 568
__STDC_HOSTED__ macro, 146, 510
__STDC_IEC_559_COMPLEX__ (obsolete), 22,

147, 148, 469, 510
__STDC_IEC_559_COMPLEX__ macro, 22, 469
__STDC_IEC_559__ (obsolete), 22, 147, 148,

421, 439, 510
__STDC_IEC_559__ macro, 22
__STDC_IEC_60559_BFP__ macro, 8, 22, 146,

421, 439, 465, 466, 510
__STDC_IEC_60559_COMPLEX__ macro, 22,

147, 469, 510
__STDC_IEC_60559_DFP__ macro, 8, 147, 173,

176, 178, 199–232, 233, 234–237, 300,
302, 329, 370, 410, 411, 416, 422, 427,
436, 437, 439, 465–467, 510

__STDC_ISO_10646__ macro, 146, 499, 510
__STDC_LIB_EXT1__ macro, 147, 149, 409,

424, 425, 427, 428, 430, 431, 510, 520
__STDC_MB_MIGHT_NEQ_WC__ macro, 146, 260,

510
__STDC_NO_ATOMICS__ macro, 147, 249, 423,

510
__STDC_NO_COMPLEX__ macro, 147, 154, 408,

510
__STDC_NO_THREADS__ macro, 147, 330, 429,

576 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

510
__STDC_NO_VLA__ macro, 147, 510
__STDC_UTF_16__ macro, 146, 499, 510
__STDC_UTF_32__ macro, 146, 499, 510
__STDC_VERSION_FENV_H__ macro, 168, 510
__STDC_VERSION_MATH_H__ macro, 192, 511
__STDC_VERSION_STDINT_H__ macro, 261,

511
__STDC_VERSION_STDLIB_H__ macro, 299,

511
__STDC_VERSION_TGMATH_H__ macro, 326,

511
__STDC_VERSION_TIME_H__ macro, 340, 511
__STDC_VERSION__ macro, 146, 510, 570–572
__STDC_WANT_IEC_60559_EXT__ macro, 421,

422, 445, 465–467, 511
__STDC_WANT_LIB_EXT1__ macro, 409, 424,

425, 427, 428, 430, 431, 511, 520, 521,
523–539, 542–563

__STDC__ macro, 146, 510
__TIME__ macro, 146, 501, 511
__VA_ARGS__ identifier, 137, 138, 143, 512, 572
__alignas_is_defined macro, 245, 422, 506
__alignof_is_defined macro, 245, 422, 506
__bool_true_false_are_defined macro,

259, 423, 507
__cplusplus macro, 145, 507
__deprecated__ attribute, 117, 118, 508
__fallthrough__ attribute, 508
__func__ identifier, 49, 50, 153, 489, 509, 572
__has_c_attribute macro, 118–120, 135, 136,

145
__has_c_attribute operator, 145
__maybe_unused__ attribute, 510
__nodiscard__ attribute, 116, 510
_explicit identifier suffix, 249, 257, 423
_r identifier prefix, 343
_t identifier suffix, 261, 262, 264, 392, 424, 506
UTF–8 character constant, 57
{} (braces punctuator), 93, 95, 111, 123
{} (compound-literal operator), 69
{ (opening brace punctuator), 60
} (closing brace punctuator), 60
] (closing bracket punctuator), 60
^ (bitwise exclusive OR operator), 78
^ (caret punctuator), 60
^= (bitwise exclusive OR assignment opera-

tor), 82
^= (caret-equal punctuator), 60
| (bitwise inclusive OR operator), 79
| (vertical-line punctuator), 60
|= (bitwise inclusive OR assignment operator),

82
|= (vertical-line-equal punctuator), 60
|| (logical OR operator), 15, 79
|| (vertical-vertical punctuator), 60

~ (bitwise complement operator), 72
~ (tilde punctuator), 60
0 format flag, 275, 353

abort function, 102, 153, 242, 243, 250, 268,
308, 426, 493, 494, 503, 512, 536

abort_handler_s function, 427, 512, 536
abs function, 151, 313, 426, 480, 512
abs macro, 151
absolute-value functions

complex, 159, 478
integer, 182, 313
real, 213, 457

abstract declarator, 109
abstract machine, 11
access, 97, 568
access (verb), 3
accuracy, see floating-point accuracy
acos function, 172, 199, 327, 412, 445, 452, 512
acos type-generic macro, 327
acosd128 function, 173, 199, 416, 512
acosd32 function, 173, 199, 416, 512
acosd64 function, 173, 199, 416, 512
acosf function, 172, 199, 412, 512
acosh function, 204, 327, 413, 445, 454, 512
acosh type-generic macro, 327
acoshd128 function, 204, 417, 512
acoshd32 function, 204, 417, 512
acoshd64 function, 204, 417, 512
acoshf function, 204, 329, 413, 512
acoshl function, 204, 413, 512
acosl function, 172, 199, 412, 512
acospi function, 202, 412, 445, 453, 512
acospi type-generic macro, 327
acospid128 function, 202, 417, 512
acospid32 function, 202, 417, 512
acospid64 function, 202, 417, 512
acospif function, 202, 412, 512
acospil function, 202, 412, 512
acquire fence, 253
acquire operation, 14
active position, 19
add and round to narrower type, 232
addition assignment operator (+=), 82
addition operator (+), 66, 72, 75, 472
additive expressions, 74, 472
address constant, 84
address operator (&), 45, 72
address-free, 254
aggregate initialization, 112
aggregate types, 38
alert, 19
alert escape sequence (\a), 19, 57
aliasing, 63
alignas macro, 245, 422, 512
aligned_alloc function, 306, 307, 426, 487,

496, 503, 512, 571

Index 577

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

alignment, 3, 41, 307
pointer, 38, 46
structure/union member, 91

alignment header, 245
alignment specifier, 102
alignof macro, 245, 422, 512
allocated storage, order and contiguity, 306
alternative spellings header, 184
and macro, 143, 184, 411, 512
AND operators

bitwise (&), 78
bitwise assignment (&=), 82
logical (&&), 79

AND operators
logical (&&), 15

and_eq macro, 184, 411, 512
anonymous structure, 91
anonymous union, 91
ANSI/IEEE 854, 439
argc (main function parameter), 11
argument, 3

array, 130
default promotions, 67
function, 66, 130
macro, substitution, 138

argument, complex, 160
argv (main function parameter), 11
arithmetic constant expression, 84
arithmetic conversions, usual, see usual arith-

metic conversions
arithmetic operators

additive, 74, 472
bitwise, 72, 78, 79
increment and decrement, 69, 71
multiplicative, 74, 470
shift, 76
unary, 72

arithmetic types, 37
arithmetic, pointer, 75
array

argument, 130
declarator, 105
initialization, 112
multidimensional, 66
parameter, 130
storage order, 66
subscript operator ([]), 66, 72
subscripting, 66
type, 37
type conversion, 45
variable length, 104, 105, 147

arrow operator (->), 67
as–if rule, 12
ASCII code set, 18
asctime function, 146, 343, 344, 430, 498, 512

asctime_r function, xiii, 343, 344, 430, 512,
570

asctime_s function, 430, 512, 548, 549, 550
asin function, 200, 327, 412, 445, 452, 479, 512
asin type-generic macro, 327
asin type-generic macro, 479
asind128 function, 200, 417, 512
asind32 function, 200, 416, 512
asind64 function, 200, 417, 512
asinf function, 200, 412, 512
asinh function, 204, 205, 327, 413, 445, 454,

479, 512
asinh type-generic macro, 327
asinh type-generic macro, 479
asinhd128 function, 205, 417, 512
asinhd32 function, 205, 417, 512
asinhd64 function, 205, 417, 512
asinhf function, 204, 413, 512
asinhl function, 204, 413, 512
asinl function, 200, 412, 512
asinpi function, 202, 412, 445, 453, 512
asinpi type-generic macro, 327
asinpid128 function, 202, 417, 512
asinpid32 function, 202, 417, 512
asinpid64 function, 202, 417, 512
asinpif function, 202, 412, 512
asinpil function, 202, 412, 512
assert macro, 119, 153, 177, 408, 492, 501, 512
assignment

compound, 82
conversion, 81
expression, 81
operators, 45, 81
simple, 81

associativity of operators, 63
asterisk punctuator (*), 104, 105
at_quick_exit function, 308, 309, 310, 426,

487, 496, 513, 571
atan function, 200, 279, 327, 357, 412, 445, 452,

479, 512
atan type-generic macro, 327
atan type-generic macro, 479
atan2 function, 200, 201, 412, 445, 451, 452,

473, 512
atan2 type-generic macro, 327
atan2d128 function, 200, 417, 512
atan2d32 function, 200, 417, 512
atan2d64 function, 200, 417, 512
atan2f function, 200, 412, 512
atan2l function, 200, 412, 512
atan2pi function, 203, 412, 445, 451, 453, 512
atan2pi type-generic macro, 327
atan2pid128 function, 203, 417, 512
atan2pid32 function, 203, 417, 512
atan2pid64 function, 203, 417, 512
atan2pif function, 203, 412, 512

578 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

atan2pil function, 203, 412, 512
atand128 function, 200, 417, 512
atand32 function, 200, 417, 512
atand64 function, 200, 417, 513
atanf function, 200, 412, 513
atanh function, 205, 327, 413, 445, 454, 479,

513
atanh type-generic macro, 327
atanh type-generic macro, 479
atanhd128 function, 513
atanhd32 function, 513
atanhd64 function, 513
atanhf function, 205, 413, 513
atanhl function, 205, 413, 513
atanl function, 200, 329, 412, 513
atanpi function, 202, 203, 412, 445, 453, 513
atanpi type-generic macro, 327
atanpid128 function, 202, 417, 513
atanpid32 function, 202, 417, 513
atanpid64 function, 202, 417, 513
atanpif function, 202, 412, 513
atanpil function, 202, 412, 513
atexit function, 308, 309, 310, 426, 487, 496,

505, 513
atof function, 172, 299, 300, 426, 513
atoi function, 152, 299, 300, 426, 513
atol function, 299, 300, 426, 513
atoll function, 299, 300, 426, 513
atomic lock-free macros, 249, 254
atomic operations, 14
atomic types, 12, 38, 39, 45, 68, 69, 82, 96, 147,

254
ATOMIC_ identifier prefix, 392, 506
atomic_ identifier prefix, 392, 506
atomic_bool type, 254, 257, 423, 506
ATOMIC_BOOL_LOCK_FREE macro, 249, 423,

506
atomic_char type, 254, 423, 506
atomic_char16_t type, 254, 423, 506
ATOMIC_CHAR16_T_LOCK_FREE macro, 249,

423, 506
atomic_char32_t type, 254, 423, 506
ATOMIC_CHAR32_T_LOCK_FREE macro, 249,

423, 506
ATOMIC_CHAR_LOCK_FREE macro, 249, 423,

506
atomic_compare_exchange_strong func-

tion, 69, 83, 256, 423, 506
atomic_compare_exchange_strong_explicit

function, 256, 423, 506
atomic_compare_exchange_weak function,

256, 257, 423, 506
atomic_compare_exchange_weak_explicit

function, 256, 423, 506
atomic_exchange function, 256, 423, 506

atomic_exchange_explicit function, 256,
423, 507

atomic_fetch_ function, 257, 423, 507
atomic_fetch_add function, 507
atomic_fetch_add_explicit function, 507
atomic_fetch_and function, 507
atomic_fetch_and_explicit function, 507
atomic_fetch_or function, 507
atomic_fetch_or_explicit function, 507
atomic_fetch_sub function, 507
atomic_fetch_sub_explicit function, 507
atomic_fetch_xor function, 507
atomic_fetch_xor_explicit function, 507
atomic_flag type, 249, 257, 258, 423, 507
atomic_flag_clear function, 258, 423, 507
atomic_flag_clear_explicit function,

258, 423, 507
ATOMIC_FLAG_INIT macro, 249, 257, 258, 423,

507
atomic_flag_test_and_set function, 258,

423, 507
atomic_flag_test_and_set_explicit

function, 258, 423, 507
atomic_init function, 250, 423, 507
atomic_int type, 250, 254, 423, 507
atomic_int_fast16_t type, 255, 423, 507
atomic_int_fast32_t type, 255, 423, 507
atomic_int_fast64_t type, 255, 423, 507
atomic_int_fast8_t type, 255, 423, 507
atomic_int_least16_t type, 254, 423, 507
atomic_int_least32_t type, 255, 423, 507
atomic_int_least64_t type, 255, 423, 507
atomic_int_least8_t type, 254, 423, 507
ATOMIC_INT_LOCK_FREE macro, 249, 423, 507
atomic_intmax_t type, 255, 423, 507
atomic_intptr_t type, 255, 423, 507
atomic_is_lock_free function, 243, 254,

423, 494, 507
atomic_llong type, 254, 423, 507
ATOMIC_LLONG_LOCK_FREE macro, 249, 423,

507
atomic_load function, 255, 257, 423, 507
atomic_load_explicit function, 252, 255,

423, 507
atomic_long type, 254, 423, 507
ATOMIC_LONG_LOCK_FREE macro, 249, 423,

507
ATOMIC_POINTER_LOCK_FREE macro, 249, 423,

507
atomic_ptrdiff_t type, 255, 423, 507
atomic_schar type, 254, 423, 507
atomic_short type, 254, 423, 507
ATOMIC_SHORT_LOCK_FREE macro, 249, 423,

507
atomic_signal_fence function, 253, 254,

423, 507

Index 579

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

atomic_size_t type, 255, 423, 507
atomic_store function, 255, 423, 507
atomic_store_explicit function, 252, 255,

423, 507
atomic_thread_fence function, 253, 423, 507
atomic_uchar type, 254, 423, 507
atomic_uint type, 254, 423, 507
atomic_uint_fast16_t type, 255, 423, 507
atomic_uint_fast32_t type, 255, 423, 507
atomic_uint_fast64_t type, 255, 423, 507
atomic_uint_fast8_t type, 255, 423, 507
atomic_uint_least16_t type, 255, 423, 507
atomic_uint_least32_t type, 255, 423, 507
atomic_uint_least64_t type, 255, 423, 507
atomic_uint_least8_t type, 254, 423, 507
atomic_uintmax_t type, 255, 423, 507
atomic_uintptr_t type, 255, 423, 507
atomic_ullong type, 254, 423, 507
atomic_ulong type, 254, 423, 507
atomic_ushort type, 254, 423, 507
ATOMIC_VAR_INIT (obsolete), 250, 392, 423,

507
atomic_wchar_t type, 254, 423, 507
ATOMIC_WCHAR_T_LOCK_FREE macro, 249, 423,

507
atomics header, 249, 392
attribute

__deprecated__, 117, 118, 508
__fallthrough__, 508
__maybe_unused__, 510
__nodiscard__, 116, 510
deprecated, ii, xiii, 87, 91, 92, 117, 119,

120, 514, 570
fallthrough, ii, xiii, 117, 120, 121, 136,

515, 570
maybe_unused, ii, xiii, 117, 119, 517, 570
nodiscard, ii, xiii, 116, 117, 118, 119, 517,

570
attribute declaration, 86
attribute prefixed token, 116
attribute token, 116
attributes, 116
auto storage-class specifier, 48, 87, 106, 125,

129, 394, 401, 513
automatic storage duration, 19, 34

backslash character (\), 9, 17, 57
backslash escape sequence (\), 57, 147
backspace, 19
backspace escape sequence (\b), 19, 57
basic character set, 4, 17
basic types, 37
behavior, 3
binary digit, 52
binary prefix, 51
binary streams, 267, 294, 296
bit, 4

high order, 4
low order, 4

bit-field, 91
bitand macro, 184, 411, 513
bitor macro, 184, 411, 513
bitwise operators, 63

AND, 78
AND assignment (&=), 82
complement (~), 72
exclusive OR, 78
exclusive OR assignment (^=), 82
inclusive OR, 79
inclusive OR assignment (|=), 82
shift, 76

blank character, 163
block, 122, 123–125
block scope, 32
block structure, 32
bold type convention, 32
bool macro, 513
BOOL_MAX macro, 411, 436, 513
BOOL_WIDTH macro, 20, 411, 436, 513
boolean type, 43
boolean type and values header, 259, 392
boolean type conversion, 42, 43
bounded undefined behavior, 568
braces punctuator ({}), 93, 95, 111, 123
brackets operator ([]), 66, 72
brackets punctuator ([]), 105, 111
branch cuts, 154
broken-down time, 340, 341, 343–345, 549–551
bsearch function, 311, 312, 426, 487, 497, 513
bsearch_s function, 427, 513, 537, 538
btowc function, 355, 357, 380, 431, 513
BUFSIZ macro, 265, 268, 273, 424, 513
byte, 4, 73
byte input/output functions, 266
byte-oriented stream, 267

c identifier prefix, 326, 327
C program, 9
c16rtomb function, i, 349, 430, 513
c32rtomb function, 350, 430, 513
cabs function, 159, 326, 327, 409, 473, 513
cabs functions, 473

type-generic macro for, 327
cabsf function, 159, 329, 409, 513
cabsl function, 159, 409, 513
cacos function, 155, 327, 408, 473, 474, 513
cacos functions

type-generic macro for, 327
cacosf function, 155, 408, 513
cacosh function, 157, 327, 408, 474, 513
cacosh functions

type-generic macro for, 327
cacoshf function, 157, 408, 513
cacoshl function, 157, 408, 513

580 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

cacosl function, 155, 408, 513
cacospi function, 391, 513
calendar time, 340, 341, 342, 344, 345, 550, 551
call by value, 66
call_once function, 330, 331, 429, 513
calloc function, 306, 307, 426, 487, 496, 503,

513
canonical representation, 22
canonicalize family, 30, 31, 227
canonicalize function, 22, 227, 327, 416, 442,

464, 513
canonicalized128 function, 227, 420, 513
canonicalized32 function, 227, 420, 513
canonicalized64 function, 227, 420, 513
canonicalizef function, 227, 416, 513
canonicalizel function, 227, 416, 513
carg function, 160, 329, 409, 473, 479, 513
carg functions, 473
carg type-generic macro, 327
carg type-generic macro, 479
cargf function, 160, 409, 513
cargl function, 160, 409, 513
carriage return, 19
carriage-return escape sequence (\r), 19, 57,

165
carries a dependency, 15
case label, 122, 124
case mapping functions

character, 165
wide character, 389

extensible, 389
casin function, 156, 327, 408, 473, 513
casin functions, 473

type-generic macro for, 327
casinf function, 156, 408, 513
casinh function, 157, 327, 408, 473, 475, 513
casinh functions

type-generic macro for, 327
casinhf function, 157, 408, 513
casinhl function, 157, 408, 513
casinl function, 156, 408, 513
casinpi function, 391, 513
cast, 74
cast expression, 73
cast operator (()), 74
catan function, 156, 327, 408, 473, 513
catan functions, 473

type-generic macro for, 327
catanf function, 156, 408, 513
catanh function, 157, 158, 327, 408, 473, 475,

513
catanh functions

type-generic macro for, 327
catanhf function, 157, 408, 513
catanhl function, 157, 408, 513
catanl function, 156, 408, 513

catanpi function, 391, 513
cbrt function, i, 65, 213, 214, 328, 414, 457, 513
cbrt type-generic macro, 327
cbrtd128 function, 214, 418, 513
cbrtd32 function, 214, 418, 513
cbrtd64 function, 214, 418, 513
cbrtf function, 65, 214, 328, 414, 513
cbrtl function, 65, 214, 328, 414, 513
ccompoundn function, 391, 513
ccos function, 156, 327, 408, 473, 513
ccos functions, 473

type-generic macro for, 327
ccosf function, 156, 408, 513
ccosh function, 158, 327, 408, 473, 475, 476,

513
ccosh functions

type-generic macro for, 327
ccoshf function, 158, 408, 513
ccoshl function, 158, 408, 513
ccosl function, 156, 408, 513
ccospi function, 391, 513
ceil function, 193, 219, 415, 441, 460, 461, 462,

482, 513
ceil type-generic macro, 327
ceild128 function, 31, 219, 419, 513
ceild32 function, 31, 219, 419, 513
ceild64 function, 31, 219, 419, 513
ceilf function, 219, 415, 513
ceill function, 219, 223, 415, 513
cerf function, 391, 513
cerfc function, 391, 513
cexp function, 158, 159, 327, 408, 477, 478, 513
cexp functions

type-generic macro for, 327
cexp10 function, 391, 513
cexp10m1 function, 391, 513
cexp2 function, 391, 513
cexp2m1 function, 391, 513
cexpf function, 158, 408, 513
cexpl function, 159, 408, 513
cexpm1 function, 391, 513
change history, 570
char type, 88
char type conversion, 42–44
char16_t type, i, 57–59, 112, 146, 254, 348, 349,

430, 499, 513
char32_t type, 57–59, 112, 146, 254, 348, 349,

350, 430, 499, 513
CHAR_BIT macro, 20, 21, 39, 90, 411, 436, 513
CHAR_MAX macro, 21, 188, 189, 411, 436, 513
CHAR_MIN macro, 21, 37, 411, 436, 513
CHAR_WIDTH macro, 21, 411, 436, 513
character, 4
character array initialization, 112
character case mapping functions, 165

wide character, 389

Index 581

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

extensible, 389
character classification functions, 163

wide character, 385
extensible, 388

character constant, 10, 17, 56
character display semantics, 19
character handling header, 163, 187, 391
character input/output functions, 291, 534

wide character, 364
character sets, 17
character string literal, see string literal
character type conversion, 42
character types, 37, 112
characterisitics of integer types header, 185
characteristics of floating types header, 180,

391
cimag function, 160, 161, 162, 409, 471, 473,

479, 513
cimag functions, 473
cimag type-generic macro, 327
cimag type-generic macro, 479
cimagf function, 160, 409, 513
cimagl function, 160, 329, 409, 513
cis function, 473
classification functions

character, 163
floating-point, 196
wide character, 385

extensible, 388
clearerr function, 297, 425, 513
clgamma function, 391, 513
clock function, 340, 341, 429, 503, 513
clock_t type, 340, 341, 429, 503, 513
CLOCKS_PER_SEC macro, 340, 341, 429, 513
clog function, 159, 327, 408, 478, 513
clog functions

type-generic macro for, 327
clog10 function, 391, 513
clog10p1 function, 391, 513
clog1p function, 391, 513
clog2 function, 391, 513
clog2p1 function, 391, 513
clogf function, 159, 329, 408, 513
clogl function, 159, 409, 513
clogp1 function, 391, 513
closing, 268
CMPLX macro, 154, 160, 161, 409, 513
CMPLXF macro, 160, 161, 409, 513
CMPLXL macro, 160, 161, 409, 513
cnd_ identifier prefix, 393, 506
cnd_broadcast function, 331, 332, 333, 429,

507
cnd_destroy function, 332, 429, 507
cnd_init function, 332, 429, 507
cnd_signal function, 332, 333, 429, 507
cnd_t type, 330, 331–333, 429, 507

cnd_timedwait function, 332, 333, 429, 507
cnd_wait function, 332, 333, 429, 507
coefficient, 29
collating sequences, 17
colon punctuator (:), 90
comma operator (,), 15, 83
comma punctuator (,), 65, 86, 90, 93, 95, 111
command processor, 310
comment delimiters (/* */ and //), 61
comments, 9, 47, 61
common definitions header, 260
common extensions, 504
common initial sequence, 68
common real type, 44
common warnings, 10, 484
comparison functions, 311, 313, 537, 538

string, 320
wide string, 374

comparison macros, 237
comparison, pointer, 77
compatible type, 40, 89, 97, 104
compl macro, 184, 411, 513
complement operator (~), 72
complete, 35
complete type, 35
complex arithmetic header, 154, 391
complex macro, 113, 154–161, 329, 408, 409,

470, 471, 487, 513
complex numbers, 37, 469
complex type conversion, 44
complex type domain, 37
complex types, 37, 88, 147, 469
compliance, see conformance
components of time, 340, 548
composite type, 40
compound assignment, 82
compound literal, 69
compound literals, 69
compound statement, 123
compound-literal operator ((){}), 69
compoundn function, 214, 414, 445, 458, 513
compoundn type-generic macro, 327
compoundnd128 function, 214, 419, 513
compoundnd32 function, 214, 419, 513
compoundnd64 function, 214, 419, 513
compoundnf function, 214, 414, 513
compoundnl function, 214, 414, 513
concatenation functions

string, 319, 544
wide string, 373, 561

concatenation, preprocessing, see preprocess-
ing concatenation

conceptual models, 9
conditional features, 8, 37, 38, 105, 146, 149,

439, 469, 520, 568
conditional inclusion, 134

582 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

conditional operator (?:), 15, 80
conflict, 14
conformance, 8
conforming freestanding implementation, 8
conforming hosted implementation, 8
conforming implementation, 8
conforming program, 8
conj function, 161, 409, 473–478, 513
conj functions, 473
conj type-generic macro, 327
conjf function, 161, 409, 513
conjl function, 161, 409, 513
const type qualifier, 96
const-qualified type, 38, 45, 97
constant expression, 84, 447
constants, 51

as primary expression, 64
character, 56
enumeration, 32, 56
floating, 53
hexadecimal, 51
integer, 51
octal, 51

constraint, 5, 8
constraint_handler_t type, 427, 513, 535
consume operation, 14
content of structure/union/enumeration, 95
contiguity of allocated storage, 306
continue, 48, 126, 127, 394, 405, 513
contracted, 64
contracted expression, 64, 196, 446
control character, 17, 163
control wide character, 385
conversion, 42

arithmetic operands, 42
array argument, 130
array parameter, 130
arrays, 45
boolean, 43
boolean, characters, and integers, 42
by assignment, 81
by return statement, 128
complex types, 44
explicit, 42
function, 46
function argument, 67, 130
function designators, 45
function parameter, 130
imaginary, 469
imaginary and complex, 469
implicit, 42
lvalues, 45
pointer, 45, 46
real and complex, 44
real and imaginary, 469
real floating and integer, 43, 445

real floating types, 44
signed and unsigned integers, 43
usual arithmetic, see usual arithmetic con-

versions
void type, 46

conversion functions
multibyte/wide character, 314, 539

extended, 380, 564
restartable, 348, 381, 564

multibyte/wide string, 315, 539
restartable, 382, 565

numeric, 182, 299
wide string, 182, 368

single byte/wide character, 380
time, 343, 548

wide character, 379
conversion specifier, 274, 281, 352, 357

%A, 277, 345, 355
%B, 345
%C, 345
%D, 345
%E, 276, 354
%F, 276, 345, 354
%G, 276, 345, 354
%H, 346
%I, 346
%M, 346
%R, 346
%S, 346
%T, 346
%U, 346
%V, 346
%W, 346
%X, 276, 346, 354
%Y, 346
%Z, 346
%[, 284, 360
%%, 278, 284, 356, 360
%a, 277, 283, 345, 355, 359
%b, 345
%c, 278, 283, 345, 355, 359
%d, 276, 283, 345, 354, 359
%e, 276, 283, 345, 354, 359
%f, 276, 283, 354, 359
%g, 276, 283, 345, 354, 359
%h, 346
%i, 276, 354
%j, 346
%m, 346
%n, 278, 284, 346, 356, 360
%o, 276, 283, 354, 359
%p, 278, 284, 346, 356, 360
%r, 346
%s, 278, 283, 356, 359
%t, 346
%u, 276, 283, 346, 354, 359

Index 583

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

%w, 346
%x, 276, 283, 346, 354, 359
%y, 346
%z, 346

conversion state, 314, 348–350, 380, 381–383,
539, 564–566

conversion state functions, 380
copying functions

string, 318, 541
wide string, 372, 558

copysign function, 161, 224, 225, 415, 442, 457,
462, 463, 471, 472, 513

copysign type-generic macro, 327
copysignd128 function, 225, 420, 513
copysignd32 function, 225, 420, 513
copysignd64 function, 225, 420, 513
copysignf function, 225, 415, 513
copysignl function, 225, 329, 415, 513
correctly rounded result, 5
corresponding real type, 37
corresponding unsigned integer type, 35
cos function, 201, 327, 412, 445, 452, 479, 513
cos type-generic macro, 327
cos type-generic macro, 479
cosd128 function, 201, 417, 513
cosd32 function, 201, 417, 513
cosd64 function, 201, 417, 513
cosf function, 201, 412, 513
cosh function, 205, 327, 413, 445, 454, 479, 513
cosh type-generic macro, 327
cosh type-generic macro, 479
coshd128 function, 205, 417, 513
coshd32 function, 205, 417, 513
coshd64 function, 205, 417, 513
coshf function, 205, 413, 513
coshl function, 205, 413, 513
cosl function, 201, 412, 513
cospi function, 203, 412, 445, 453, 513
cospi type-generic macro, 327
cospid128 function, 203, 417, 513
cospid32 function, 203, 417, 513
cospid64 function, 203, 417, 513
cospif function, 203, 412, 513
cospil function, 203, 412, 513
cpow function, 159, 327, 409, 478, 513
cpow functions

type-generic macro for, 327
cpowf function, 159, 409, 513
cpowl function, 159, 329, 409, 513
cpown function, 391, 514
cpowr function, 391, 514
cproj function, 161, 409, 473, 514
cproj functions, 473
cproj type-generic macro, 327
cprojf function, 161, 329, 409, 514
cprojl function, 161, 329, 409, 514

cr_ identifier prefix, 392
CR_DECIMAL_DIG macro, 23, 445, 446, 514
creal function, 160, 161, 162, 329, 409, 471,

473, 479
creal functions, 473
creal type-generic macro, 327
creal type-generic macro, 479
crealf function, 161, 409
creall function, 161, 409
creating, 268
critical undefined behavior, 568
crootn function, 391
crsqrt function, 391
csin function, 156, 157, 327, 408, 473, 514
csin functions, 473

type-generic macro for, 327
csinf function, 156, 408, 514
csinh function, 158, 327, 408, 473, 476, 514
csinh functions

type-generic macro for, 327
csinhf function, 158, 408, 514
csinhl function, 158, 408, 514
csinl function, 156, 408, 514
csinpi function, 391, 514
csqrt function, 160, 327, 329, 409, 473, 478,

514
csqrt functions

type-generic macro for, 327
csqrtf function, 160, 409, 514
csqrtl function, 160, 409, 514
ctan function, 157, 327, 408, 473, 514
ctan functions, 473

type-generic macro for, 327
ctanf function, 157, 408, 514
ctanh function, 158, 327, 408, 473, 477, 514
ctanh functions

type-generic macro for, 327
ctanhf function, 158, 408, 514
ctanhl function, 158, 408, 514
ctanl function, 157, 408, 514
ctanpi function, 391, 514
ctgamma function, 391, 514
ctime function, 343, 344, 430, 514
ctime_r function, xiii, 344, 430, 514, 570
ctime_s function, 430, 514, 548, 550
currency_symbol structure member, 186, 188,

190, 514
current object, 112
CX_LIMITED_RANGE pragma, viii, 144, 145,

155, 406, 408, 470, 493, 514

D format modifier, 276, 282, 353, 358
D identifier prefix, 411
d identifier prefix, 327, 328
d-wchar sequence, 303, 370
d128 identifier prefix, 328, 392
D128_SNAN macro, 28

584 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

d32 identifier prefix, 328, 392
D32_SNAN macro, 28
d32add macro, 30, 173, 328, 514
d32add type-generic macro, 328
d32addd128 function, 232, 421, 514
d32addd64 function, 232, 421, 514
d32div macro, 30, 173, 328, 514
d32div type-generic macro, 328
d32divd128 function, 233, 421, 514
d32divd64 function, 233, 329, 421, 514
d32fma macro, 30, 173, 328, 514
d32fma type-generic macro, 328
d32fmad128 function, 234, 421, 514
d32fmad64 function, 234, 421, 514
d32mul macro, 30, 173, 328, 514
d32mul type-generic macro, 328
d32muld128 function, 233, 421, 514
d32muld64 function, 233, 421, 514
d32sqrt macro, 30, 173, 328, 514
d32sqrt type-generic macro, 328
d32sqrtd128 function, 234, 421, 514
d32sqrtd64 function, 234, 421, 514
d32sub macro, 30, 173, 328, 514
d32sub type-generic macro, 328
d32subd128 function, 232, 329, 421, 514
d32subd64 function, 232, 421, 514
d64 identifier prefix, 326, 328, 392
D64_SNAN macro, 28
d64add macro, 30, 173, 328, 514
d64add type-generic macro, 328
d64addd128 function, 232, 329, 421, 514
d64div macro, 30, 173, 328, 514
d64div type-generic macro, 328
d64divd128 function, 233, 421, 514
d64fma macro, 30, 173, 328, 514
d64fma type-generic macro, 328
d64fmad128 function, 234, 329, 421, 514
d64mul macro, 30, 173, 328, 514
d64mul type-generic macro, 328
d64muld128 function, 233, 421, 514
d64sqrt macro, 30, 173, 328, 514
d64sqrt type-generic macro, 328
d64sqrtd128 function, 234, 421, 514
d64sub macro, 30, 173, 328, 514
d64sub type-generic macro, 328
d64subd128 function, 232, 421, 514
dadd macro, 328, 514
dadd type-generic macro, 328
daddl function, 232, 329, 416, 441, 514
data race, 16, 151, 305, 306, 310, 324, 343, 348,

381, 383, 537
data stream, see streams
date and time header, 330, 340, 393, 548
Daylight Saving Time, 340
DBL_ identifier prefix, 391, 506
DBL_DECIMAL_DIG macro, 25, 27, 410, 437, 507

DBL_DIG macro, 25, 27, 410, 437, 507
DBL_EPSILON macro, 26, 27, 410, 437, 481, 507
DBL_HAS_SUBNORM macro, 23, 27, 410, 507
DBL_IS_IEC_60559 macro, 23, 27, 410
DBL_MANT_DIGmacro, 24, 27, 410, 437, 481, 507
DBL_MAX macro, 26, 27, 410, 437, 481, 507
DBL_MAX_10_EXP macro, 25, 27, 410, 437, 507
DBL_MAX_EXP macro, 25, 27, 410, 437, 481, 507
DBL_MIN macro, 26, 27, 410, 437, 481, 507
DBL_MIN_10_EXP macro, 25, 27, 410, 437, 507
DBL_MIN_EXP macro, 25, 27, 410, 437, 481, 507
DBL_NORM_MAX macro, ii, 26, 410, 437, 507
DBL_SNAN macro, 24, 410
DBL_TRUE_MIN macro, 26, 27, 410, 507
DD format modifier, 276, 283, 354, 359
ddiv macro, 328, 514
ddiv type-generic macro, 328
ddivl function, 233, 416, 441, 444, 514
DEC identifier prefix, 411
DEC128_ identifier prefix, 28, 391, 506
DEC128_EPSILON macro, 29, 438, 507
DEC128_MANT_DIG macro, 28, 438, 507
DEC128_MAX macro, 29, 438, 507
DEC128_MAX_EXP macro, 29, 438, 507
DEC128_MIN macro, 29, 438, 507
DEC128_MIN_EXP macro, 29, 438, 507
DEC128_TRUE_MIN macro, 29, 438, 507
DEC32_ identifier prefix, 28, 391, 506
DEC32_EPSILON macro, 29, 437, 507
DEC32_MANT_DIG macro, 28, 437, 507
DEC32_MAX macro, 29, 437, 507
DEC32_MAX_EXP macro, 29, 437, 507
DEC32_MIN macro, 29, 437, 507
DEC32_MIN_EXP macro, 29, 437, 507
DEC32_TRUE_MIN macro, 29, 437, 507
DEC64_ identifier prefix, 28, 391, 506
DEC64_EPSILON macro, 29, 437, 507
DEC64_MANT_DIG macro, 28, 438, 507
DEC64_MAX macro, 29, 438, 507
DEC64_MAX_EXP macro, 29, 438, 507
DEC64_MIN macro, 29, 438, 507
DEC64_MIN_EXP macro, 29, 438, 507
DEC64_TRUE_MIN macro, 29, 438, 508
DEC_ identifier prefix, 391, 506
DEC_EVAL_METHOD macro, iii, 23, 28, 55, 84,

192, 436, 500, 501, 508
DEC_INFINITY macro, 28, 193, 235, 411, 508
DEC_NAN macro, 28, 193, 411, 508
decimal constant, 51
decimal digit, 17
decimal floating types, 37
decimal re-encoding functions, 236
decimal rounding control pragma, 172
decimal-point character, 149, 188
decimal128 suffix, dl or DL, 54
decimal32 suffix, df or DF, 54

Index 585

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

decimal64 suffix, dd or DD, 54
DECIMAL_DIG macro, i, xiii, 23, 25, 391, 410,

437, 514, 570
decimal_point structure member, 186, 188,

514
declaration specifier, 86
declaration specifiers, 86
declarations, 86

function, 107
pointer, 104
structure/union, 89
typedef, 109

declarator, 103
abstract, 109

declarator type derivation, 38, 104
decodebin family, 31, 237, 441, 514
decodebind family, 237, 514
decodebind128 function, 237, 421, 514
decodebind32 function, 237, 421, 514
decodebind64 function, 237, 326, 328, 421,

514
decodedec family, 31, 236, 441, 514
decodedecd family, 236, 237, 514
decodedecd128 function, 236, 421, 514
decodedecd32 function, 236, 421, 514
decodedecd64 function, 236, 326, 328, 421,

514
decrement operators, see arithmetic operators,

increment and decrement
default argument promotions, 67
default initialization, 112
default label, 122, 124
DEFAULT pragma, 514
define preprocessing directive, 138
defined operator, 134, 135, 145, 492, 514
definition, 86

function, 129
dependency-ordered before, 15
deprecated attribute, ii, xiii, 87, 91, 92, 117,

119, 120, 514, 570
dereference, see indirection operator
derived declarator types, 38
derived types, 37
designated initializer, 112
destringizing, 147
device input/output, 12
dfma macro, 328, 514
dfma type-generic macro, 328
dfmal function, 234, 329, 416, 441, 514
diagnostic message, 5, 10
diagnostics, 10
diagnostics header, 153
difftime function, 341, 429, 514
digit, 163
digits, 17
digraphs, 60

direct input/output functions, 294
display device, 19
div function, 299, 313, 426, 514
div_t type, 115, 299, 313, 426, 514
divide and round to narrower type, 233
division assignment operator (/=), 82
division operator (/), 74, 470
dmul macro, 328, 514
dmul type-generic macro, 328
dmull function, 233, 416, 441, 514
documentation of implementation, 8
domain error, 195, 199, 200, 202–205, 209–218,

220, 221, 224
dot operator (.), 67
double _Complex type, 37
double _Complex type conversion, 44
double _Imaginary type, 469
double type, 36, 88
double type conversion, 43, 44
double-precision arithmetic, 13
double-quote escape sequence (\"), 57, 59, 147
double_t type, 192, 412, 448, 501, 505, 514
dsqrt macro, 328, 514
dsqrt type-generic macro, 328
dsqrtl function, 234, 416, 441, 514
dsub macro, 328, 514
dsub type-generic macro, 328
dsubl function, 232, 416, 441, 514
dynamic floating-point environment, 168

E format modifier, 346
E identifier prefix, 167, 391, 506
EDOM macro, 167, 195, 409, 508, see also domain

error
effective type, 63
EILSEQ macro, 167, 269, 349, 350, 365, 382–384,

409, 508, see also encoding error
element type, 37
elif preprocessing directive, 135
ellipsis punctuator (...), 67, 107, 138
else preprocessing directive, 136
else statement, 124
empty statement, 123
encodebin family, 31, 237, 441, 514
encodebind family, 237, 514
encodebind128 function, 237, 421, 514
encodebind32 function, 237, 421, 514
encodebind64 function, 237, 326, 328, 421,

514
encodedec family, 31, 236, 441, 514
encodedecd family, 236, 514
encodedecd128 function, 236, 421, 514
encodedecd32 function, 236, 421, 514
encodedecd64 function, 236, 326, 328, 421,

514
encoding error, 269, 279, 281, 282, 287–290,

349–351, 357, 358, 361–366, 382–384,

586 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

540, 541, 564–566
end-of-file, 351
end-of-file indicator, 265, 272, 291, 292, 294,

296, 297, 365, 367
end-of-file macro, see EOF macro
end-of-line indicator, 17
endif preprocessing directive, 136
enum type, 37, 88, 93
enumerated type, 37
enumeration, 37, 93
enumeration constant, 32, 56
enumeration content, 95
enumeration members, 93
enumeration specifiers, 93
enumeration tag, 33, 95
enumerator, 93
environment, 9
environment functions, 308, 536
environment list, 310, 537
environmental considerations, 17
environmental limits, 19, 240, 268, 269, 271,

279, 305, 308, 309, 357, 524
EOF macro, 163, 265, 271, 285, 287–294, 351,

360, 362–364, 366, 380, 424, 493, 508,
527, 528, 530–532, 534, 552, 554–558

EOL macro, 508
epoch, 342
equal-sign punctuator (=), 86, 93, 111
equal-to operator, see equality operator
equality expressions, 77
equality operator (==), 77
ERANGE macro, 167, 182, 183, 195, 196, 302, 303,

305, 370–372, 409, 502, 503, 508, see
also range error, pole error

erf function, 217, 414, 460, 514
erf type-generic macro, 327
erfc function, 218, 414, 460, 514
erfc type-generic macro, 327
erfcd128 function, 218, 419, 514
erfcd32 function, 218, 419, 514
erfcd64 function, 218, 419, 514
erfcf function, 218, 414, 514
erfcl function, 218, 414, 514
erfd128 function, 217, 419, 514
erfd32 function, 217, 419, 514
erfd64 function, 217, 419, 514
erff function, 217, 414, 514
erfl function, 217, 414, 514
errno identifier, 150, 154, 167, 182, 183, 195,

196, 243, 269, 295–299, 302, 303, 305,
324, 349, 350, 365, 370–372, 382–384,
409, 493, 494, 502, 503, 506, 514, 521,
522, 547

errno_t type, 409, 425, 427, 428, 430, 432, 514,
521, 522, 523–525, 535, 536, 538–540,
541, 542–545, 547, 548, 549, 550, 551,

558–561, 564–566
error

domain, see domain error
encoding, see encoding error
pole, see pole error
range, see range error

error conditions, 195
error functions, 217, 460
error indicator, 265, 272, 291–293, 296–298, 365
error preprocessing directive, 8, 144
error-handling functions, 297, 324, 547, 548
errors header, 167, 391
escape character (\), 57
escape sequences, 17, 19, 57, 148
evaluation format, 23, 55, 192
evaluation method, 23, 64, 448
evaluation of expression, 12
evaluation order, see order of evaluation
exceptional condition, 63
excess precision, 23, 45, 128
excess range, 23, 45, 128
exclusive OR operators

bitwise (^), 78
bitwise assignment (^=), 82

executable program, 9
execution character set, 17
execution environment, 9, 10, see also environ-

mental limits
execution sequence, 11, 122
EXIT_FAILURE macro, 299, 309, 426, 508
EXIT_SUCCESS macro, 299, 309, 336, 426, 508
exp function, 206, 208, 257, 327, 329, 413, 444,

455, 515
exp type-generic macro, 327
exp10 function, 206, 207, 413, 444, 455, 515
exp10 type-generic macro, 327
exp10d128 function, 207, 418, 515
exp10d32 function, 207, 417, 515
exp10d64 function, 207, 417, 515
exp10f function, 207, 413, 515
exp10l function, 207, 413, 515
exp10m1 function, 207, 413, 444, 455, 515
exp10m1 type-generic macro, 327
exp10m1d128 function, 207, 418, 515
exp10m1d32 function, 207, 418, 515
exp10m1d64 function, 207, 418, 515
exp10m1f function, 207, 413, 515
exp10m1l function, 207, 413, 515
exp2 function, 207, 413, 444, 455, 515
exp2 type-generic macro, 327
exp2d128 function, 207, 418, 515
exp2d32 function, 207, 418, 515
exp2d64 function, 207, 418, 515
exp2f function, 207, 413, 515
exp2l function, 207, 413, 515
exp2m1 function, 208, 413, 444, 455, 515

Index 587

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

exp2m1 type-generic macro, 327
exp2m1d128 function, 208, 418, 515
exp2m1d32 function, 208, 418, 515
exp2m1d64 function, 208, 418, 515
exp2m1f function, 208, 413, 515
exp2m1l function, 208, 413, 515
expd128 function, 206, 417, 515
expd32 function, 206, 417, 515
expd64 function, 206, 329, 417, 515
expf function, 206, 413, 515
expl function, 206, 413, 515
explicit conversion, 42
expm1 function, 208, 413, 444, 455, 515
expm1 type-generic macro, 327
expm1d128 function, 208, 418, 515
expm1d32 function, 208, 418, 515
expm1d64 function, 208, 418, 515
expm1f function, 208, 413, 515
expm1l function, 208, 413, 515
exponent part, 54
exponential functions

complex, 158, 477
real, 206, 455

expression, 63
assignment, 81
cast, 73
constant, 84
evaluation, 12
full, 122
order of evaluation, see order of evalua-

tion
parenthesized, 64
primary, 64
unary, 71
void, 46

expression statement, 123
extended alignment, 41
extended character set, 4, 17, 18
extended characters, 17
extended integer types, 35, 42, 53, 261
extended multibyte and wide character utili-

ties header, 351, 393
extended multibyte/wide character conver-

sion utilities, 380, 564
extended signed integer types, 35
extended unsigned integer types, 35
extensible wide character case mapping func-

tions, 389
extensible wide character classification func-

tions, 388
extern storage-class specifier, 33, 48, 73, 87,

97, 99, 101, 102, 105, 106, 110, 129,
130, 132, 152, 394, 401, 490, 505, 515

external definition, 129
external identifiers, underscore, 150
external linkage, 33

external name, 49
external object definitions, 131

f identifier suffix, 154, 192, 326–328, 391, 392
fabs function, 214, 326, 327, 414, 442, 458, 462,

463, 471, 479, 481, 482, 515
fabs type-generic macro, 327
fabs type-generic macro, 479
fabsd128 function, 214, 419, 515
fabsd32 function, 214, 419, 515
fabsd64 function, 214, 419, 515
fabsf function, 214, 414, 481, 515
fabsl function, 214, 414, 481, 515
fadd function, 232, 416, 441, 515
fadd type-generic macro, 328
faddl function, 232, 416, 441, 515
fallthrough attribute, ii, xiii, 117, 120, 121,

136, 515, 570
fallthrough declaration, 120
false macro, ii, iii, 235, 259, 392, 423, 450, 480,

515
family

canonicalize, 31, 227
decodebin, 31, 237
decodedec, 31, 236
encodebin, 31, 237
encodedec, 31, 236
modf, 31, 213, 326
strto, 31, 302
wcsto, 31, 370

fclose function, 271, 424, 515
fdim function, 227, 228, 416, 464, 515
fdim type-generic macro, 327
fdimd128 function, 227, 420, 515
fdimd32 function, 227, 420, 515
fdimd64 function, 227, 420, 515
fdimf function, 227, 416, 515
fdiml function, 227, 416, 515
fdiv function, 233, 329, 416, 441, 515
fdiv type-generic macro, 328
fdivl function, 233, 416, 441, 515
FE_ identifier prefix, 169, 170, 391, 506
FE_ALL_EXCEPT macro, 83, 169, 410, 483, 508
FE_DEC_DOWNWARD macro, 169, 173, 410, 444,

508
FE_DEC_DOWNWARD pragma, 144
FE_DEC_DYNAMIC pragma, 144, 173, 508
fe_dec_getround function, 170, 176, 177, 410,

444, 515
fe_dec_setround function, 170, 173, 177, 178,

410, 444, 515
FE_DEC_TONEAREST macro, 169, 170, 173, 410,

444, 508
FE_DEC_TONEAREST pragma, 144
FE_DEC_TONEARESTFROMZERO macro, 169, 173,

410, 444, 508
FE_DEC_TONEARESTFROMZERO pragma, 144

588 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

FE_DEC_TOWARDZEROmacro, 169, 173, 410, 444,
508

FE_DEC_TOWARDZERO pragma, 144
FE_DEC_UPWARD macro, 169, 173, 410, 444, 508
FE_DEC_UPWARD pragma, 144
FE_DFL_ENV macro, 170, 410, 508
FE_DFL_MODE macro, 169, 177, 443, 508
FE_DIVBYZERO macro, 169, 195, 410, 483, 508
FE_DOWNWARD macro, 169, 410, 443, 508
FE_DOWNWARD pragma, 144
FE_DYNAMIC pragma, 144, 171, 172, 410, 508
FE_INEXACT macro, 169, 173, 410, 462, 508
FE_INVALID macro, 169, 176, 195, 410, 483, 508
FE_OVERFLOW macro, 169, 173, 176, 195, 410,

483, 508
FE_SNANS_ALWAYS_SIGNAL macro, 440, 443,

461, 464, 508
FE_TONEAREST macro, 169, 410, 443, 508
FE_TONEAREST pragma, 144
FE_TONEARESTFROMZERO macro, i, 169, 443,

508
FE_TONEARESTFROMZERO pragma, 144
FE_TOWARDZERO macro, 169, 410, 443, 457, 462,

508
FE_TOWARDZERO pragma, 144
FE_UNDERFLOW macro, 169, 179, 410, 483, 508
FE_UPWARD macro, 8, 169, 410, 443, 461, 508
FE_UPWARD pragma, 144
feature test macro, 150, 168, 192, 261, 299, 326,

340
feclearexcept function, 83, 173, 174, 176,

179, 410, 443, 462, 483, 515
fegetenv function, 178, 179, 410, 443, 493, 515
fegetexceptflag function, 173, 174, 175, 410,

443, 493, 501, 515
fegetmode function, 176, 177, 410, 443, 515
fegetround function, 169, 172, 176, 177, 410,

443, 457, 461, 515
feholdexcept function, 83, 178, 179, 410, 443,

461, 493, 515
femode_t type, 168, 169, 176, 177, 410, 515
fence, 14, 253

acquire, 253
release, 253

FENV_ACCESS pragma, viii, 83, 144, 145, 170,
171, 176, 177, 179, 406, 410, 446–451,
457, 461, 463, 486, 493, 500, 515

FENV_DEC_ROUND pragma, viii, 55, 144, 145,
170, 172, 173, 406, 410, 444, 515

FENV_ROUND pragma, viii, 144, 145, 170, 171,
172, 173, 406, 410, 443, 515

fenv_t type, 83, 168, 170, 178, 179, 410, 461,
515

feof function, 285, 291, 297, 365, 425, 515
feraiseexcept function, 173, 174, 410, 448,

483, 486, 501, 515

ferror function, 285, 291, 298, 365, 425, 515
fesetenv function, 171, 179, 410, 443, 493, 515
fesetexcept function, 174, 175, 410, 443, 515
fesetexceptflag function, 173, 175, 410, 443,

493, 515
fesetmode function, 171, 176, 177, 410, 443,

515
fesetround function, 8, 23, 169, 171, 172, 176,

177, 178, 410, 443, 457, 461, 462, 515
fetestexcept function, 173, 175, 176, 410,

443, 462, 483, 515
fetestexceptflag function, 175, 410, 443,

515
feupdateenv function, 83, 171, 178, 179, 410,

443, 462, 493, 515
fexcept_t type, 168, 174, 175, 410, 493, 515
fflush function, 271, 272, 424, 495, 515
ffma function, 233, 416, 441, 515
ffma type-generic macro, 328
ffmal function, 233, 416, 441, 515
fgetc function, 266, 269, 291, 292, 295, 425,

515
fgetpos function, 267, 268, 295, 296, 425, 486,

496, 503, 515
fgets function, 266, 291, 425, 496, 515, 534
fgetwc function, ii, 266, 269, 364, 365, 366, 431,

515
fgetws function, 266, 365, 431, 496, 515
field width, 274, 352
file, 268

access functions, 271, 524
name, 268
operations, 269, 523
position indicator, 265, 267, 268, 272, 291,

294–297, 365, 367
positioning functions, 295

file name, 268
file position indicator, 268
file scope, 32, 129
FILE type, 265, 266, 268, 270–274, 281, 288,

289, 291, 292, 294–298, 352, 357, 362,
365–367, 424–426, 430–432, 495, 515,
523–526, 530, 531, 551, 552, 554

FILENAME_MAX macro, 265, 424, 515
finite number, 469
flags, 274, 352, see also floating-point status

flag
flexible array member, 91
float _Complex type, 37
float _Complex type conversion, 44
float _Imaginary type, 469
float type, 36, 88
float type conversion, 43, 44
float_t type, 192, 412, 448, 501, 505, 515
floating constant, 53
floating point multiply-add and round to nar-

Index 589

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

rower type, 233
floating suffix, f or F, 54
floating type conversion, 43, 44, 445
floating types, 37, 148
floating-point accuracy, 22, 55, 64, 302, 445, see

also contracted expression
floating-point arithmetic functions, 192, 451
floating-point classification functions, 196
floating-point control mode, 168, 448
floating-point environment, 168, 446, 448

dynamic, 168
floating-point environment header, 168, 391
floating-point exception, 168, 173, 451
floating-point number, 22, 36
floating-point rounding mode, 23
floating-point status flag, 168, 448
floor function, 193, 219, 415, 441, 461, 482,

515
floor type-generic macro, 327
floord128 function, 219, 419, 515
floord32 function, 219, 419, 515
floord64 function, 219, 419, 515
floorf function, 219, 415, 515
floorl function, 219, 415, 515
FLT_ identifier prefix, 391, 506
FLT_DECIMAL_DIG macro, 25, 26, 27, 410, 437,

508
FLT_DIG macro, 25, 26, 27, 410, 437, 508
FLT_EPSILON macro, 26, 27, 410, 437, 481, 508
FLT_EVAL_METHOD macro, i, 23, 28, 83, 84, 192,

410, 436, 468, 500, 501, 508
FLT_HAS_SUBNORM macro, 23, 27, 410, 508
FLT_IS_IEC_60559 macro, 23, 27, 410
FLT_MANT_DIG macro, 24, 26, 27, 410, 437, 481,

508
FLT_MAX macro, 26, 27, 410, 437, 481, 508
FLT_MAX_10_EXP macro, 25, 27, 410, 437, 508
FLT_MAX_EXP macro, 25, 27, 410, 437, 481, 508
FLT_MIN macro, 26, 27, 410, 437, 481, 508
FLT_MIN_10_EXP macro, 25, 27, 410, 437, 508
FLT_MIN_EXP macro, 25, 26, 27, 410, 437, 481,

508
FLT_NORM_MAX macro, 26, 410, 437, 508
FLT_RADIX macro, 23, 24, 25–28, 54, 173, 178,

213, 277–279, 302, 355, 356, 369, 410,
437, 443, 481, 508

FLT_ROUNDS macro, 23, 169, 410, 436, 440, 481,
482, 500, 508

FLT_SNAN macro, 24, 410
FLT_TRUE_MIN macro, 26, 27, 410, 508
fma function, 194, 231, 232, 416, 441, 465, 515
fma type-generic macro, 327
fmad128 function, 232, 421, 515
fmad32 function, 232, 420, 515
fmad64 function, 232, 420, 515
fmaf function, 231, 416, 515

fmal function, 194, 231, 416, 515
fmax function, 228, 231, 416, 441, 443, 464, 471,

515
fmax type-generic macro, 327
fmaxd128 function, 228, 329, 420, 515
fmaxd32 function, 228, 420, 515
fmaxd64 function, 228, 420, 515
fmaxf function, 228, 416, 515
fmaximum function, 228, 229, 230, 441, 465, 515
fmaximum type-generic macro, 327
fmaximum_mag type-generic macro, 327
fmaximum_mag_num type-generic macro, 327
fmaximum_num type-generic macro, 327
fmaximum_mag function, 229, 231, 441, 465,

515
fmaximum_mag_num function, 229, 231, 441,

465
fmaximum_mag_numd128 function, 231, 515
fmaximum_mag_numd32 function, 231, 515
fmaximum_mag_numd64 function, 231, 515
fmaximum_mag_numf function, 231, 515
fmaximum_mag_numl function, 231, 515
fmaximum_magd128 function, 229, 515
fmaximum_magd32 function, 229, 515
fmaximum_magd64 function, 229, 515
fmaximum_magf function, 229, 515
fmaximum_magl function, 229, 515
fmaximum_num function, 229, 230, 231, 441,

465, 515
fmaximum_numd128 function, 230, 515
fmaximum_numd32 function, 230, 515
fmaximum_numd64 function, 230, 515
fmaximum_numf function, 230, 515
fmaximum_numl function, 230, 515
fmaximumd128 function, 229, 515
fmaximumd32 function, 229, 515
fmaximumd64 function, 229, 515
fmaximumf function, 228, 515
fmaximuml function, 229, 515
fmaxl function, 228, 416, 515
fmin function, 228, 231, 416, 441, 443, 464, 515
fmin type-generic macro, 327
fmind128 function, 228, 420, 515
fmind32 function, 228, 420, 515
fmind64 function, 228, 420, 515
fminf function, 228, 416, 515
fminimum function, 229, 230, 441, 465, 515
fminimum type-generic macro, 327
fminimum_mag type-generic macro, 327
fminimum_mag_num type-generic macro, 327
fminimum_num type-generic macro, 327
fminimum_mag function, 229, 230, 231, 441,

465, 515
fminimum_mag_num function, 230, 231, 441,

465
fminimum_mag_numd128 function, 231, 515

590 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

fminimum_mag_numd32 function, 231, 515
fminimum_mag_numd64 function, 231, 515
fminimum_mag_numf function, 231, 515
fminimum_mag_numl function, 231, 515
fminimum_magd128 function, 230, 515
fminimum_magd32 function, 230, 515
fminimum_magd64 function, 230, 515
fminimum_magf function, 230, 515
fminimum_magl function, 230, 515
fminimum_num function, 229, 230, 231, 441,

465, 515
fminimum_numd128 function, 230, 515
fminimum_numd32 function, 230, 515
fminimum_numd64 function, 230, 515
fminimum_numf function, 230, 515
fminimum_numl function, 230, 515
fminimumd128 function, 229, 515
fminimumd32 function, 229, 515
fminimumd64 function, 229, 515
fminimumf function, 229, 515
fminimuml function, 229, 515
fminl function, 228, 416, 515
fmod function, 223, 224, 415, 462, 463, 482, 502,

515
fmod type-generic macro, 327
fmodd128 function, 223, 420, 515
fmodd32 function, 223, 420, 515
fmodd64 function, 223, 420, 516
fmodf function, 223, 415, 516
fmodl function, 223, 415, 516
fmul function, 233, 416, 441, 516
fmul type-generic macro, 328
fmull function, 233, 416, 441, 516
fopen function, 269, 270, 271, 272, 273, 424,

495, 506, 516, 524, 525
FOPEN_MAX macro, 265, 269, 270, 424, 516, 523
fopen_s function, 425, 516, 523, 524, 525
for statement, 125
form feed, 19
form-feed character, 17, 47
form-feed escape sequence (\f), 19, 57, 165
format conversion of integer types header, 181,

391
format flag

+, 275, 352
-, 275, 352
#, 275, 353
0, 275, 353
space, 275, 352

format modifier
D, 276, 282, 353, 358
DD, 276, 283, 354, 359
E, 346
H, 276, 282, 353, 358
h, 275, 282, 353, 358
hh, 275, 282, 353, 358

j, 275, 282, 353, 358
L, 276, 282, 353, 358
l, 275, 282, 353, 358
ll, 275, 282, 353, 358
O, 346
t, 276, 282, 353, 358
z, 275, 282, 353, 358

formatted input/output functions, 187, 274,
526

wide character, 351, 551
forward reference, 5
FP_ identifier prefix, 193, 391, 506
FP_CONTRACT pragma, viii, 64, 144, 145, 196,

406, 412, 471, 493, 500, 508, see also
contracted expression

FP_FAST_D32ADDD128 macro, 194, 508
FP_FAST_D32ADDD64 macro, 194, 508
FP_FAST_D32DIVD128 macro, 194, 508
FP_FAST_D32DIVD64 macro, 194, 508
FP_FAST_D32FMAD128 macro, 194, 508
FP_FAST_D32FMAD64 macro, 194, 508
FP_FAST_D32MULD128 macro, 194, 508
FP_FAST_D32MULD64 macro, 194, 508
FP_FAST_D32SQRTD128 macro, 194, 508
FP_FAST_D32SQRTD64 macro, 194, 508
FP_FAST_D32SUBD128 macro, 194, 508
FP_FAST_D32SUBD64 macro, 194, 508
FP_FAST_D64ADDD128 macro, 194, 508
FP_FAST_D64DIVD128 macro, 194, 508
FP_FAST_D64FMAD128 macro, 194, 508
FP_FAST_D64MULD128 macro, 194, 508
FP_FAST_D64SQRTD128 macro, 194, 508
FP_FAST_D64SUBD128 macro, 194, 508
FP_FAST_DADDL macro, 194, 508
FP_FAST_DDIVL macro, 194, 508
FP_FAST_DFMAL macro, 194, 508
FP_FAST_DMULL macro, 194, 508
FP_FAST_DSQRTL macro, 194, 508
FP_FAST_DSUBL macro, 194, 508
FP_FAST_FADD macro, 194, 508
FP_FAST_FADDL macro, 194, 508
FP_FAST_FDIV macro, 194, 508
FP_FAST_FDIVL macro, 194, 508
FP_FAST_FFMA macro, 194, 508
FP_FAST_FFMAL macro, 194, 508
FP_FAST_FMA macro, 193, 194, 412, 508
FP_FAST_FMAD128 macro, 194, 508
FP_FAST_FMAD32 macro, 194, 508
FP_FAST_FMAD64 macro, 194, 508
FP_FAST_FMAF macro, 194, 412, 508
FP_FAST_FMAL macro, 194, 412, 508
FP_FAST_FMUL macro, 194, 508
FP_FAST_FMULL macro, 194, 508
FP_FAST_FSQRT macro, 194, 508
FP_FAST_FSQRTL macro, 194, 508
FP_FAST_FSUB macro, 194, 508

Index 591

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

FP_FAST_FSUBL macro, 194, 508
FP_ILOGB0 macro, 194, 195, 209, 412, 508
FP_ILOGBNAN macro, 194, 195, 209, 412, 508
FP_INFINITE macro, 193, 412, 508
FP_INT_DOWNWARD macro, 193, 508
FP_INT_TONEAREST macro, 193, 508
FP_INT_TONEARESTFROMZERO macro, 193, 508
FP_INT_TOWARDZERO macro, 193, 508
FP_INT_UPWARD macro, 193, 223, 508
FP_LLOGB0 macro, 194, 195, 210, 508
FP_LLOGBNAN macro, 194, 195, 210, 508
FP_NAN macro, 193, 412, 508
FP_NORMAL macro, 193, 412, 509
FP_SUBNORMAL macro, 193, 412, 509
FP_ZERO macro, 193, 412, 509
fpclassify macro, 196, 197, 412, 442, 443, 516
fpos_t type, 265, 267, 295, 296, 424, 425, 516
fprintf_s function, 425, 516, 526
fputc function, 19, 266, 269, 291, 292, 295, 425,

516
fputs function, 142, 266, 291, 292, 425, 516
fputwc function, 266, 269, 365, 367, 431, 516
fputws function, 266, 365, 366, 431, 516
frac_digits structure member, 186, 188, 190,

516
fread function, 266, 294, 295, 425, 496, 516
free function, 307, 308, 325, 426, 496, 516
freestanding execution environment, 8, 10
freopen function, 267, 268, 272, 273, 424, 516
freopen_s function, 425, 516, 525, 526
frexp function, 208, 209, 413, 455, 486, 487,

516
frexp type-generic macro, 327
frexpd128 function, 208, 418, 516
frexpd32 function, 208, 418, 516
frexpd64 function, 208, 418, 516
frexpf function, 208, 413, 516
frexpl function, 208, 413, 516
fromfp function, 193, 222, 223, 415, 441, 445,

462, 516
frompfp functions, 222
fromfp type-generic macro, 327
fromfpd128 function, 222, 420, 516
fromfpd32 function, 222, 420, 516
fromfpd64 function, 222, 420, 516
fromfpf function, 222, 415, 516
fromfpl function, 222, 415, 516
fromfpx function, 193, 223, 415, 442, 445, 462,

516
frompfpx functions, 223
fromfpx type-generic macro, 327
fromfpxd128 function, 223, 420, 516
fromfpxd32 function, 223, 420, 516
fromfpxd64 function, 223, 420, 516
fromfpxf function, 223, 415, 516
fromfpxl function, 223, 415, 516

fscanf function, 181, 266, 281, 284–289, 392,
425, 502, 516, 527

fscanf_s function, 425, 516, 526, 527, 528, 530,
531

fseek function, 266, 269, 272, 294, 296, 297,
367, 425, 496, 516

fsetpos function, 267, 268, 272, 294, 295, 296,
367, 425, 496, 503, 516

fsqrt function, 234, 416, 441, 516
fsqrt type-generic macro, 328
fsqrtl function, 234, 416, 441, 516
fsub function, 232, 416, 441, 516
fsub type-generic macro, 328
fsubl function, 232, 329, 416, 441, 516
ftell function, 296, 297, 425, 486, 496, 503,

516
full declarator, 103
full expression, 122
fully buffered, 268
fully buffered stream, 268
function

argument, 66, 130
body, 129
call, 66

library, 151
declarator, 106, 148
definition, 107, 129
designator, 45
image, 19
inline, 101
library, 9, 151
name length, 20, 49, 148
no-return, 101
parameter, 11, 66, 87, 130
prototype, 11, 32, 41, 67, 106, 130, 148, 149,

192
prototype scope, 32, 105, 106
recursive call, 67
return, 127, 446
scope, 32
type, 38
type conversion, 46

function prototype scope, 32
function scope, 32
function specifiers, 101
function type, 35
function-call operator (()), 66
function-like macro, 138
fundamental alignment, 41
future directions

language, 148
library, 391

fwide function, 267, 268, 366, 431, 516
fwprintf function, 181, 266, 351, 352, 357, 360–

362, 364, 393, 430, 498, 502, 516, 551
fwprintf_s function, 432, 516, 551

592 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

fwrite function, 266, 295, 425, 496, 516
fwscanf function, 181, 266, 357, 360–362, 364,

367, 393, 430, 502, 516, 552
fwscanf_s function, 432, 516, 551, 552, 554,

555, 558

gamma functions, 217, 460
general utilities, 535

wide string, 368, 558
general utilities header, 299, 392
general wide string utilities, 368, 558
generic association, 65
generic parameters, 326
generic selection, 64
getc function, 266, 292, 425, 516
getchar function, 14, 266, 292, 425, 516
getenv function, 310, 426, 496, 498, 516
getenv_s function, 427, 516, 536, 537
getpayload function, 422, 441, 466, 467, 516
getpayloadd128 function, 422, 466, 516
getpayloadd32 function, 422, 466, 516
getpayloadd64 function, 422, 466, 516
getpayloadf function, 422, 466, 516
getpayloadl function, 422, 466, 516
gets (obsolete), 516, 534, 571
gets_s function, 426, 516, 534
getwc function, 266, 366, 431, 516
getwchar function, 266, 366, 367, 431, 516
gmtime function, 343, 344, 430, 516
gmtime_r function, xiii, 344, 430, 516, 570
gmtime_s function, 430, 516, 550
goto statement, 32, 123
graphic characters, 17
greater-than operator (>), 77
greater-than-or-equal-to operator (>=), 77
grouping structure member, 186, 188, 189, 516

H format modifier, 276, 282, 353, 358
h format modifier, 275, 282, 353, 358
happens before, 16
header, 9, 149, see also standard headers
header names, 47, 60, 136
hexadecimal constant, 51
hexadecimal digit, 51, 54, 57
\xhexadecimal digits (hexadecimal-character es-

cape sequence), 57
hexadecimal-character escape sequence (\x

hexadecimal digits), 57
hh format modifier, 275, 282, 353, 358
hidden, 32
high-order bit, 4
horizontal tab, 19
horizontal-tab character, 17, 47
horizontal-tab escape sequence (\t), 19, 57,

163, 165, 386
hosted execution environment, 8, 10

HUGE_VAL macro, 192, 195, 226, 227, 302, 370,
412, 451, 516

HUGE_VAL_D128 macro, 192, 516
HUGE_VAL_D32 macro, 192, 193, 516
HUGE_VAL_D64 macro, 192, 516
HUGE_VALF macro, 192, 195, 302, 370, 412, 451,

516
HUGE_VALL macro, 192, 195, 302, 370, 412, 451,

516
hyperbolic functions

complex, 157, 474
real, 204, 454

hypot function, 214, 215, 414, 440, 445, 458,
473, 516

hypot type-generic macro, 327
hypotd128 function, 215, 419, 516
hypotd32 function, 215, 419, 516
hypotd64 function, 215, 419, 516
hypotf function, 215, 414, 516
hypotl function, 215, 414, 516

I macro, 516
I macro, 161, 473
identifier, 48, 64

linkage, see linkage
maximum length, 48
name spaces, 33
reserved, 48, 150, 506, 512, 521
rules, 506
scope, 32
type, 35

identifier list, 134
identifier nondigit, 48
IEC 60559, 12, 168, 178, 196, 238
IEC 60559, 2, 147, 154, 224, 439, 469, 480
IEEE floating-point arithmetic standard, see

IEC 60559, ANSI/IEEE 754, AN-
SI/IEEE 854

IEEE 854, 439
if preprocessing directive, 20, 23, 135, 151
ifdef, 8, 133, 135, 173, 176, 178, 199–232, 233,

234–237, 300, 302, 329, 370, 405, 436,
437, 465–467, 516

ifdef preprocessing directive, 135
ifndef preprocessing directive, 135
ignore_handler_s function, 427, 516, 536
ilogb function, 194, 209, 413, 441, 456, 486,

516
ilogb type-generic macro, 327
ilogbd128 function, 209, 418, 516
ilogbd32 function, 209, 418, 516
ilogbd64 function, 209, 418, 516
ilogbf function, 209, 413, 516
ilogbl function, 209, 413, 516
imaginary macro, 154, 408, 472, 473, 516
imaginary numbers, 469
imaginary type domain, 469

Index 593

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

imaginary types, 469
imaxabs function, 182, 411, 516
imaxdiv function, 181, 182, 411, 516
imaxdiv_t type, 181, 182, 411, 516
implementation, 5
implementation limit, 5, 8, 20, 49, 104, 124, 436,

see also environmental limits
implementation-defined behavior, 3, 8, 498
implementation-defined value, 6
implicit conversion, 42
implicit initialization, 112
include preprocessing directive, 9, 136
inclusive OR operators

bitwise (|), 79
bitwise assignment (|=), 82

incomplete, 35
incomplete type, 35
increment operators, see arithmetic operators,

increment and decrement
indeterminate value, 6
indeterminately sequenced, 12, 67, 69, 82, see

also sequenced before, unsequenced
indirection operator (*), 66, 72
inequality operator (!=), 77
infinitary, 195
infinity, 469
INFINITY macro, 24, 161, 193, 276, 301–303,

354, 369–371, 410, 412, 440, 471, 472,
516

initial position, 19
initial shift state, 18
initialization, 10, 34, 45, 69, 111, 448

in blocks, 122
initialized, 10
initializer, 111

permitted form, 84
string literal, 45

inline, 101
inline definition, 101
inline function, 101
inner scope, 32
input failure, 363, 364, 527, 528, 530–532, 534,

552, 554–558
input/output functions

character, 291, 534
direct, 294
formatted, 274, 526

wide character, 351, 551
wide character, 364

formatted, 351, 551
input/output header, 265, 392, 522
input/output, device, 12
INT identifier prefix, 262, 263, 264, 392, 424,

506
int identifier prefix, 261, 392, 424, 506
int type, 35, 43, 52, 88

int type conversion, 42–44
intN_t types, 261
INTN_C macros, 264
INTN_MAX macros, 262
INTN_MIN macros, 262, 264
INT16_C macro, 509
INT16_MAX macro, 509
INT16_MIN macro, 509
int16_t type, 509
INT16_WIDTH macro, 509
INT32_C macro, 509
INT32_MAX macro, 509
INT32_MIN macro, 509
int32_t type, 509
INT32_WIDTH macro, 509
INT64_C macro, 509
INT64_MAX macro, 509
INT64_MIN macro, 509
int64_t type, 509
INT64_WIDTH macro, 509
INT8_C macro, 509
INT8_MAX macro, 509
INT8_MIN macro, 509
int8_t type, 261, 509
INT8_WIDTH macro, 509
INT_FAST identifier prefix, 262, 263, 424
int_fast identifier prefix, 262, 424
INT_LEAST identifier prefix, 262, 263, 424
int_least identifier prefix, 261, 264, 424
int_curr_symbol structure member, 186, 189,

190, 516
INT_FASTN_MAX macros, 262
INT_FASTN_MIN macros, 262, 264
int_fast16_t type, 255, 262, 509
int_fast32_t type, 181, 255, 262, 509
int_fast64_t type, 255, 262, 509
int_fast8_t type, 255, 262, 509
int_fastN_t types, 262
int_frac_digits structure member, 186, 189,

190, 516
INT_LEASTN_MAX macros, 262
INT_LEASTN_MIN macros, 262, 264
int_leastN_t types, 261
int_least16_t type, 254, 262, 509
int_least32_t type, 255, 261, 262, 509
int_least64_t type, 255, 262, 509
int_least8_t type, 254, 262, 509
INT_MAX macro, 21, 35, 135, 194, 195, 209, 411,

436, 480, 495, 509
INT_MIN macro, 21, 35, 194, 195, 411, 436, 480,

509
int_n_cs_precedes structure member, 186,

189, 190, 516
int_n_sep_by_space structure member, 186,

189, 190, 516
int_n_sign_posn structure member, 186, 189,

594 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

190, 516
int_p_cs_precedes structure member, 186,

189, 190, 516
int_p_sep_by_space structure member, 186,

189, 190, 516
int_p_sign_posn structure member, 186, 189,

190, 516
INT_WIDTH macro, 21, 223, 411, 436, 509
integer arithmetic functions, 182, 313
integer character constant, 57
integer constant, 51
integer constant expression, 46, 84, 90, 93, 105,

111, 116, 124, 134, 151
integer conversion rank, 42
integer promotions, 13, 43, 67, 72, 76, 124, 275,

353
integer suffix, 52
integer type conversion, 42, 43, 445
integer types, 37, 261

extended, 35, 42, 53, 261
integer types header, 261, 392
inter-thread happens before, 15
interactive device, 12, 268, 272
internal linkage, 33
internal name, 49
interrupt, 19
INTMAX_C macro, 264, 424, 509
INTMAX_MAX macro, 182, 183, 262, 263, 424, 509
INTMAX_MINmacro, 182, 183, 262–264, 424, 509
intmax_t type, iii, 135, 182, 183, 214–216, 222,

223, 255, 262, 264, 275, 282, 353, 358,
411, 424, 509, 571

INTMAX_WIDTH macro, 263, 424, 509
INTPTR_MAX macro, 262, 263, 424, 509
INTPTR_MIN macro, 262–264, 424, 509
intptr_t type, 255, 262, 424, 509
INTPTR_WIDTH macro, 263, 424, 509
is identifier prefix, 391, 393, 506
isalnum function, 163, 164, 165, 409, 509
isalpha function, 163, 385, 409, 504, 509
isblank function, 163, 409, 504, 509
iscanonical macro, 22, 197, 412, 442, 443, 509
iscntrl function, 163, 164, 165, 409, 509
isdigit function, 163, 164, 165, 187, 409, 509
iseqsig macro, 239, 416, 442, 468, 509
isfinite macro, 197, 412, 442, 443, 471, 472,

509
isgraph function, 164, 385, 409, 509
isgreater macro, 238, 416, 442, 509
isgreaterequal macro, 238, 416, 442, 450,

464, 509
isinf macro, 197, 412, 442, 443, 457, 471, 472,

509
isless macro, 238, 416, 442, 450, 509
islessequal macro, 239, 416, 442, 509
islessgreater macro, 239, 416, 509

islower function, 4, 163, 164, 165, 166, 409,
504, 509

isnan macro, 197, 198, 412, 442, 443, 464, 471,
472, 509

isnormal macro, 198, 412, 442, 443, 509
ISO/IEC 10976–1, 37, 63
ISO/IEC 646, 18
ISO/IEC 9945–2, 186
ISO/IEC 10646, 2, 49, 50, 146
ISO/IEC 10976–1, 480
ISO/IEC 2382, 2, 3
ISO 4217, 2, 189
ISO 80000–2, 2, 3
ISO 8601, 2, 345
isprint function, 19, 164, 409, 509
ispunct function, 163, 164, 165, 409, 504, 509
issignaling macro, 198, 412, 442, 443, 509
isspace function, 149, 163, 164, 165, 409, 504,

509
issubnormal macro, 198, 199, 412, 442, 443,

509
isunordered macro, 239, 416, 442, 509
isupper function, 163, 165, 166, 409, 504, 509
iswalnum function, 386, 387, 388, 432, 509
iswalpha function, 385, 386, 388, 432, 504, 509
iswblank function, 386, 388, 432, 504, 509
iswcntrl function, 386, 387, 388, 432, 509
iswctype function, 388, 389, 433, 498, 504, 509
iswdigit function, 386, 387, 388, 432, 509
iswgraph function, 385, 387, 388, 432, 509
iswlower function, 386, 387, 388, 389, 432, 504,

509
iswprint function, 385, 387, 388, 432, 509
iswpunct function, 385, 386, 387, 388, 432, 504,

509
iswspace function, 149, 385, 386, 387, 388, 433,

504, 509
iswupper function, 386, 387, 388, 389, 433, 504,

509
iswxdigit function, 388, 433, 509
isxdigit function, 165, 187, 409, 509
iszero macro, 199, 412, 442, 443, 509
italic type convention, 3, 32
iteration statements, 125

j format modifier, 275, 282, 353, 358
jmp_buf type, 240, 241, 422, 516, 569
jump statements, 126

keyword
_Alignas, 41, 48, 102, 103, 245, 394, 402,

506
_Alignof operator, 41, 42, 46, 48, 71, 72,

73, 84, 103, 105, 129, 245, 394, 399,
490, 503, 506

_Bool type, ii, iii, 20, 35, 42–44, 48, 81,
88, 90, 91, 235, 254, 256, 258, 259, 394,

Index 595

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

401, 421, 423, 445, 469, 500, 505, 507
_Complex types, 23, 37, 45, 48, 88, 89, 154,

394, 401, 469–471, 507
_Generic, 48, 64, 65, 328, 394, 399, 509
_Noreturn, x, 48, 101, 102, 240, 308–310,

317, 336, 394, 402, 422, 426, 427, 429,
491, 510

_Static_assert, xiii, 48, 116, 153, 394,
403, 510, 570

_Thread_local storage-class specifier,
34, 48, 87, 106, 330, 394, 401, 511

auto storage-class specifier, 48, 87, 106,
125, 129, 394, 401, 513

continue, 48, 126, 127, 394, 405, 513
defined operator, 134, 135, 145, 492, 514
extern storage-class specifier, 33, 48, 73,

87, 97, 99, 101, 102, 105, 106, 110, 129,
130, 132, 152, 394, 401, 490, 505, 515

ifdef, 8, 133, 135, 173, 176, 178, 199–232,
233, 234–237, 300, 302, 329, 370, 405,
436, 437, 465–467, 516

pragma preprocessing directive, 47, 61, 83,
133, 144, 147, 155, 170–173, 176, 177,
179, 196, 406, 408, 410, 412, 447, 448,
457, 461, 463, 471, 484, 492, 501, 517

undef, 49, 133, 134, 140, 141, 145, 151, 152,
406, 492, 519

keywords, 48, 469, 505
kill_dependency macro, 15, 252, 253, 423,

516
known constant size, 38

L encoding prefix, 56–59, 397
L format modifier, 276, 282, 353, 358
l format modifier, 275, 282, 353, 358
l identifier suffix, 154, 192, 326, 328, 391, 392
L_tmpnam macro, 266, 271, 424, 517
L_tmpnam_s macro, 425, 517, 522, 523
label name, 32, 33
labeled statement, 122
labs function, 313, 426, 480, 516
language, 32

encoding prefix
L, 56–59, 397
U, 56–59, 397
u, 56–59, 397
u8, 56–58, 397

future directions, 148
syntax summary, 394

Latin alphabet, 17, 48
LC_ identifier prefix, 186, 391, 506
LC_ALL macro, 186, 187, 190, 411, 509
LC_COLLATE macro, 186, 187, 321, 374, 411, 509
LC_CTYPE macro, 186, 187, 299, 314, 315, 380,

385, 388–390, 411, 497, 498, 509, 539
LC_MONETARY macro, 186, 187, 190, 411, 509
LC_NUMERIC macro, 186, 187, 190, 411, 509

LC_TIME macro, 186, 187, 343, 345, 411, 509
lconv structure type, 186, 187, 411, 516
LDBL_ identifier prefix, 391, 506
LDBL_DECIMAL_DIG macro, 25, 391, 410, 437,

509
LDBL_DIG macro, 25, 410, 437, 509
LDBL_EPSILON macro, 26, 410, 437, 481, 509
LDBL_HAS_SUBNORM macro, 23, 410, 509
LDBL_IS_IEC_60559 macro, 23
LDBL_MANT_DIG macro, 24, 410, 437, 481, 509
LDBL_MAX macro, 26, 410, 437, 481, 509
LDBL_MAX_10_EXP macro, 25, 410, 437, 509
LDBL_MAX_EXP macro, 25, 410, 437, 481, 509
LDBL_MIN macro, 26, 410, 437, 481, 509
LDBL_MIN_10_EXP macro, 25, 410, 437, 509
LDBL_MIN_EXP macro, 25, 410, 437, 481, 509
LDBL_NORM_MAX macro, 26, 410, 437, 509
LDBL_SNAN macro, 24, 410
LDBL_TRUE_MIN macro, 26, 410, 509
ldexp function, 209, 413, 456, 516
ldexp type-generic macro, 327
ldexpd128 function, 209, 418, 516
ldexpd32 function, 209, 418, 516
ldexpd64 function, 209, 418, 516
ldexpf function, 209, 413, 516
ldexpl function, 209, 413, 516
ldiv function, 299, 313, 426, 516
ldiv_t type, 299, 313, 426, 516
leading underscore in identifiers, 150
left-shift assignment operator (<<=), 82
left-shift operator (<<), 76
length

external name, 20, 49, 148
function name, 20, 49, 148
identifier, 48
internal name, 20, 49

length function, 314, 325, 379, 381, 548, 563
length modifier, 274, 281, 352, 357
length of a string, 149
length of a wide string, 149
less-than operator (<), 77
less-than-or-equal-to operator (<=), 77
letter, 17, 163
lexical elements, 9, 47
lgamma function, 218, 414, 460, 516
lgamma type-generic macro, 327
lgammad128 function, 218, 419, 516
lgammad32 function, 218, 419, 516
lgammad64 function, 218, 419, 516
lgammaf function, 218, 414, 516
lgammal function, 218, 414, 516
library, 9, 149, 520

constant
memory_order_acq_rel, 250, 251–253,

255, 256, 258, 423, 510

596 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

memory_order_acquire, 250, 251, 253,
255, 258, 423, 510

memory_order_consume, 250, 251, 253,
255, 423, 510

memory_order_relaxed, 250, 251–253,
423, 510

memory_order_release, 250, 251, 253,
255, 256, 423, 510

memory_order_seq_cst, 16, 39, 69, 81,
82, 249, 250, 251, 253, 423, 510

mtx_plain, 330, 334, 429, 510
mtx_recursive, 331, 334, 429, 510
mtx_timed, 331, 334, 429, 510
thrd_busy, 331, 335, 429, 511
thrd_error, 331, 332–339, 429, 511
thrd_nomem, 331, 332, 335, 429, 511
thrd_success, 331, 332–339, 429, 511
thrd_timedout, 331, 333, 334, 429, 511

family
canonicalize, 30
decodebin, 31, 441, 514
decodebind, 237, 514
decodedec, 31, 441, 514
decodedecd, 236, 237, 514
encodebin, 31, 441, 514
encodebind, 237, 514
encodedec, 31, 441, 514
encodedecd, 236, 514
modf, 31
strto, 30, 55, 56, 172, 173, 511
strtod, 302, 303
wcsto, 30, 172, 173, 512
wcstod, 370, 371

function
_Exit, 243, 309, 310, 426, 494, 503, 508
abort, 102, 153, 242, 243, 250, 268, 308,

426, 493, 494, 503, 512, 536
abort_handler_s, 427, 512, 536
abs, 151, 313, 426, 480, 512
acos, 172, 199, 327, 412, 445, 452, 512
acosd128, 173, 199, 416, 512
acosd32, 173, 199, 416, 512
acosd64, 173, 199, 416, 512
acosf, 172, 199, 412, 512
acosh, 204, 327, 413, 445, 454, 512
acoshd128, 204, 417, 512
acoshd32, 204, 417, 512
acoshd64, 204, 417, 512
acoshf, 204, 329, 413, 512
acoshl, 204, 413, 512
acosl, 172, 199, 412, 512
acospi, 202, 412, 445, 453, 512
acospid128, 202, 417, 512
acospid32, 202, 417, 512
acospid64, 202, 417, 512
acospif, 202, 412, 512

acospil, 202, 412, 512
aligned_alloc, 306, 307, 426, 487, 496,

503, 512, 571
asctime, 146, 343, 344, 430, 498, 512
asctime_r, xiii, 343, 344, 430, 512, 570
asctime_s, 430, 512, 548, 549, 550
asin, 200, 327, 412, 445, 452, 479, 512
asind128, 200, 417, 512
asind32, 200, 416, 512
asind64, 200, 417, 512
asinf, 200, 412, 512
asinh, 204, 205, 327, 413, 445, 454, 479,

512
asinhd128, 205, 417, 512
asinhd32, 205, 417, 512
asinhd64, 205, 417, 512
asinhf, 204, 413, 512
asinhl, 204, 413, 512
asinl, 200, 412, 512
asinpi, 202, 412, 445, 453, 512
asinpid128, 202, 417, 512
asinpid32, 202, 417, 512
asinpid64, 202, 417, 512
asinpif, 202, 412, 512
asinpil, 202, 412, 512
at_quick_exit, 308, 309, 310, 426, 487,

496, 513, 571
atan, 200, 279, 327, 357, 412, 445, 452,

479, 512
atan2, 200, 201, 412, 445, 451, 452, 473,

512
atan2d128, 200, 417, 512
atan2d32, 200, 417, 512
atan2d64, 200, 417, 512
atan2f, 200, 412, 512
atan2l, 200, 412, 512
atan2pi, 203, 412, 445, 451, 453, 512
atan2pid128, 203, 417, 512
atan2pid32, 203, 417, 512
atan2pid64, 203, 417, 512
atan2pif, 203, 412, 512
atan2pil, 203, 412, 512
atand128, 200, 417, 512
atand32, 200, 417, 512
atand64, 200, 417, 513
atanf, 200, 412, 513
atanh, 205, 327, 413, 445, 454, 479, 513
atanhd128, 513
atanhd32, 513
atanhd64, 513
atanhf, 205, 413, 513
atanhl, 205, 413, 513
atanl, 200, 329, 412, 513
atanpi, 202, 203, 412, 445, 453, 513
atanpid128, 202, 417, 513
atanpid32, 202, 417, 513

Index 597

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

atanpid64, 202, 417, 513
atanpif, 202, 412, 513
atanpil, 202, 412, 513
atexit, 308, 309, 310, 426, 487, 496, 505,

513
atof, 172, 299, 300, 426, 513
atoi, 152, 299, 300, 426, 513
atol, 299, 300, 426, 513
atoll, 299, 300, 426, 513
atomic_compare_exchange_strong,

69, 83, 256, 423, 506
atomic_compare_exchange_strong_explicit

,
256, 423, 506

atomic_compare_exchange_weak,
256, 257, 423, 506

atomic_compare_exchange_weak_explicit
,

256, 423, 506
atomic_exchange, 256, 423, 506
atomic_exchange_explicit, 256,

423, 507
atomic_fetch_, 257, 423, 507
atomic_fetch_add, 507
atomic_fetch_add_explicit, 507
atomic_fetch_and, 507
atomic_fetch_and_explicit, 507
atomic_fetch_or, 507
atomic_fetch_or_explicit, 507
atomic_fetch_sub, 507
atomic_fetch_sub_explicit, 507
atomic_fetch_xor, 507
atomic_fetch_xor_explicit, 507
atomic_flag_clear, 258, 423, 507
atomic_flag_clear_explicit, 258,

423, 507
atomic_flag_test_and_set, 258,

423, 507
atomic_flag_test_and_set_explicit,

258, 423, 507
atomic_init, 250, 423, 507
atomic_is_lock_free, 243, 254, 423,

494, 507
atomic_load, 255, 257, 423, 507
atomic_load_explicit, 252, 255, 423,

507
atomic_signal_fence, 253, 254, 423,

507
atomic_store, 255, 423, 507
atomic_store_explicit, 252, 255,

423, 507
atomic_thread_fence, 253, 423, 507
bsearch, 311, 312, 426, 487, 497, 513
bsearch_s, 427, 513, 537, 538
btowc, 355, 357, 380, 431, 513
c16rtomb, i, 349, 430, 513
c32rtomb, 350, 430, 513

cabs, 159, 326, 327, 409, 473, 513
cabsf, 159, 329, 409, 513
cabsl, 159, 409, 513
cacos, 155, 327, 408, 473, 474, 513
cacosf, 155, 408, 513
cacosh, 157, 327, 408, 474, 513
cacoshf, 157, 408, 513
cacoshl, 157, 408, 513
cacosl, 155, 408, 513
cacospi, 391, 513
call_once, 330, 331, 429, 513
calloc, 306, 307, 426, 487, 496, 503, 513
canonicalize, 22, 227, 327, 416, 442,

464, 513
canonicalized128, 227, 420, 513
canonicalized32, 227, 420, 513
canonicalized64, 227, 420, 513
canonicalizef, 227, 416, 513
canonicalizel, 227, 416, 513
carg, 160, 329, 409, 473, 479, 513
cargf, 160, 409, 513
cargl, 160, 409, 513
casin, 156, 327, 408, 473, 513
casinf, 156, 408, 513
casinh, 157, 327, 408, 473, 475, 513
casinhf, 157, 408, 513
casinhl, 157, 408, 513
casinl, 156, 408, 513
casinpi, 391, 513
catan, 156, 327, 408, 473, 513
catanf, 156, 408, 513
catanh, 157, 158, 327, 408, 473, 475, 513
catanhf, 157, 408, 513
catanhl, 157, 408, 513
catanl, 156, 408, 513
catanpi, 391, 513
cbrt, i, 65, 213, 214, 328, 414, 457, 513
cbrtd128, 214, 418, 513
cbrtd32, 214, 418, 513
cbrtd64, 214, 418, 513
cbrtf, 65, 214, 328, 414, 513
cbrtl, 65, 214, 328, 414, 513
ccompoundn, 391, 513
ccos, 156, 327, 408, 473, 513
ccosf, 156, 408, 513
ccosh, 158, 327, 408, 473, 475, 476, 513
ccoshf, 158, 408, 513
ccoshl, 158, 408, 513
ccosl, 156, 408, 513
ccospi, 391, 513
ceil, 193, 219, 415, 441, 460, 461, 462,

482, 513
ceild128, 31, 219, 419, 513
ceild32, 31, 219, 419, 513
ceild64, 31, 219, 419, 513
ceilf, 219, 415, 513

598 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

ceill, 219, 223, 415, 513
cerf, 391, 513
cerfc, 391, 513
cexp, 158, 159, 327, 408, 477, 478, 513
cexp10, 391, 513
cexp10m1, 391, 513
cexp2, 391, 513
cexp2m1, 391, 513
cexpf, 158, 408, 513
cexpl, 159, 408, 513
cexpm1, 391, 513
cimag, 160, 161, 162, 409, 471, 473, 479,

513
cimagf, 160, 409, 513
cimagl, 160, 329, 409, 513
clearerr, 297, 425, 513
clgamma, 391, 513
clock, 340, 341, 429, 503, 513
clog, 159, 327, 408, 478, 513
clog10, 391, 513
clog10p1, 391, 513
clog1p, 391, 513
clog2, 391, 513
clog2p1, 391, 513
clogf, 159, 329, 408, 513
clogl, 159, 409, 513
clogp1, 391, 513
cnd_broadcast, 331, 332, 333, 429, 507
cnd_destroy, 332, 429, 507
cnd_init, 332, 429, 507
cnd_signal, 332, 333, 429, 507
cnd_timedwait, 332, 333, 429, 507
cnd_wait, 332, 333, 429, 507
compoundn, 214, 414, 445, 458, 513
compoundnd128, 214, 419, 513
compoundnd32, 214, 419, 513
compoundnd64, 214, 419, 513
compoundnf, 214, 414, 513
compoundnl, 214, 414, 513
conj, 161, 409, 473–478, 513
conjf, 161, 409, 513
conjl, 161, 409, 513
copysign, 161, 224, 225, 415, 442, 457,

462, 463, 471, 472, 513
copysignd128, 225, 420, 513
copysignd32, 225, 420, 513
copysignd64, 225, 420, 513
copysignf, 225, 415, 513
copysignl, 225, 329, 415, 513
cos, 201, 327, 412, 445, 452, 479, 513
cosd128, 201, 417, 513
cosd32, 201, 417, 513
cosd64, 201, 417, 513
cosf, 201, 412, 513
cosh, 205, 327, 413, 445, 454, 479, 513
coshd128, 205, 417, 513

coshd32, 205, 417, 513
coshd64, 205, 417, 513
coshf, 205, 413, 513
coshl, 205, 413, 513
cosl, 201, 412, 513
cospi, 203, 412, 445, 453, 513
cospid128, 203, 417, 513
cospid32, 203, 417, 513
cospid64, 203, 417, 513
cospif, 203, 412, 513
cospil, 203, 412, 513
cpow, 159, 327, 409, 478, 513
cpowf, 159, 409, 513
cpowl, 159, 329, 409, 513
cpown, 391, 514
cpowr, 391, 514
cproj, 161, 409, 473, 514
cprojf, 161, 329, 409, 514
cprojl, 161, 329, 409, 514
creal, 160, 161, 162, 329, 409, 471, 473,

479
crealf, 161, 409
creall, 161, 409
crootn, 391
crsqrt, 391
csin, 156, 157, 327, 408, 473, 514
csinf, 156, 408, 514
csinh, 158, 327, 408, 473, 476, 514
csinhf, 158, 408, 514
csinhl, 158, 408, 514
csinl, 156, 408, 514
csinpi, 391, 514
csqrt, 160, 327, 329, 409, 473, 478, 514
csqrtf, 160, 409, 514
csqrtl, 160, 409, 514
ctan, 157, 327, 408, 473, 514
ctanf, 157, 408, 514
ctanh, 158, 327, 408, 473, 477, 514
ctanhf, 158, 408, 514
ctanhl, 158, 408, 514
ctanl, 157, 408, 514
ctanpi, 391, 514
ctgamma, 391, 514
ctime, 343, 344, 430, 514
ctime_r, xiii, 344, 430, 514, 570
ctime_s, 430, 514, 548, 550
d32addd128, 232, 421, 514
d32addd64, 232, 421, 514
d32divd128, 233, 421, 514
d32divd64, 233, 329, 421, 514
d32fmad128, 234, 421, 514
d32fmad64, 234, 421, 514
d32muld128, 233, 421, 514
d32muld64, 233, 421, 514
d32sqrtd128, 234, 421, 514
d32sqrtd64, 234, 421, 514

Index 599

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

d32subd128, 232, 329, 421, 514
d32subd64, 232, 421, 514
d64addd128, 232, 329, 421, 514
d64divd128, 233, 421, 514
d64fmad128, 234, 329, 421, 514
d64muld128, 233, 421, 514
d64sqrtd128, 234, 421, 514
d64subd128, 232, 421, 514
daddl, 232, 329, 416, 441, 514
ddivl, 233, 416, 441, 444, 514
decodebind128, 237, 421, 514
decodebind32, 237, 421, 514
decodebind64, 237, 326, 328, 421, 514
decodedecd128, 236, 421, 514
decodedecd32, 236, 421, 514
decodedecd64, 236, 326, 328, 421, 514
dfmal, 234, 329, 416, 441, 514
difftime, 341, 429, 514
div, 299, 313, 426, 514
dmull, 233, 416, 441, 514
dsqrtl, 234, 416, 441, 514
dsubl, 232, 416, 441, 514
encodebind128, 237, 421, 514
encodebind32, 237, 421, 514
encodebind64, 237, 326, 328, 421, 514
encodedecd128, 236, 421, 514
encodedecd32, 236, 421, 514
encodedecd64, 236, 326, 328, 421, 514
erf, 217, 414, 460, 514
erfc, 218, 414, 460, 514
erfcd128, 218, 419, 514
erfcd32, 218, 419, 514
erfcd64, 218, 419, 514
erfcf, 218, 414, 514
erfcl, 218, 414, 514
erfd128, 217, 419, 514
erfd32, 217, 419, 514
erfd64, 217, 419, 514
erff, 217, 414, 514
erfl, 217, 414, 514
exp, 206, 208, 257, 327, 329, 413, 444,

455, 515
exp10, 206, 207, 413, 444, 455, 515
exp10d128, 207, 418, 515
exp10d32, 207, 417, 515
exp10d64, 207, 417, 515
exp10f, 207, 413, 515
exp10l, 207, 413, 515
exp10m1, 207, 413, 444, 455, 515
exp10m1d128, 207, 418, 515
exp10m1d32, 207, 418, 515
exp10m1d64, 207, 418, 515
exp10m1f, 207, 413, 515
exp10m1l, 207, 413, 515
exp2, 207, 413, 444, 455, 515
exp2d128, 207, 418, 515

exp2d32, 207, 418, 515
exp2d64, 207, 418, 515
exp2f, 207, 413, 515
exp2l, 207, 413, 515
exp2m1, 208, 413, 444, 455, 515
exp2m1d128, 208, 418, 515
exp2m1d32, 208, 418, 515
exp2m1d64, 208, 418, 515
exp2m1f, 208, 413, 515
exp2m1l, 208, 413, 515
expd128, 206, 417, 515
expd32, 206, 417, 515
expd64, 206, 329, 417, 515
expf, 206, 413, 515
expl, 206, 413, 515
expm1, 208, 413, 444, 455, 515
expm1d128, 208, 418, 515
expm1d32, 208, 418, 515
expm1d64, 208, 418, 515
expm1f, 208, 413, 515
expm1l, 208, 413, 515
fabs, 214, 326, 327, 414, 442, 458, 462,

463, 471, 479, 481, 482, 515
fabsd128, 214, 419, 515
fabsd32, 214, 419, 515
fabsd64, 214, 419, 515
fabsf, 214, 414, 481, 515
fabsl, 214, 414, 481, 515
fadd, 232, 416, 441, 515
faddl, 232, 416, 441, 515
fclose, 271, 424, 515
fdim, 227, 228, 416, 464, 515
fdimd128, 227, 420, 515
fdimd32, 227, 420, 515
fdimd64, 227, 420, 515
fdimf, 227, 416, 515
fdiml, 227, 416, 515
fdiv, 233, 329, 416, 441, 515
fdivl, 233, 416, 441, 515
fe_dec_getround, 170, 176, 177, 410,

444, 515
fe_dec_setround, 170, 173, 177, 178,

410, 444, 515
feclearexcept, 83, 173, 174, 176, 179,

410, 443, 462, 483, 515
fegetenv, 178, 179, 410, 443, 493, 515
fegetexceptflag, 173, 174, 175, 410,

443, 493, 501, 515
fegetmode, 176, 177, 410, 443, 515
fegetround, 169, 172, 176, 177, 410,

443, 457, 461, 515
feholdexcept, 83, 178, 179, 410, 443,

461, 493, 515
feof, 285, 291, 297, 365, 425, 515
feraiseexcept, 173, 174, 410, 448, 483,

486, 501, 515

600 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

ferror, 285, 291, 298, 365, 425, 515
fesetenv, 171, 179, 410, 443, 493, 515
fesetexcept, 174, 175, 410, 443, 515
fesetexceptflag, 173, 175, 410, 443,

493, 515
fesetmode, 171, 176, 177, 410, 443, 515
fesetround, 8, 23, 169, 171, 172, 176,

177, 178, 410, 443, 457, 461, 462, 515
fetestexcept, 173, 175, 176, 410, 443,

462, 483, 515
fetestexceptflag, 175, 410, 443, 515
feupdateenv, 83, 171, 178, 179, 410,

443, 462, 493, 515
fflush, 271, 272, 424, 495, 515
ffma, 233, 416, 441, 515
ffmal, 233, 416, 441, 515
fgetc, 266, 269, 291, 292, 295, 425, 515
fgetpos, 267, 268, 295, 296, 425, 486,

496, 503, 515
fgets, 266, 291, 425, 496, 515, 534
fgetwc, ii, 266, 269, 364, 365, 366, 431,

515
fgetws, 266, 365, 431, 496, 515
floor, 193, 219, 415, 441, 461, 482, 515
floord128, 219, 419, 515
floord32, 219, 419, 515
floord64, 219, 419, 515
floorf, 219, 415, 515
floorl, 219, 415, 515
fma, 194, 231, 232, 416, 441, 465, 515
fmad128, 232, 421, 515
fmad32, 232, 420, 515
fmad64, 232, 420, 515
fmaf, 231, 416, 515
fmal, 194, 231, 416, 515
fmax, 228, 231, 416, 441, 443, 464, 471,

515
fmaxd128, 228, 329, 420, 515
fmaxd32, 228, 420, 515
fmaxd64, 228, 420, 515
fmaxf, 228, 416, 515
fmaximum, 228, 229, 230, 441, 465, 515
fmaximum_mag, 229, 231, 441, 465, 515
fmaximum_mag_num, 229, 231, 441, 465
fmaximum_mag_numd128, 231, 515
fmaximum_mag_numd32, 231, 515
fmaximum_mag_numd64, 231, 515
fmaximum_mag_numf, 231, 515
fmaximum_mag_numl, 231, 515
fmaximum_magd128, 229, 515
fmaximum_magd32, 229, 515
fmaximum_magd64, 229, 515
fmaximum_magf, 229, 515
fmaximum_magl, 229, 515
fmaximum_num, 229, 230, 231, 441, 465,

515

fmaximum_numd128, 230, 515
fmaximum_numd32, 230, 515
fmaximum_numd64, 230, 515
fmaximum_numf, 230, 515
fmaximum_numl, 230, 515
fmaximumd128, 229, 515
fmaximumd32, 229, 515
fmaximumd64, 229, 515
fmaximumf, 228, 515
fmaximuml, 229, 515
fmaxl, 228, 416, 515
fmin, 228, 231, 416, 441, 443, 464, 515
fmind128, 228, 420, 515
fmind32, 228, 420, 515
fmind64, 228, 420, 515
fminf, 228, 416, 515
fminimum, 229, 230, 441, 465, 515
fminimum_mag, 229, 230, 231, 441, 465,

515
fminimum_mag_num, 230, 231, 441, 465
fminimum_mag_numd128, 231, 515
fminimum_mag_numd32, 231, 515
fminimum_mag_numd64, 231, 515
fminimum_mag_numf, 231, 515
fminimum_mag_numl, 231, 515
fminimum_magd128, 230, 515
fminimum_magd32, 230, 515
fminimum_magd64, 230, 515
fminimum_magf, 230, 515
fminimum_magl, 230, 515
fminimum_num, 229, 230, 231, 441, 465,

515
fminimum_numd128, 230, 515
fminimum_numd32, 230, 515
fminimum_numd64, 230, 515
fminimum_numf, 230, 515
fminimum_numl, 230, 515
fminimumd128, 229, 515
fminimumd32, 229, 515
fminimumd64, 229, 515
fminimumf, 229, 515
fminimuml, 229, 515
fminl, 228, 416, 515
fmod, 223, 224, 415, 462, 463, 482, 502,

515
fmodd128, 223, 420, 515
fmodd32, 223, 420, 515
fmodd64, 223, 420, 516
fmodf, 223, 415, 516
fmodl, 223, 415, 516
fmul, 233, 416, 441, 516
fmull, 233, 416, 441, 516
fopen, 269, 270, 271, 272, 273, 424, 495,

506, 516, 524, 525
fopen_s, 425, 516, 523, 524, 525
fprintf_s, 425, 516, 526

Index 601

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

fputc, 19, 266, 269, 291, 292, 295, 425,
516

fputs, 142, 266, 291, 292, 425, 516
fputwc, 266, 269, 365, 367, 431, 516
fputws, 266, 365, 366, 431, 516
fread, 266, 294, 295, 425, 496, 516
free, 307, 308, 325, 426, 496, 516
freopen, 267, 268, 272, 273, 424, 516
freopen_s, 425, 516, 525, 526
frexp, 208, 209, 413, 455, 486, 487, 516
frexpd128, 208, 418, 516
frexpd32, 208, 418, 516
frexpd64, 208, 418, 516
frexpf, 208, 413, 516
frexpl, 208, 413, 516
fromfp, 193, 222, 223, 415, 441, 445, 462,

516
fromfpd128, 222, 420, 516
fromfpd32, 222, 420, 516
fromfpd64, 222, 420, 516
fromfpf, 222, 415, 516
fromfpl, 222, 415, 516
fromfpx, 193, 223, 415, 442, 445, 462,

516
fromfpxd128, 223, 420, 516
fromfpxd32, 223, 420, 516
fromfpxd64, 223, 420, 516
fromfpxf, 223, 415, 516
fromfpxl, 223, 415, 516
fscanf, 181, 266, 281, 284–289, 392, 425,

502, 516, 527
fscanf_s, 425, 516, 526, 527, 528, 530,

531
fseek, 266, 269, 272, 294, 296, 297, 367,

425, 496, 516
fsetpos, 267, 268, 272, 294, 295, 296,

367, 425, 496, 503, 516
fsqrt, 234, 416, 441, 516
fsqrtl, 234, 416, 441, 516
fsub, 232, 416, 441, 516
fsubl, 232, 329, 416, 441, 516
ftell, 296, 297, 425, 486, 496, 503, 516
fwide, 267, 268, 366, 431, 516
fwprintf, 181, 266, 351, 352, 357, 360–

362, 364, 393, 430, 498, 502, 516, 551
fwprintf_s, 432, 516, 551
fwrite, 266, 295, 425, 496, 516
fwscanf, 181, 266, 357, 360–362, 364,

367, 393, 430, 502, 516, 552
fwscanf_s, 432, 516, 551, 552, 554, 555,

558
getc, 266, 292, 425, 516
getchar, 14, 266, 292, 425, 516
getenv, 310, 426, 496, 498, 516
getenv_s, 427, 516, 536, 537
getpayload, 422, 441, 466, 467, 516

getpayloadd128, 422, 466, 516
getpayloadd32, 422, 466, 516
getpayloadd64, 422, 466, 516
getpayloadf, 422, 466, 516
getpayloadl, 422, 466, 516
gets_s, 426, 516, 534
getwc, 266, 366, 431, 516
getwchar, 266, 366, 367, 431, 516
gmtime, 343, 344, 430, 516
gmtime_r, xiii, 344, 430, 516, 570
gmtime_s, 430, 516, 550
hypot, 214, 215, 414, 440, 445, 458, 473,

516
hypotd128, 215, 419, 516
hypotd32, 215, 419, 516
hypotd64, 215, 419, 516
hypotf, 215, 414, 516
hypotl, 215, 414, 516
ignore_handler_s, 427, 516, 536
ilogb, 194, 209, 413, 441, 456, 486, 516
ilogbd128, 209, 418, 516
ilogbd32, 209, 418, 516
ilogbd64, 209, 418, 516
ilogbf, 209, 413, 516
ilogbl, 209, 413, 516
imaxabs, 182, 411, 516
imaxdiv, 181, 182, 411, 516
isalnum, 163, 164, 165, 409, 509
isalpha, 163, 385, 409, 504, 509
isblank, 163, 409, 504, 509
iscntrl, 163, 164, 165, 409, 509
isdigit, 163, 164, 165, 187, 409, 509
isgraph, 164, 385, 409, 509
islower, 4, 163, 164, 165, 166, 409, 504,

509
isprint, 19, 164, 409, 509
ispunct, 163, 164, 165, 409, 504, 509
isspace, 149, 163, 164, 165, 409, 504,

509
isupper, 163, 165, 166, 409, 504, 509
iswalnum, 386, 387, 388, 432, 509
iswalpha, 385, 386, 388, 432, 504, 509
iswblank, 386, 388, 432, 504, 509
iswcntrl, 386, 387, 388, 432, 509
iswctype, 388, 389, 433, 498, 504, 509
iswdigit, 386, 387, 388, 432, 509
iswgraph, 385, 387, 388, 432, 509
iswlower, 386, 387, 388, 389, 432, 504,

509
iswprint, 385, 387, 388, 432, 509
iswpunct, 385, 386, 387, 388, 432, 504,

509
iswspace, 149, 385, 386, 387, 388, 433,

504, 509
iswupper, 386, 387, 388, 389, 433, 504,

509

602 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

iswxdigit, 388, 433, 509
isxdigit, 165, 187, 409, 509
labs, 313, 426, 480, 516
ldexp, 209, 413, 456, 516
ldexpd128, 209, 418, 516
ldexpd32, 209, 418, 516
ldexpd64, 209, 418, 516
ldexpf, 209, 413, 516
ldexpl, 209, 413, 516
ldiv, 299, 313, 426, 516
lgamma, 218, 414, 460, 516
lgammad128, 218, 419, 516
lgammad32, 218, 419, 516
lgammad64, 218, 419, 516
lgammaf, 218, 414, 516
lgammal, 218, 414, 516
llabs, 313, 426, 480, 516
lldiv, 299, 313, 426, 516
llogb, 195, 209, 210, 413, 441, 456, 516
llogbd128, 210, 418, 516
llogbd32, 210, 418, 516
llogbd64, 210, 418, 516
llogbf, 210, 413, 516
llogbl, 210, 413, 516
llquantexpd128, 235, 421, 516
llquantexpd32, 235, 421, 516
llquantexpd64, 235, 421, 516
llrint, 220, 415, 445, 461, 462, 482, 487,

516
llrintd128, 220, 419, 516
llrintd32, 220, 419, 516
llrintd64, 220, 419, 516
llrintf, 220, 415, 516
llrintl, 220, 415, 516
llround, 221, 415, 441, 462, 482, 487,

516
llroundd128, 221, 420, 516
llroundd32, 221, 420, 516
llroundd64, 221, 420, 516
llroundf, 221, 415, 516
llroundl, 221, 415, 516
localeconv, 187, 190, 411, 493, 516
localtime, 343, 344, 345, 430, 516
localtime_r, xiii, 344, 345, 430, 516,

570
localtime_s, 430, 516, 550, 551
log, 195, 210, 211, 327, 413, 444, 456,

516
log10, 210, 211, 413, 444, 456, 516
log10d128, 210, 418, 516
log10d32, 210, 418, 516
log10d64, 210, 418, 517
log10f, 210, 413, 517
log10l, 210, 413, 517
log10p1, 211, 413, 445, 456, 517
log10p1d128, 211, 418, 517

log10p1d32, 211, 418, 517
log10p1d64, 211, 418, 517
log10p1f, 211, 413, 517
log10p1l, 211, 413, 517
log1p, 211, 413, 444, 456, 517
log1pd128, 211, 418, 517
log1pd32, 211, 418, 517
log1pd64, 211, 418, 517
log1pf, 211, 413, 517
log1pl, 211, 414, 517
log2, 212, 414, 444, 456, 517
log2d128, 212, 418, 517
log2d32, 212, 418, 517
log2d64, 212, 418, 517
log2f, 212, 414, 517
log2l, 212, 414, 517
log2p1, 211, 212, 414, 445, 457, 517
log2p1d128, 212, 418, 517
log2p1d32, 212, 418, 517
log2p1d64, 212, 418, 517
log2p1f, 212, 414, 517
log2p1l, 212, 414, 517
logb, 209, 210, 212, 213, 414, 441, 455,

457, 471, 481, 517
logbd128, 212, 418, 517
logbd32, 212, 418, 517
logbd64, 212, 418, 517
logbf, 212, 414, 481, 517
logbl, 212, 414, 481, 517
logd128, 210, 418, 517
logd32, 210, 418, 517
logd64, 210, 418, 517
logf, 210, 413, 517
logl, 210, 413, 517
logp1, ii, 211, 414, 444, 456, 517
logp1d128, 211, 418, 517
logp1d32, 211, 418, 517
logp1d64, 211, 418, 517
logp1f, 211, 414, 517
logp1l, 211, 414, 517
longjmp, 240, 241, 309, 310, 422, 493,

496, 517, 569
lrint, 220, 415, 445, 461, 462, 482, 487,

517
lrintd128, 220, 419, 517
lrintd32, 220, 419, 517
lrintd64, 220, 419, 517
lrintf, 220, 415, 517
lrintl, 220, 415, 517
lround, 221, 415, 441, 462, 482, 487, 517
lroundd128, 221, 420, 517
lroundd32, 221, 419, 517
lroundd64, 221, 420, 517
lroundf, 221, 415, 517
lroundl, 221, 415, 517
mblen, ii, 314, 381, 426, 517

Index 603

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

mbrlen, 381, 431, 517
mbrtoc16, 58, 59, 348, 430, 517
mbrtoc32, 58, 59, 349, 350, 430, 517
mbrtowc, 269, 283, 284, 356, 357, 380,

381, 382, 383, 431, 517, 540, 565
mbsinit, 380, 381, 431, 517
mbsrtowcs, 380, 383, 431, 517, 565
mbsrtowcs_s, 432, 517, 565, 566
mbstowcs, 59, 315, 368, 382, 426, 517
mbstowcs_s, 427, 517, 539, 540
mbtowc, 58, 314, 315, 381, 426, 517
memccpy, ii, xiii, 318, 427, 510, 570
memchr, 321, 322, 427, 510
memcmp, 39, 256, 320, 427, 510
memcpy, 39, 63, 152, 256, 318, 427, 442,

510
memcpy_s, 428, 510, 541, 542
memmove, 63, 318, 319, 427, 442, 492, 510
memmove_s, 428, 510, 542
memset, 324, 428, 510, 547
memset_s, 428, 510, 547
mktime, 341, 342, 429, 517
modf, 213, 326, 327, 414, 457, 481, 517
modfd128, 213, 418, 517
modfd32, 213, 418, 517
modfd64, 213, 418, 517
modff, 213, 414, 481, 517
modfl, 213, 414, 481, 517
mtx_destroy, 333, 429, 510
mtx_init, 331, 333, 334, 429, 510
mtx_lock, 334, 429, 497, 510
mtx_timedlock, 334, 429, 497, 510
mtx_trylock, 334, 335, 429, 510
mtx_unlock, 334, 335, 429, 497, 510
nan, 225, 276, 354, 415, 463, 517
nand128, 225, 420, 517
nand32, 225, 420, 517
nand64, 225, 420, 517
nanf, 225, 416, 517
nanl, 225, 416, 517
nearbyint, 219, 220, 415, 443, 445, 457,

461, 482, 517
nearbyintd128, 219, 419, 517
nearbyintd32, 219, 419, 517
nearbyintd64, 219, 419, 517
nearbyintf, 219, 415, 517
nearbyintl, 219, 415, 517
nextafter, 225, 226, 329, 416, 443, 463,

464, 517
nextafterd128, 225, 420, 517
nextafterd32, 225, 420, 517
nextafterd64, 225, 420, 517
nextafterf, 225, 416, 517
nextafterl, 225, 416, 517
nextdown, 226, 227, 416, 441, 464, 517
nextdownd128, 227, 420, 517

nextdownd32, 227, 420, 517
nextdownd64, 227, 420, 517
nextdownf, 227, 416, 517
nextdownl, 227, 416, 517
nexttoward, 226, 416, 443, 464, 517
nexttowardd128, 226, 420, 517
nexttowardd32, 226, 420, 517
nexttowardd64, 226, 420, 517
nexttowardf, 226, 329, 416, 517
nexttowardl, 226, 416, 517
nextup, 226, 416, 441, 464, 517
nextupd128, 226, 420, 517
nextupd32, 226, 420, 517
nextupd64, 226, 420, 517
nextupf, 226, 416, 517
nextupl, 226, 416, 517
perror, 298, 425, 517
pow, ii, 215, 327, 414, 445, 458, 517
powd128, 215, 419, 517
powd32, 215, 419, 517
powd64, 215, 329, 419, 517
powf, 215, 414, 517
powl, 215, 414, 443, 517
pown, 215, 216, 414, 445, 459, 517
pownd128, 215, 419, 517
pownd32, 215, 419, 517
pownd64, 215, 419, 517
pownf, 215, 414, 517
pownl, 215, 414, 517
powr, iii, 216, 414, 445, 459, 517
powrd128, 216, 419, 517
powrd32, 216, 419, 517
powrd64, 216, 419, 517
powrf, 216, 414, 517
powrl, 216, 414, 517
printf_s, 425, 518, 527, 528
puts, 143, 266, 294, 425, 518
putwc, 266, 367, 431, 518
putwchar, 266, 367, 431, 518
qsort, 311, 313, 426, 487, 518
qsort_s, 427, 518, 537, 538, 539
quantized128, 234, 421, 518
quantized32, 234, 421, 518
quantized64, 234, 421, 518
quantumd128, 235, 421, 518
quantumd32, 235, 421, 518
quantumd64, 235, 421, 518
quick_exit, 243, 309, 310, 426, 487,

494, 496, 503, 518, 571
raise, 242, 243, 244, 250, 308, 422, 493,

494, 518
rand, 299, 305, 306, 426, 518
realloc, 306, 307, 308, 392, 426, 487,

496, 503, 518
remainder, i, 224, 329, 415, 441, 444,

463, 482, 502, 518

604 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

remainderd128, 224, 420, 518
remainderd32, 224, 420, 518
remainderd64, 224, 420, 518
remainderf, 224, 415, 518
remainderl, 224, 415, 518
remove, 269, 270, 424, 502, 518, 523
remquo, 224, 415, 441, 444, 463, 486, 502,

518
remquof, 224, 415, 518
remquol, 224, 415, 518
rename, 269, 270, 424, 502, 518
rewind, 272, 294, 297, 367, 425, 518
rint, 220, 415, 441, 445, 461, 462, 482,

518
rintd128, 220, 419, 518
rintd32, 220, 419, 518
rintd64, 220, 419, 518
rintf, 220, 415, 518
rintl, 220, 415, 518
rootn, 216, 414, 445, 459, 518
rootnd128, 216, 419, 518
rootnd32, 216, 419, 518
rootnd64, 216, 419, 518
rootnf, 216, 414, 518
rootnl, 216, 414, 518
round, 193, 220, 221–223, 410, 415, 420,

440, 461, 482, 518
roundd128, 221, 419, 518
roundd32, 220, 419, 518
roundd64, 221, 419, 518
roundeven, 193, 221, 222, 415, 440, 462,

518
roundevend128, 221, 420, 518
roundevend32, 221, 420, 518
roundevend64, 221, 420, 518
roundevenf, 221, 415, 518
roundevenl, 221, 415, 518
roundf, 220, 415, 518
roundl, 220, 415, 518
rsqrt, 216, 217, 414, 445, 460, 518
rsqrtd128, 217, 419, 518
rsqrtd32, 217, 419, 518
rsqrtd64, 217, 419, 518
rsqrtf, 217, 414, 518
rsqrtl, 217, 414, 518
samequantumd128, 235, 421, 518
samequantumd32, 235, 421, 518
samequantumd64, 235, 421, 518
scalbln, 213, 414, 441, 457, 481, 518
scalblnd128, 213, 418, 518
scalblnd32, 213, 418, 518
scalblnd64, 213, 418, 518
scalblnf, 213, 414, 481, 518
scalblnl, 213, 414, 481, 518
scalbn, 213, 414, 441, 455, 456, 457, 472,

481, 518

scalbnd128, 213, 418, 518
scalbnd32, 213, 418, 518
scalbnd64, 213, 418, 518
scalbnf, 213, 414, 481, 518
scalbnl, 213, 414, 481, 518
scanf, 30, 172, 173, 266, 287, 289, 425,

442, 518, 571
scanf_s, 425, 518, 528, 532
set_constraint_handler_s, 427,

518, 521, 535, 536
setbuf, 265, 268, 269, 271, 273, 425, 518
setjmp, 150, 240, 241, 422, 486, 493, 518,

569
setlocale, 149, 186, 187, 190, 343, 411,

493, 501, 518
setpayload, 422, 441, 467, 518
setpayloadd128, 422, 467, 518
setpayloadd32, 422, 467, 518
setpayloadd64, 422, 467, 518
setpayloadf, 422, 467, 518
setpayloadl, 422, 467, 518
setpayloadsig, 422, 441, 467, 518
setpayloadsigd128, 422, 467, 518
setpayloadsigd32, 422, 467, 518
setpayloadsigd64, 422, 467, 518
setpayloadsigf, 422, 467, 518
setpayloadsigl, 422, 467, 518
setvbuf, 265, 268, 269, 271, 273, 274,

425, 495, 518
signal, 12, 14, 110, 111, 242, 243, 309,

310, 422, 494, 498, 502, 518
sin, 68, 201, 327, 329, 412, 445, 453, 479,

518
sind128, 201, 417, 518
sind32, 201, 417, 518
sind64, 201, 417, 518
sinf, 201, 412, 518
sinh, 205, 206, 327, 413, 445, 454, 479,

518
sinhd128, 206, 417, 518
sinhd32, 206, 417, 518
sinhd64, 206, 417, 518
sinhf, 206, 413, 518
sinhl, 206, 413, 518
sinl, 201, 412, 518
sinpi, 203, 204, 412, 445, 454, 518
sinpid128, 204, 417, 518
sinpid32, 203, 417, 518
sinpid64, 203, 417, 518
sinpif, 203, 412, 518
sinpil, 203, 412, 518
snprintf, iii, 287, 290, 300, 301, 343,

425, 518, 529, 572
snprintf_s, 425, 518, 528, 529
snwprintf_s, 432, 518, 552, 553
sprintf, 287, 288, 290, 425, 518, 529

Index 605

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

sprintf_s, 425, 518, 529
sqrt, 217, 327, 414, 441, 460, 465, 518
sqrtd128, 217, 419, 518
sqrtd32, 217, 329, 419, 518
sqrtd64, 217, 419, 518
sqrtf, 217, 414, 518
sqrtl, 217, 414, 518
srand, 305, 306, 426, 518
sscanf, 286, 288, 290, 425, 518
sscanf_s, 425, 518, 530, 533
strcat, 319, 427, 511
strcat_s, 428, 511, 544
strchr, 322, 427, 511
strcmp, 320, 321, 427, 511
strcoll, 187, 320, 321, 427, 511
strcpy, 285, 319, 427, 511
strcpy_s, 428, 511, 543
strcspn, 322, 427, 511
strdup, ii, xiii, 325, 428, 511, 570
strerror, 298, 324, 428, 496, 497, 504,

511
strerror_s, 324, 428, 511, 547, 548
strerrorlen_s, 428, 511, 548
strfromd, 300, 368, 426, 442, 511
strfromd128, 300, 427, 511
strfromd32, 300, 427, 511
strfromd64, 300, 427, 511
strfromf, 300, 368, 426, 511
strfroml, 300, 426, 511
strftime, ii, xiii, 187, 343, 345, 347, 379,

430, 487, 495, 497, 503, 511, 548–550,
570, 572

strlen, 320, 325, 428, 511
strncat, 320, 427, 511
strncat_s, 428, 511, 544, 545
strncmp, 142, 320, 321, 427, 511
strncpy, 319, 427, 511
strncpy_s, 428, 511, 543, 544
strndup, ii, xiii, 325, 428, 511, 570
strnlen_s, 428, 511, 543–545, 548
strpbrk, 322, 427, 511
strrchr, 322, 323, 427, 511
strspn, 323, 428, 511
strstr, 323, 428, 511
strtod, 55, 225, 282, 283, 287, 299, 300,

301, 426, 442, 446, 447, 487, 503, 511
strtod128, 302, 503, 511
strtod32, 302, 503, 511
strtod64, 302, 303, 503, 511
strtof, 225, 287, 300, 301, 426, 487, 503,

511
strtoimax, 182, 411, 511
strtok, 323, 324, 428, 497, 511
strtok_s, 324, 428, 511, 545, 546, 547
strtol, 182, 282, 283, 287, 300, 304, 305,

426, 511

strtold, 225, 287, 300, 301, 426, 487,
503, 511

strtoll, 182, 287, 300, 304, 305, 426,
511

strtoul, 182, 283, 287, 300, 304, 305,
426, 511

strtoull, 182, 287, 300, 304, 305, 426,
511

strtoumax, 182, 411, 511
strxfrm, 187, 321, 427, 497, 511
swprintf, 361, 363, 430, 519, 552, 553
swprintf_s, 432, 519, 553
swscanf, 361, 362, 363, 430, 519
swscanf_s, 432, 519, 553, 554, 556
system, 310, 311, 426, 496, 498, 503, 519
tan, 201, 202, 327, 412, 445, 453, 479,

519
tand128, 201, 417, 519
tand32, 201, 417, 519
tand64, 201, 417, 519
tanf, 201, 412, 519
tanh, 206, 327, 413, 445, 454, 479, 519
tanhd128, 205, 206, 417, 519
tanhd32, 205, 206, 417, 519
tanhd64, 205, 206, 417, 519
tanhf, 206, 413, 519
tanhl, 206, 413, 519
tanl, 201, 412, 519
tanpi, 204, 412, 445, 454, 519
tanpid128, 204, 417, 519
tanpid32, 204, 417, 519
tanpid64, 204, 417, 519
tanpif, 204, 413, 519
tanpil, 204, 413, 519
tgamma, 218, 219, 415, 460, 519
tgammad128, 218, 419, 519
tgammad32, 218, 419, 519
tgammad64, 218, 419, 519
tgammaf, 218, 415, 519
tgammal, 218, 415, 519
thrd_create, 330, 335, 429, 511
thrd_current, 335, 429, 511
thrd_detach, 336, 429, 497, 511
thrd_equal, 336, 429, 511
thrd_exit, 335, 336, 429, 487, 511
thrd_join, 336, 337, 429, 497, 511
thrd_sleep, 337, 429, 511
thrd_yield, 337, 429, 511
time, 341, 342, 429, 487, 519
timespec_get, 342, 343, 429, 519
timespec_getres, 343, 430, 519
tmpfile, 270, 309, 424, 519
tmpfile_s, 425, 519, 523, 524
tmpnam, 266, 270, 271, 424, 519, 524
tmpnam_s, 425, 519, 522, 523, 524
tolower, 165, 409, 511

606 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

totalorder, i, 421, 443, 465, 466, 511
totalorderd128, 422, 465, 511
totalorderd32, 422, 465, 511
totalorderd64, 422, 465, 511
totalorderf, 421, 465, 511
totalorderl, 422, 465, 511
totalordermag, 422, 443, 466, 511
totalordermagd128, 422, 466, 511
totalordermagd32, 422, 466, 511
totalordermagd64, 422, 466, 511
totalordermagf, 422, 466, 511
totalordermagl, 422, 466, 511
toupper, 165, 166, 409, 511
towctrans, 389, 390, 433, 498, 504, 511
towlower, 389, 390, 433, 511
towupper, 389, 390, 433, 511
trunc, 193, 222, 415, 440, 462, 482, 519
truncd128, 222, 420, 519
truncd32, 222, 420, 519
truncd64, 222, 420, 519
truncf, 222, 415, 519
truncl, 222, 415, 519
tss_create, 337, 338, 429, 497, 511
tss_delete, 338, 429, 487, 497, 511
tss_get, 338, 429, 497, 511
tss_set, 338, 339, 429, 497, 511
ufromfp, 193, 222, 223, 415, 441, 445,

462, 519
ufromfpd128, 222, 420, 519
ufromfpd32, 222, 420, 519
ufromfpd64, 222, 420, 519
ufromfpf, 222, 415, 519
ufromfpl, 222, 415, 519
ufromfpx, 193, 223, 415, 442, 445, 462,

519
ufromfpxd128, 223, 420, 519
ufromfpxd32, 223, 420, 519
ufromfpxd64, 223, 420, 519
ufromfpxf, 223, 415, 519
ufromfpxl, 223, 415, 519
ungetc, 266, 294, 296, 392, 425, 486, 496,

506, 519, 572
ungetwc, 266, 367, 368, 431, 486, 506,

519
va_arg, 246, 247, 248, 278, 288–290, 356,

362–364, 423, 494, 519, 531–533, 555–
557

va_copy, 150, 246, 247, 248, 423, 486,
494, 519, 572

va_end, 150, 246, 247, 248, 288–290,
362–364, 423, 486, 494, 496, 519, 531–
533, 555–557

va_start, 246, 247, 248, 288–290, 362–
364, 423, 494, 519, 531–533, 555–557

vfprintf, 266, 288, 289, 425, 496, 519,
530

vfprintf_s, 425, 519, 530, 531–533
vfscanf, 266, 288, 289, 425, 496, 519
vfscanf_s, 426, 519, 531, 532, 533
vfwprintf, 266, 362, 430, 496, 519, 554
vfwprintf_s, 432, 519, 554
vfwscanf, 266, 362, 363, 367, 430, 496,

519
vfwscanf_s, 432, 519, 554, 555–557
vprintf, 266, 288, 289, 425, 496, 519,

531
vprintf_s, 426, 519, 531, 532, 533
vscanf, 266, 288, 289, 425, 496, 519, 572
vscanf_s, 426, 519, 531, 532–534
vsnprintf, 288, 290, 425, 496, 519, 532
vsnprintf_s, 426, 519, 531, 532, 533
vsnwprintf_s, 432, 519, 555, 556
vsprintf, 288, 290, 425, 496, 519, 533
vsprintf_s, 426, 519, 531, 532, 533
vsscanf, 288, 290, 425, 496, 519
vsscanf_s, 426, 519, 531, 532, 533, 534
vswprintf, 362, 363, 430, 496, 519, 555,

556
vswprintf_s, 432, 519, 555, 556
vswscanf, 362, 363, 430, 496, 519
vswscanf_s, 432, 519, 555, 556, 557
vwprintf, 266, 362, 363, 364, 430, 496,

519, 557
vwprintf_s, 432, 519, 556, 557
vwscanf, 266, 362, 364, 367, 430, 496,

519
vwscanf_s, 432, 519, 555, 556, 557
wcrtomb, 269, 278, 281, 287, 351, 359–

361, 382, 383, 431, 487, 519, 541, 564,
566

wcrtomb_s, 432, 519, 564, 565
wcscat, 373, 431, 512
wcscat_s, 432, 512, 561
wcschr, 375, 431, 512
wcscmp, 374, 375, 431, 512
wcscoll, 374, 375, 431, 512
wcscpy, 372, 431, 512
wcscpy_s, 432, 512, 558, 559
wcscspn, 375, 376, 431, 512
wcsftime, 187, 379, 431, 487, 495, 497,

503, 512
wcslen, 374, 379, 431, 512, 563
wcsncat, 373, 374, 431, 512
wcsncat_s, 432, 512, 561, 562
wcsncmp, 374, 431, 512
wcsncpy, 372, 373, 431, 512
wcsncpy_s, 432, 512, 559, 560
wcsnlen_s, 432, 512, 559, 561, 562, 563,

564
wcspbrk, 377, 431, 512
wcsrchr, 377, 431, 512
wcsrtombs, 383, 384, 431, 512, 565

Index 607

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

wcsrtombs_s, 432, 512, 565, 566, 567
wcsspn, 377, 431, 512
wcsstr, 377, 431, 512
wcstod, 358, 359, 361, 368, 431, 442, 487,

503, 512
wcstod128, 368, 370, 503, 512
wcstod32, 368, 370, 503, 512
wcstod64, 368, 370, 503, 512
wcstof, 361, 368, 431, 487, 503, 512
wcstoimax, 182, 183, 411, 512
wcstok, 378, 431, 497, 498, 512
wcstok_s, 432, 512, 562, 563
wcstol, 183, 358, 359, 361, 371, 372, 431,

512
wcstold, 361, 368, 431, 487, 503, 512
wcstoll, 183, 361, 371, 372, 431, 512
wcstombs, 316, 382, 427, 512
wcstombs_s, 427, 512, 540, 541
wcstoul, 183, 359, 361, 371, 372, 431,

512
wcstoull, 183, 361, 371, 372, 431, 512
wcstoumax, 182, 183, 411, 512
wcsxfrm, 375, 431, 497, 512
wctob, 380, 385, 431, 519
wctomb, 314, 315, 316, 381, 426, 519
wctomb_s, 427, 519, 539
wctrans, 389, 390, 433, 498, 519
wctype, 388, 389, 433, 498, 519
wmemchr, 378, 379, 431, 519
wmemcmp, 375, 431, 519
wmemcpy, 373, 431, 519
wmemcpy_s, 432, 519, 560
wmemmove, 373, 431, 519
wmemmove_s, 432, 519, 560, 561
wmemset, 379, 431, 519
wprintf, 172, 173, 181, 266, 363, 364,

430, 442, 519, 558
wprintf_s, 432, 519, 557, 558
wscanf, 172, 173, 266, 364, 367, 430, 442,

519
wscanf_s, 432, 519, 557, 558

future directions, 391
identifier
__VA_ARGS__, 137, 138, 143, 512, 572
__func__, 49, 50, 153, 489, 509, 572
errno, 150, 154, 167, 182, 183, 195, 196,

243, 269, 295–299, 302, 303, 305, 324,
349, 350, 365, 370–372, 382–384, 409,
493, 494, 502, 503, 506, 514, 521, 522,
547

identifier prefix
_DECIMAL_DIG, 26, 279, 302, 356, 369,

446
_H__, 150
__STDC_VERSION_, 150
_r, 343

__STDC_, 148
__STDC_WANT_IEC_60559_, 439, 511
ATOMIC_, 392, 506
atomic_, 392, 506
c, 326, 327
cnd_, 393, 506
cr_, 392
D, 411
d, 327, 328
d128, 328, 392
d32, 328, 392
d64, 326, 328, 392
DBL_, 391, 506
DEC, 411
DEC128_, 28, 391, 506
DEC32_, 28, 391, 506
DEC64_, 28, 391, 506
DEC_, 391, 506
E, 167, 391, 506
FE_, 169, 170, 391, 506
FLT_, 391, 506
FP_, 193, 391, 506
INT, 262, 263, 264, 392, 424, 506
int, 261, 392, 424, 506
INT_FAST, 262, 263, 424
int_fast, 262, 424
INT_LEAST, 262, 263, 424
int_least, 261, 264, 424
is, 391, 393, 506
LC_, 186, 391, 506
LDBL_, 391, 506
llquantexpd, 235, 236, 328, 444, 516
MATH_, 391, 506
mem, 392, 506
memory_, 392
memory_order_, 392
mtx_, 393, 506
PRI, 181, 391, 506
PRId, 181, 411
PRIdFAST, 181, 411
PRIdLEAST, 181, 411
PRIi, 181, 411
PRIiFAST, 181, 411
PRIiLEAST, 181, 411
PRIo, 181, 411
PRIoFAST, 181, 411
PRIoLEAST, 181, 411
PRIu, 181, 411
PRIuFAST, 181, 411
PRIuLEAST, 181, 411
PRIX, 181, 411
PRIx, 181, 411
PRIXFAST, 181, 411
PRIxFAST, 181, 411
PRIXLEAST, 181, 411
PRIxLEAST, 181, 411

608 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

quantized, 234, 235, 328, 518
quantumd, 235, 328, 444, 518
samequantumd, 235, 328, 444, 518
SCN, 181, 391, 506
SCNd, 181, 411
SCNdFAST, 181, 411
SCNdLEAST, 181, 411
SCNi, 181, 411
SCNiFAST, 181, 411
SCNiLEAST, 181, 411
SCNo, 181, 411
SCNoFAST, 181, 411
SCNoLEAST, 181, 411
SCNu, 181, 411
SCNuFAST, 181, 411
SCNuLEAST, 181, 411
SCNx, 181, 411
SCNxFAST, 181, 411
SCNxLEAST, 181, 411
SIG, 242, 392, 506
SIG_, 242, 392, 506
str, 391, 392, 506
strfrom, 172, 173
strfromd, 300, 301
thrd_, 393, 506
TIME_, 340, 393, 506
to, 391, 393, 506
tss_, 393, 506
UINT, 263, 264, 392, 424, 506
uint, 261, 392, 424, 506
UINT_FAST, 263, 424
uint_fast, 262, 424
UINT_LEAST, 263, 424
uint_least, 261, 264, 424
wcs, 391–393, 506

identifier suffix
_C, 264, 392, 424, 506
_EXT__, 439, 508
_MAX, 21, 43, 262, 264, 392, 411, 424, 506
_MIN, 21, 262, 264, 392, 411, 424, 506
_WIDTH, 21, 262, 263, 264, 392, 424, 506
_explicit, 249, 257, 423
_t, 261, 262, 264, 392, 424, 506
f, 154, 192, 326–328, 391, 392
l, 154, 192, 326, 328, 391, 392
MAX, 115, 116

macro
_Complex_I, 154, 408, 473, 507
_IOFBF, 265, 273, 424, 509
_IOLBF, 265, 273, 424, 509
_IONBF, 265, 273, 424, 509
_Imaginary_I, 154, 161, 408, 472, 473,

509
_PRINTF_NAN_LEN_MAX, 266, 424
__DATE__, 146, 501, 507
__FILE__, 145, 146, 153, 508

__LINE__, 143–145, 146, 153, 486, 509
__STDC_ANALYZABLE__, 146, 510, 568
__STDC_HOSTED__, 146, 510
__STDC_IEC_559_COMPLEX__, 22
__STDC_IEC_559__, 22
__STDC_IEC_60559_BFP__, 8, 22, 146,

421, 439, 465, 466, 510
__STDC_IEC_60559_COMPLEX__, 22,

147, 469, 510
__STDC_IEC_60559_DFP__, 8, 147, 173,

176, 178, 199–232, 233, 234–237, 300,
302, 329, 370, 410, 411, 416, 422, 427,
436, 437, 439, 465–467, 510

__STDC_ISO_10646__, 146, 499, 510
__STDC_LIB_EXT1__, 147, 149, 409,

424, 425, 427, 428, 430, 431, 510, 520
__STDC_MB_MIGHT_NEQ_WC__, 146,

260, 510
__STDC_NO_ATOMICS__, 147, 249, 423,

510
__STDC_NO_COMPLEX__, 147, 154, 408,

510
__STDC_NO_THREADS__, 147, 330, 429,

510
__STDC_NO_VLA__, 147, 510
__STDC_UTF_16__, 146, 499, 510
__STDC_UTF_32__, 146, 499, 510
__STDC_VERSION_FENV_H__, 168, 510
__STDC_VERSION_MATH_H__, 192, 511
__STDC_VERSION_STDINT_H__, 261,

511
__STDC_VERSION_STDLIB_H__, 299,

511
__STDC_VERSION_TGMATH_H__, 326,

511
__STDC_VERSION_TIME_H__, 340, 511
__STDC_VERSION__, 146, 510, 570–572
__STDC_WANT_IEC_60559_EXT__, 421,

422, 445, 465–467, 511
__STDC_WANT_LIB_EXT1__, 409, 424,

425, 427, 428, 430, 431, 511, 520, 521,
523–539, 542–563

__STDC__, 146, 510
__TIME__, 146, 501, 511
__alignas_is_defined, 245, 422, 506
__alignof_is_defined, 245, 422, 506
__bool_true_false_are_defined,

259, 423, 507
__cplusplus, 145, 507
__has_c_attribute, 118–120, 135,

136, 145
alignas, 245, 422, 512
alignof, 245, 422, 512
and, 143, 184, 411, 512
and_eq, 184, 411, 512
assert, 119, 153, 177, 408, 492, 501, 512

Index 609

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

ATOMIC_BOOL_LOCK_FREE, 249, 423,
506

ATOMIC_CHAR16_T_LOCK_FREE, 249,
423, 506

ATOMIC_CHAR32_T_LOCK_FREE, 249,
423, 506

ATOMIC_CHAR_LOCK_FREE, 249, 423,
506

ATOMIC_FLAG_INIT, 249, 257, 258, 423,
507

ATOMIC_INT_LOCK_FREE, 249, 423, 507
ATOMIC_LLONG_LOCK_FREE, 249, 423,

507
ATOMIC_LONG_LOCK_FREE, 249, 423,

507
ATOMIC_POINTER_LOCK_FREE, 249,

423, 507
ATOMIC_SHORT_LOCK_FREE, 249, 423,

507
ATOMIC_WCHAR_T_LOCK_FREE, 249,

423, 507
bitand, 184, 411, 513
bitor, 184, 411, 513
bool, 513
BOOL_MAX, 411, 436, 513
BOOL_WIDTH, 20, 411, 436, 513
BUFSIZ, 265, 268, 273, 424, 513
CHAR_BIT, 20, 21, 39, 90, 411, 436, 513
CHAR_MAX, 21, 188, 189, 411, 436, 513
CHAR_MIN, 21, 37, 411, 436, 513
CHAR_WIDTH, 21, 411, 436, 513
CLOCKS_PER_SEC, 340, 341, 429, 513
CMPLX, 154, 160, 161, 409, 513
CMPLXF, 160, 161, 409, 513
CMPLXL, 160, 161, 409, 513
compl, 184, 411, 513
complex, 113, 154–161, 329, 408, 409,

470, 471, 487, 513
CR_DECIMAL_DIG, 23, 445, 446, 514
D128_SNAN, 28
D32_SNAN, 28
d32add, 30, 173, 328, 514
d32div, 30, 173, 328, 514
d32fma, 30, 173, 328, 514
d32mul, 30, 173, 328, 514
d32sqrt, 30, 173, 328, 514
d32sub, 30, 173, 328, 514
D64_SNAN, 28
d64add, 30, 173, 328, 514
d64div, 30, 173, 328, 514
d64fma, 30, 173, 328, 514
d64mul, 30, 173, 328, 514
d64sqrt, 30, 173, 328, 514
d64sub, 30, 173, 328, 514
dadd, 328, 514
DBL_DECIMAL_DIG, 25, 27, 410, 437, 507

DBL_DIG, 25, 27, 410, 437, 507
DBL_EPSILON, 26, 27, 410, 437, 481, 507
DBL_HAS_SUBNORM, 23, 27, 410, 507
DBL_IS_IEC_60559, 23, 27, 410
DBL_MANT_DIG, 24, 27, 410, 437, 481,

507
DBL_MAX, 26, 27, 410, 437, 481, 507
DBL_MAX_10_EXP, 25, 27, 410, 437, 507
DBL_MAX_EXP, 25, 27, 410, 437, 481, 507
DBL_MIN, 26, 27, 410, 437, 481, 507
DBL_MIN_10_EXP, 25, 27, 410, 437, 507
DBL_MIN_EXP, 25, 27, 410, 437, 481, 507
DBL_NORM_MAX, ii, 26, 410, 437, 507
DBL_SNAN, 24, 410
DBL_TRUE_MIN, 26, 27, 410, 507
ddiv, 328, 514
DEC128_EPSILON, 29, 438, 507
DEC128_MANT_DIG, 28, 438, 507
DEC128_MAX, 29, 438, 507
DEC128_MAX_EXP, 29, 438, 507
DEC128_MIN, 29, 438, 507
DEC128_MIN_EXP, 29, 438, 507
DEC128_TRUE_MIN, 29, 438, 507
DEC32_EPSILON, 29, 437, 507
DEC32_MANT_DIG, 28, 437, 507
DEC32_MAX, 29, 437, 507
DEC32_MAX_EXP, 29, 437, 507
DEC32_MIN, 29, 437, 507
DEC32_MIN_EXP, 29, 437, 507
DEC32_TRUE_MIN, 29, 437, 507
DEC64_EPSILON, 29, 437, 507
DEC64_MANT_DIG, 28, 438, 507
DEC64_MAX, 29, 438, 507
DEC64_MAX_EXP, 29, 438, 507
DEC64_MIN, 29, 438, 507
DEC64_MIN_EXP, 29, 438, 507
DEC64_TRUE_MIN, 29, 438, 508
DEC_EVAL_METHOD, iii, 23, 28, 55, 84,

192, 436, 500, 501, 508
DEC_INFINITY, 28, 193, 235, 411, 508
DEC_NAN, 28, 193, 411, 508
DECIMAL_DIG, i, xiii, 23, 25, 391, 410,

437, 514, 570
dfma, 328, 514
dmul, 328, 514
dsqrt, 328, 514
dsub, 328, 514
EDOM, 167, 195, 409, 508
EILSEQ, 167, 269, 349, 350, 365, 382–384,

409, 508
EOF, 163, 265, 271, 285, 287–294, 351,

360, 362–364, 366, 380, 424, 493, 508,
527, 528, 530–532, 534, 552, 554–558

EOL, 508
ERANGE, 167, 182, 183, 195, 196, 302, 303,

305, 370–372, 409, 502, 503, 508

610 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

EXIT_FAILURE, 299, 309, 426, 508
EXIT_SUCCESS, 299, 309, 336, 426, 508
false, ii, iii, 235, 259, 392, 423, 450, 480,

515
FE_ALL_EXCEPT, 83, 169, 410, 483, 508
FE_DEC_DOWNWARD, 169, 173, 410, 444,

508
FE_DEC_TONEAREST, 169, 170, 173, 410,

444, 508
FE_DEC_TONEARESTFROMZERO, 169,

173, 410, 444, 508
FE_DEC_TOWARDZERO, 169, 173, 410,

444, 508
FE_DEC_UPWARD, 169, 173, 410, 444, 508
FE_DFL_ENV, 170, 410, 508
FE_DFL_MODE, 169, 177, 443, 508
FE_DIVBYZERO, 169, 195, 410, 483, 508
FE_DOWNWARD, 169, 410, 443, 508
FE_INEXACT, 169, 173, 410, 462, 508
FE_INVALID, 169, 176, 195, 410, 483,

508
FE_OVERFLOW, 169, 173, 176, 195, 410,

483, 508
FE_SNANS_ALWAYS_SIGNAL, 440, 443,

461, 464, 508
FE_TONEAREST, 169, 410, 443, 508
FE_TONEARESTFROMZERO, i, 169, 443,

508
FE_TOWARDZERO, 169, 410, 443, 457, 462,

508
FE_UNDERFLOW, 169, 179, 410, 483, 508
FE_UPWARD, 8, 169, 410, 443, 461, 508
FILENAME_MAX, 265, 424, 515
FLT_DECIMAL_DIG, 25, 26, 27, 410, 437,

508
FLT_DIG, 25, 26, 27, 410, 437, 508
FLT_EPSILON, 26, 27, 410, 437, 481, 508
FLT_EVAL_METHOD, i, 23, 28, 83, 84, 192,

410, 436, 468, 500, 501, 508
FLT_HAS_SUBNORM, 23, 27, 410, 508
FLT_IS_IEC_60559, 23, 27, 410
FLT_MANT_DIG, 24, 26, 27, 410, 437, 481,

508
FLT_MAX, 26, 27, 410, 437, 481, 508
FLT_MAX_10_EXP, 25, 27, 410, 437, 508
FLT_MAX_EXP, 25, 27, 410, 437, 481, 508
FLT_MIN, 26, 27, 410, 437, 481, 508
FLT_MIN_10_EXP, 25, 27, 410, 437, 508
FLT_MIN_EXP, 25, 26, 27, 410, 437, 481,

508
FLT_NORM_MAX, 26, 410, 437, 508
FLT_RADIX, 23, 24, 25–28, 54, 173, 178,

213, 277–279, 302, 355, 356, 369, 410,
437, 443, 481, 508

FLT_ROUNDS, 23, 169, 410, 436, 440, 481,
482, 500, 508

FLT_SNAN, 24, 410
FLT_TRUE_MIN, 26, 27, 410, 508
FOPEN_MAX, 265, 269, 270, 424, 516, 523
FP_FAST_D32ADDD128, 194, 508
FP_FAST_D32ADDD64, 194, 508
FP_FAST_D32DIVD128, 194, 508
FP_FAST_D32DIVD64, 194, 508
FP_FAST_D32FMAD128, 194, 508
FP_FAST_D32FMAD64, 194, 508
FP_FAST_D32MULD128, 194, 508
FP_FAST_D32MULD64, 194, 508
FP_FAST_D32SQRTD128, 194, 508
FP_FAST_D32SQRTD64, 194, 508
FP_FAST_D32SUBD128, 194, 508
FP_FAST_D32SUBD64, 194, 508
FP_FAST_D64ADDD128, 194, 508
FP_FAST_D64DIVD128, 194, 508
FP_FAST_D64FMAD128, 194, 508
FP_FAST_D64MULD128, 194, 508
FP_FAST_D64SQRTD128, 194, 508
FP_FAST_D64SUBD128, 194, 508
FP_FAST_DADDL, 194, 508
FP_FAST_DDIVL, 194, 508
FP_FAST_DFMAL, 194, 508
FP_FAST_DMULL, 194, 508
FP_FAST_DSQRTL, 194, 508
FP_FAST_DSUBL, 194, 508
FP_FAST_FADD, 194, 508
FP_FAST_FADDL, 194, 508
FP_FAST_FDIV, 194, 508
FP_FAST_FDIVL, 194, 508
FP_FAST_FFMA, 194, 508
FP_FAST_FFMAL, 194, 508
FP_FAST_FMA, 193, 194, 412, 508
FP_FAST_FMAD128, 194, 508
FP_FAST_FMAD32, 194, 508
FP_FAST_FMAD64, 194, 508
FP_FAST_FMAF, 194, 412, 508
FP_FAST_FMAL, 194, 412, 508
FP_FAST_FMUL, 194, 508
FP_FAST_FMULL, 194, 508
FP_FAST_FSQRT, 194, 508
FP_FAST_FSQRTL, 194, 508
FP_FAST_FSUB, 194, 508
FP_FAST_FSUBL, 194, 508
FP_ILOGB0, 194, 195, 209, 412, 508
FP_ILOGBNAN, 194, 195, 209, 412, 508
FP_INFINITE, 193, 412, 508
FP_INT_DOWNWARD, 193, 508
FP_INT_TONEAREST, 193, 508
FP_INT_TONEARESTFROMZERO, 193, 508
FP_INT_TOWARDZERO, 193, 508
FP_INT_UPWARD, 193, 223, 508
FP_LLOGB0, 194, 195, 210, 508
FP_LLOGBNAN, 194, 195, 210, 508
FP_NAN, 193, 412, 508

Index 611

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

FP_NORMAL, 193, 412, 509
FP_SUBNORMAL, 193, 412, 509
FP_ZERO, 193, 412, 509
fpclassify, 196, 197, 412, 442, 443,

516
HUGE_VAL, 192, 195, 226, 227, 302, 370,

412, 451, 516
HUGE_VAL_D128, 192, 516
HUGE_VAL_D32, 192, 193, 516
HUGE_VAL_D64, 192, 516
HUGE_VALF, 192, 195, 302, 370, 412, 451,

516
HUGE_VALL, 192, 195, 302, 370, 412, 451,

516
I, 516
imaginary, 154, 408, 472, 473, 516
INFINITY, 24, 161, 193, 276, 301–303,

354, 369–371, 410, 412, 440, 471, 472,
516

INT16_C, 509
INT16_MAX, 509
INT16_MIN, 509
INT16_WIDTH, 509
INT32_C, 509
INT32_MAX, 509
INT32_MIN, 509
INT32_WIDTH, 509
INT64_C, 509
INT64_MAX, 509
INT64_MIN, 509
INT64_WIDTH, 509
INT8_C, 509
INT8_MAX, 509
INT8_MIN, 509
INT8_WIDTH, 509
INT_MAX, 21, 35, 135, 194, 195, 209, 411,

436, 480, 495, 509
INT_MIN, 21, 35, 194, 195, 411, 436, 480,

509
INT_WIDTH, 21, 223, 411, 436, 509
INTMAX_C, 264, 424, 509
INTMAX_MAX, 182, 183, 262, 263, 424,

509
INTMAX_MIN, 182, 183, 262, 263, 424,

509
INTMAX_WIDTH, 263, 424, 509
INTPTR_MAX, 262, 263, 424, 509
INTPTR_MIN, 262, 263, 424, 509
INTPTR_WIDTH, 263, 424, 509
iscanonical, 22, 197, 412, 442, 443,

509
iseqsig, 239, 416, 442, 468, 509
isfinite, 197, 412, 442, 443, 471, 472,

509
isgreater, 238, 416, 442, 509
isgreaterequal, 238, 416, 442, 450,

464, 509
isinf, 197, 412, 442, 443, 457, 471, 472,

509
isless, 238, 416, 442, 450, 509
islessequal, 239, 416, 442, 509
islessgreater, 239, 416, 509
isnan, 197, 198, 412, 442, 443, 464, 471,

472, 509
isnormal, 198, 412, 442, 443, 509
issignaling, 198, 412, 442, 443, 509
issubnormal, 198, 199, 412, 442, 443,

509
isunordered, 239, 416, 442, 509
iszero, 199, 412, 442, 443, 509
kill_dependency, 15, 252, 253, 423,

516
L_tmpnam, 266, 271, 424, 517
L_tmpnam_s, 425, 517, 522, 523
LC_ALL, 186, 187, 190, 411, 509
LC_COLLATE, 186, 187, 321, 374, 411,

509
LC_CTYPE, 186, 187, 299, 314, 315, 380,

385, 388–390, 411, 497, 498, 509, 539
LC_MONETARY, 186, 187, 190, 411, 509
LC_NUMERIC, 186, 187, 190, 411, 509
LC_TIME, 186, 187, 343, 345, 411, 509
LDBL_DECIMAL_DIG, 25, 391, 410, 437,

509
LDBL_DIG, 25, 410, 437, 509
LDBL_EPSILON, 26, 410, 437, 481, 509
LDBL_HAS_SUBNORM, 23, 410, 509
LDBL_IS_IEC_60559, 23
LDBL_MANT_DIG, 24, 410, 437, 481, 509
LDBL_MAX, 26, 410, 437, 481, 509
LDBL_MAX_10_EXP, 25, 410, 437, 509
LDBL_MAX_EXP, 25, 410, 437, 481, 509
LDBL_MIN, 26, 410, 437, 481, 509
LDBL_MIN_10_EXP, 25, 410, 437, 509
LDBL_MIN_EXP, 25, 410, 437, 481, 509
LDBL_NORM_MAX, 26, 410, 437, 509
LDBL_SNAN, 24, 410
LDBL_TRUE_MIN, 26, 410, 509
LLONG_MAX, 21, 305, 372, 411, 436, 480,

516
LLONG_MIN, 21, 235, 305, 372, 411, 436,

480, 516
LLONG_WIDTH, 21, 411, 436, 516
llquantexp, i, 328, 516
LONG_MAX, 21, 195, 210, 305, 372, 411,

436, 480, 517
LONG_MIN, 21, 195, 305, 372, 411, 436,

480, 517
LONG_WIDTH, 21, 411, 436, 517
MATH_ERREXCEPT, 195, 196, 412, 451,

502, 509
math_errhandling, 150, 195, 196, 412,

612 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

451, 486, 493, 502, 517, 572
MATH_ERRNO, 195, 196, 412, 502, 509
MB_CUR_MAX, 149, 299, 315, 349, 350,

382, 426, 517, 539, 564
MB_LEN_MAX, 21, 149, 299, 411, 436, 517
NAN, ii, 24, 193, 276, 301–303, 354, 369–

371, 410, 412, 440
NDEBUG, 119, 150, 153, 408, 517
noreturn, 317, 427, 517
not, 184, 411, 517
not_eq, 184, 411, 517
NULL, 46, 186, 225, 260, 265, 299, 300,

318, 321, 324, 340, 348, 349, 351, 375,
378, 381, 411, 424, 426, 427, 429, 430,
502, 517, 546, 547, 563

offsetof, i, ii, 92, 260, 424, 494, 517
ONCE_FLAG_INIT, 330, 429, 517
or, 184, 411, 517
or_eq, 184, 411, 517
PRIcMAX, 181
PRIcPTR, 181
PRId32, 510
PRId64, 510
PRIdFAST32, 181, 510
PRIdFAST64, 510
PRIdLEAST32, 510
PRIdLEAST64, 510
PRIdMAX, 181, 411, 510
PRIdPTR, 181, 411, 510
PRIi32, 510
PRIi64, 510
PRIiFAST32, 510
PRIiFAST64, 510
PRIiLEAST32, 510
PRIiLEAST64, 510
PRIiMAX, 181, 411, 510
PRIiPTR, 181, 411, 510
PRIo32, 510
PRIo64, 510
PRIoFAST32, 510
PRIoFAST64, 510
PRIoLEAST32, 510
PRIoLEAST64, 510
PRIoMAX, 181, 411, 510
PRIoPTR, 181, 411, 510
PRIu32, 510
PRIu64, 510
PRIuFAST32, 510
PRIuFAST64, 510
PRIuLEAST32, 510
PRIuLEAST64, 510
PRIuMAX, 181, 411, 510
PRIuPTR, 181, 411, 510
PRIX32, 510
PRIX64, 510
PRIXFAST32, 510

PRIXFAST64, 510
PRIXLEAST32, 510
PRIXLEAST64, 510
PRIXMAX, 181, 411, 510
PRIxMAX, 181, 411
PRIXPTR, 181, 411, 510
PRIxPTR, 181, 411
PTRDIFF_MAX, 424, 518
PTRDIFF_MIN, 424, 518
PTRDIFF_WIDTH, 263, 518
putc, 266, 292, 293, 425, 518
putchar, 266, 292, 293, 425, 518
quantize, 31, 173, 328, 441, 518
quantum, 31, 328, 441, 518
RAND_MAX, 299, 305, 306, 426, 518
RSIZE_MAX, 424, 518, 522, 523, 524, 528,

529, 532–534, 536, 538–547, 549, 550,
552, 553, 555, 556, 559–562, 564–566

samequantum, 328, 441, 518
SCHAR_MAX, 21, 411, 436, 518
SCHAR_MIN, 21, 37, 411, 436, 518
SCHAR_WIDTH, 21, 411, 436, 518
SCNcMAX, 181
SCNcPTR, 181
SCNdMAX, 181, 411, 510
SCNdPTR, 181, 411, 510
SCNiMAX, 181, 411, 510
SCNiPTR, 181, 411, 510
SCNoMAX, 181, 411, 510
SCNoPTR, 181, 411, 510
SCNuMAX, 181, 411, 510
SCNuPTR, 181, 411, 510
SCNxMAX, 181, 411, 510
SCNxPTR, 181, 411, 510
SEEK_CUR, 266, 296, 424, 518
SEEK_END, 266, 269, 296, 424, 518
SEEK_SET, 266, 296, 297, 424, 496, 518
SHRT_MAX, 21, 411, 436, 518
SHRT_MIN, 21, 411, 436, 518
SHRT_WIDTH, 21, 411, 518
SIG_ATOMIC_MAX, 424, 510
SIG_ATOMIC_MIN, 424, 510
SIG_ATOMIC_WIDTH, 263, 424, 510
SIG_DFL, 242, 243, 422, 502, 510
SIG_ERR, 242, 243, 422, 494, 510
SIG_IGN, 242, 243, 422, 498, 510
SIGABRT, 242, 308, 422, 510
SIGFPE, 195, 242, 243, 422, 483, 493, 498,

506, 510
SIGILL, 242, 243, 422, 493, 498, 510
SIGINT, 242, 422, 510
signbit, 198, 412, 442, 463, 518
SIGSEGV, 242, 243, 422, 493, 498, 510
SIGTERM, 242, 422, 510
SIZE_MAX, 424, 518, 522
SIZE_WIDTH, 263, 424, 518

Index 613

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

SNAN, 412, 440, 518
SNAND128, 518
SNAND32, 518
SNAND64, 518
SNANF, 412, 440, 518
SNANL, 412, 440, 518
static_assert, ii, 153, 408, 519
thread_local, 330, 429, 519
TIME_UTC, 333, 334, 337, 340, 342, 429,

503, 511
TMP_MAX, 266, 270, 271, 424, 519
TMP_MAX_S, 425, 519, 522, 523, 524
true, ii, iii, 235, 259, 392, 423, 450, 480,

519
TSS_DTOR_ITERATIONS, 330, 336, 429,

519
UCHAR_MAX, 21, 411, 436, 519
UCHAR_WIDTH, 21, 411, 436, 519
UINT16_C, 511
UINT16_MAX, 511
UINT16_WIDTH, 511
UINT32_C, 511
UINT32_MAX, 511
UINT32_WIDTH, 511
UINT64_C, 264, 511
UINT64_MAX, 511
UINT64_WIDTH, 511
UINT8_C, 511
UINT8_MAX, 511
UINT8_WIDTH, 512
UINT_MAX, 21, 135, 411, 436, 480, 512
UINT_WIDTH, 21, 223, 411, 436, 512
UINTMAX_C, 264, 424, 512
UINTMAX_MAX, 181–183, 263, 424, 446,

512
UINTMAX_WIDTH, 263, 424, 512
UINTPTR_MAX, 263, 424, 512
UINTPTR_WIDTH, 263, 424, 512
ULLONG_MAX, 21, 305, 372, 411, 436, 480,

519
ULLONG_WIDTH, 21, 411, 436, 519
ULONG_MAX, 21, 305, 372, 411, 436, 480,

519
ULONG_WIDTH, 21, 411, 436, 519
USHRT_MAX, 21, 411, 436, 519
USHRT_WIDTH, 21, 411, 436, 519
WCHAR_MAX, 351, 424, 430, 519
WCHAR_MIN, 351, 424, 430, 519
WCHAR_WIDTH, 264, 351, 424, 519
WEOF, 351, 365–368, 380, 385, 430, 432,

498, 519
WINT_MAX, 424, 519
WINT_MIN, 424, 519
WINT_WIDTH, 264, 424, 519
xor, 184, 411, 519
xor_eq, 184, 411, 519

obsolete
__STDC_IEC_559_COMPLEX__, 22, 147,

148, 469, 510
__STDC_IEC_559__, 22, 147, 148, 421,

439, 510
ATOMIC_VAR_INIT, 250, 392, 423, 507
gets, 516, 534, 571

stream
stderr, 143, 266, 267, 268, 273, 289, 362,

424, 505, 519
stdin, 266, 267, 268, 273, 285–287, 292,

361, 364, 366, 367, 424, 519, 527, 528,
534, 558

stdout, 266, 267, 268, 273, 279–281, 287,
293, 294, 357, 364, 367, 424, 519

structure member
currency_symbol, 186, 188, 190, 514
decimal_point, 186, 188, 514
frac_digits, 186, 188, 190, 516
grouping, 186, 188, 189, 516
int_curr_symbol, 186, 189, 190, 516
int_frac_digits, 186, 189, 190, 516
int_n_cs_precedes, 186, 189, 190, 516
int_n_sep_by_space, 186, 189, 190,

516
int_n_sign_posn, 186, 189, 190, 516
int_p_cs_precedes, 186, 189, 190, 516
int_p_sep_by_space, 186, 189, 190,

516
int_p_sign_posn, 186, 189, 190, 516
mon_decimal_point, 186, 188, 190, 517
mon_grouping, 186, 188–190, 517
mon_thousands_sep, 186, 188, 190, 517
n_cs_precedes, 186, 188, 190, 517
n_sep_by_space, 186, 188–190, 517
n_sign_posn, 186, 189, 190, 517
negative_sign, 186, 188–190, 517
p_cs_precedes, 186, 188, 190, 191, 517
p_sep_by_space, 186, 188–191, 518
p_sign_posn, 186, 188, 190, 191, 518
positive_sign, 186, 188–190, 517
thousands_sep, 186, 188, 519
tm_hour, 341, 342, 344, 346, 519, 549
tm_isdst, 341, 342, 346, 519
tm_mday, 341, 342, 344, 345, 519, 549
tm_min, 340, 342, 344, 346, 519, 549
tm_mon, 341, 342, 344–346, 519, 549
tm_sec, 340, 342, 344, 346, 519, 549
tm_wday, 341, 342, 344–346, 519, 549
tm_yday, 341, 345, 346, 519
tm_year, 341, 342, 344–346, 519, 549
tv_nsec, 340, 342, 519
tv_sec, 340, 342, 519

structure type
lconv, 186, 187, 411, 516
timespec, 332, 334, 337, 340, 342, 343,

614 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

429, 430, 519
tm, 340, 341–345, 351, 379, 429–431, 519,

548, 549, 550
summary, 408
terms, 149
type
_Bool type, 43, 88
_Complex types, 88, 154
_Decimal32_t, 192, 501, 508
_Decimal64_t, 192, 501, 508
_Imaginary types, 154
atomic_bool, 254, 257, 423, 506
atomic_char, 254, 423, 506
atomic_char16_t, 254, 423, 506
atomic_char32_t, 254, 423, 506
atomic_flag, 249, 257, 258, 423, 507
atomic_int, 250, 254, 423, 507
atomic_int_fast16_t, 255, 423, 507
atomic_int_fast32_t, 255, 423, 507
atomic_int_fast64_t, 255, 423, 507
atomic_int_fast8_t, 255, 423, 507
atomic_int_least16_t, 254, 423, 507
atomic_int_least32_t, 255, 423, 507
atomic_int_least64_t, 255, 423, 507
atomic_int_least8_t, 254, 423, 507
atomic_intmax_t, 255, 423, 507
atomic_intptr_t, 255, 423, 507
atomic_llong, 254, 423, 507
atomic_long, 254, 423, 507
atomic_ptrdiff_t, 255, 423, 507
atomic_schar, 254, 423, 507
atomic_short, 254, 423, 507
atomic_size_t, 255, 423, 507
atomic_uchar, 254, 423, 507
atomic_uint, 254, 423, 507
atomic_uint_fast16_t, 255, 423, 507
atomic_uint_fast32_t, 255, 423, 507
atomic_uint_fast64_t, 255, 423, 507
atomic_uint_fast8_t, 255, 423, 507
atomic_uint_least16_t, 255, 423,

507
atomic_uint_least32_t, 255, 423,

507
atomic_uint_least64_t, 255, 423,

507
atomic_uint_least8_t, 254, 423, 507
atomic_uintmax_t, 255, 423, 507
atomic_uintptr_t, 255, 423, 507
atomic_ullong, 254, 423, 507
atomic_ulong, 254, 423, 507
atomic_ushort, 254, 423, 507
atomic_wchar_t, 254, 423, 507
char, 88
char16_t, i, 57–59, 112, 146, 254, 348,

349, 430, 499, 513

char32_t, 57–59, 112, 146, 254, 348,
349, 350, 430, 499, 513

clock_t, 340, 341, 429, 503, 513
cnd_t, 330, 331–333, 429, 507
constraint_handler_t, 427, 513, 535
div_t, 115, 299, 313, 426, 514
double, 88
double_t, 192, 412, 448, 501, 505, 514
enum, 88
errno_t, 409, 425, 427, 428, 430, 432,

514, 521, 522, 523–525, 535, 536, 538–
540, 541, 542–545, 547, 548, 549, 550,
551, 558–561, 564–566

femode_t, 168, 169, 176, 177, 410, 515
fenv_t, 83, 168, 170, 178, 179, 410, 461,

515
fexcept_t, 168, 174, 175, 410, 493, 515
FILE, 265, 266, 268, 270–274, 281, 288,

289, 291, 292, 294–298, 352, 357, 362,
365–367, 424–426, 430–432, 495, 515,
523–526, 530, 531, 551, 552, 554

float, 88
float_t, 192, 412, 448, 501, 505, 515
fpos_t, 265, 267, 295, 296, 424, 425, 516
imaxdiv_t, 181, 182, 411, 516
int, 43, 52, 88
int16_t, 509
int32_t, 509
int64_t, 509
int8_t, 261, 509
int_fast16_t, 255, 262, 509
int_fast32_t, 181, 255, 262, 509
int_fast64_t, 255, 262, 509
int_fast8_t, 255, 262, 509
int_least16_t, 254, 262, 509
int_least32_t, 255, 261, 262, 509
int_least64_t, 255, 262, 509
int_least8_t, 254, 262, 509
intmax_t, iii, 135, 182, 183, 214–216,

222, 223, 255, 262, 264, 275, 282, 353,
358, 411, 424, 509, 571

intptr_t, 255, 262, 424, 509
jmp_buf, 240, 241, 422, 516, 569
ldiv_t, 299, 313, 426, 516
lldiv_t, 299, 313, 426, 516
max_align_t, 41, 260, 424, 517
mbstate_t, 267–269, 278, 283, 284, 296,

348, 349, 350, 351, 356, 359, 360, 380–
383, 430–432, 498, 503, 517, 564–566

memory_order, 249, 250, 253, 255–258,
392, 423, 510

mtx_t, 330, 332–335, 429, 510
once_flag, 330, 331, 429, 517
ptrdiff_t, 75, 249, 255, 260, 263, 276,

282, 353, 358, 424, 490, 518
rsize_t, 424–428, 430, 432, 518, 522,

Index 615

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

523, 527–529, 532–534, 535, 536–540,
541, 542–547, 548, 549, 550, 551, 552,
553, 555, 558–566

sig_atomic_t, 12, 242, 243, 263, 422,
485, 494, 518

signed, 88
thrd_start_t, 330, 335, 429, 511
thrd_t, 330, 335, 336, 429, 511
time_t, 340, 341, 342, 344, 345, 429, 430,

503, 519, 550
tss_dtor_t, 330, 337, 429, 511
tss_t, 330, 337, 338, 429, 511
uint16_t, 511
uint32_t, 511
uint64_t, 223, 511
uint8_t, 511
uint_fast16_t, 255, 262, 512
uint_fast32_t, 255, 262, 512
uint_fast64_t, 255, 262, 512
uint_fast8_t, 255, 262, 512
uint_least16_t, 255, 261, 262, 348,

512
uint_least32_t, 255, 262, 348, 512
uint_least64_t, 255, 262, 264, 512
uint_least8_t, 254, 262, 512
uintmax_t, 135, 181–183, 222, 223, 255,

262, 264, 275, 282, 353, 358, 411, 424,
512, 571

uintptr_t, 255, 262, 424, 512
unsigned, 88, 275, 282, 353, 358
va_list, 246, 247, 248, 288–290, 362–

364, 422, 423, 425, 426, 430, 432, 494,
496, 519, 530–533, 554–557

void, 46, 88
wchar_t, 5, 57–59, 112, 146, 183, 254,

260, 264, 275, 278, 279, 282–284, 286,
299, 314–316, 351, 352, 353, 356–368,
370–375, 377–379, 381–383, 385, 407,
411, 424, 426, 427, 430–432, 487, 498,
499, 519, 539, 540, 551–566

wctrans_t, 385, 389, 390, 432, 433, 519
wctype_t, 385, 388, 389, 432, 433, 519
wint_t, 264, 275, 278, 279, 351, 353, 356,

365–367, 380, 385, 386–389, 430–433,
498, 519

use of functions, 151
lifetime, 34
limits

environmental, see environmental limits
implementation, see implementation lim-

its
numerical, see numerical limits
translation, see translation limits

line buffered, 268
line buffered stream, 268
line number, 143, 146

line preprocessing directive, 143
lines, 9, 267

preprocessing directive, 134
linkage, 33, 86, 101, 105, 129, 131, 148
ll format modifier, 275, 282, 353, 358
llabs function, 313, 426, 480, 516
lldiv function, 299, 313, 426, 516
lldiv_t type, 299, 313, 426, 516
llogb function, 195, 209, 210, 413, 441, 456,

516
llogb type-generic macro, 327
llogbd128 function, 210, 418, 516
llogbd32 function, 210, 418, 516
llogbd64 function, 210, 418, 516
llogbf function, 210, 413, 516
llogbl function, 210, 413, 516
LLONG_MAX macro, 21, 305, 372, 411, 436, 480,

516
LLONG_MIN macro, 21, 235, 305, 372, 411, 436,

480, 516
LLONG_WIDTH macro, 21, 411, 436, 516
llquantexp macro, i, 328, 516
llquantexpd identifier prefix, 235, 236, 328,

444, 516
llquantexpd128 function, 235, 421, 516
llquantexpd32 function, 235, 421, 516
llquantexpd64 function, 235, 421, 516
llrint function, 220, 415, 445, 461, 462, 482,

487, 516
llrint type-generic macro, 327
llrintd128 function, 220, 419, 516
llrintd32 function, 220, 419, 516
llrintd64 function, 220, 419, 516
llrintf function, 220, 415, 516
llrintl function, 220, 415, 516
llround function, 221, 415, 441, 462, 482, 487,

516
llround functions, 221
llround type-generic macro, 327
llroundd128 function, 221, 420, 516
llroundd32 function, 221, 420, 516
llroundd64 function, 221, 420, 516
llroundf function, 221, 415, 516
llroundl function, 221, 415, 516
local time, 340
locale, 3
locale-specific behavior, 3, 504
localeconv function, 187, 190, 411, 493, 516
localization header, 186, 391
localtime function, 343, 344, 345, 430, 516
localtime_r function, xiii, 344, 345, 430, 516,

570
localtime_s function, 430, 516, 550, 551
log function, 195, 210, 211, 327, 413, 444, 456,

516
log type-generic macro, 327

616 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

log10 function, 210, 211, 413, 444, 456, 516
log10 type-generic macro, 327
log10d128 function, 210, 418, 516
log10d32 function, 210, 418, 516
log10d64 function, 210, 418, 517
log10f function, 210, 413, 517
log10l function, 210, 413, 517
log10p1 function, 211, 413, 445, 456, 517
log10p1 type-generic macro, 327
log10p1d128 function, 211, 418, 517
log10p1d32 function, 211, 418, 517
log10p1d64 function, 211, 418, 517
log10p1f function, 211, 413, 517
log10p1l function, 211, 413, 517
log1p function, 211, 413, 444, 456, 517
log1p type-generic macro, 327
log1pd128 function, 211, 418, 517
log1pd32 function, 211, 418, 517
log1pd64 function, 211, 418, 517
log1pf function, 211, 413, 517
log1pl function, 211, 414, 517
log2 function, 212, 414, 444, 456, 517
log2 type-generic macro, 327
log2d128 function, 212, 418, 517
log2d32 function, 212, 418, 517
log2d64 function, 212, 418, 517
log2f function, 212, 414, 517
log2l function, 212, 414, 517
log2p1 function, 211, 212, 414, 445, 457, 517
log2p1 type-generic macro, 327
log2p1d128 function, 212, 418, 517
log2p1d32 function, 212, 418, 517
log2p1d64 function, 212, 418, 517
log2p1f function, 212, 414, 517
log2p1l function, 212, 414, 517
logarithmic functions

complex, 158, 477
real, 206, 455

logb function, 209, 210, 212, 213, 414, 441, 455,
457, 471, 481, 517

logb type-generic macro, 327
logbd128 function, 212, 418, 517
logbd32 function, 212, 418, 517
logbd64 function, 212, 418, 517
logbf function, 212, 414, 481, 517
logbl function, 212, 414, 481, 517
logd128 function, 210, 418, 517
logd32 function, 210, 418, 517
logd64 function, 210, 418, 517
logf function, 210, 413, 517
logical operators

AND (&&), 15, 79
negation (!), 72
OR (||), 79
OR (||), 15

logical source lines, 9

logl function, 210, 413, 517
logp1 function, ii, 211, 414, 444, 456, 517
logp1 type-generic macro, 327
logp1d128 function, 211, 418, 517
logp1d32 function, 211, 418, 517
logp1d64 function, 211, 418, 517
logp1f function, 211, 414, 517
logp1l function, 211, 414, 517
long double _Complex type, 37
long double _Complex type conversion, 44
long double _Imaginary type, 469
long double suffix, l or L, 54
long double type, 36, 88
long double type conversion, 43, 44
long int type, 35, 88
long int type conversion, 42–44
long integer suffix, l or L, 52
long long int type, 35, 88
long long int type conversion, 42–44
long long integer suffix, ll or LL, 52
LONG_MAX macro, 21, 195, 210, 305, 372, 411,

436, 480, 517
LONG_MIN macro, 21, 195, 305, 372, 411, 436,

480, 517
LONG_WIDTH macro, 21, 411, 436, 517
longjmp function, 240, 241, 309, 310, 422, 493,

496, 517, 569
loop body, 125
low-order bit, 4
lowercase letters, 17
lrint function, 220, 415, 445, 461, 462, 482,

487, 517
lrint type-generic macro, 327
lrintd128 function, 220, 419, 517
lrintd32 function, 220, 419, 517
lrintd64 function, 220, 419, 517
lrintf function, 220, 415, 517
lrintl function, 220, 415, 517
lround function, 221, 415, 441, 462, 482, 487,

517
lround functions, 221
lround type-generic macro, 327
lroundd128 function, 221, 420, 517
lroundd32 function, 221, 419, 517
lroundd64 function, 221, 420, 517
lroundf function, 221, 415, 517
lroundl function, 221, 415, 517
lvalue, 45, 64, 69, 71, 81, 96
lvalue conversion, 45, 81, 82

macro argument substitution, 138
macro definition

library function, 151
macro invocation, 138
macro name, 138

length, 20
predefined, 145, 148

Index 617

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

redefinition, 137
scope, 140

macro parameter, 138
macro preprocessor, 133
macro replacement, 137
magnitude, complex, 159
manipulation functions

complex, 160
real, 224, 463

matching failure, 363, 364, 555–557
math rounding direction macros, 193
MATH_ identifier prefix, 391, 506
MATH_ERREXCEPT macro, 195, 196, 412, 451,

502, 509
math_errhandling macro, 150, 195, 196, 412,

451, 486, 493, 502, 517, 572
MATH_ERRNO macro, 195, 196, 412, 502, 509
mathematics header, 192, 391
MAX identifier suffix, 115, 116
max_align_t type, 41, 260, 424, 517
maximal munch, 47
maximum functions, 227, 464
maybe_unused attribute, ii, xiii, 117, 119, 517,

570
MB_CUR_MAX macro, 149, 299, 315, 349, 350,

382, 426, 517, 539, 564
MB_LEN_MAX macro, 21, 149, 299, 411, 436, 517
mblen function, ii, 314, 381, 426, 517
mbrlen function, 381, 431, 517
mbrtoc16 function, 58, 59, 348, 430, 517
mbrtoc32 function, 58, 59, 349, 350, 430, 517
mbrtowc function, 269, 283, 284, 356, 357, 380,

381, 382, 383, 431, 517, 540, 565
mbsinit function, 380, 381, 431, 517
mbsrtowcs function, 380, 383, 431, 517, 565
mbsrtowcs_s function, 432, 517, 565, 566
mbstate_t type, 267–269, 278, 283, 284, 296,

348, 349, 350, 351, 356, 359, 360, 380–
383, 430–432, 498, 503, 517, 564–566

mbstowcs function, 59, 315, 368, 382, 426, 517
mbstowcs_s function, 427, 517, 539, 540
mbtowc function, 58, 314, 315, 381, 426, 517
mem identifier prefix, 392, 506
member access operators (. and->), 67
member alignment, 91
members, 33
memccpy function, ii, xiii, 318, 427, 510, 570
memchr function, 321, 322, 427, 510
memcmp function, 39, 256, 320, 427, 510
memcpy function, 39, 63, 152, 256, 318, 427, 442,

510
memcpy_s function, 428, 510, 541, 542
memmove function, 63, 318, 319, 427, 442, 492,

510
memmove_s function, 428, 510, 542
memory location, 5

memory management functions, 306
memory_ identifier prefix, 392
memory_order_ identifier prefix, 392
memory_order type, 249, 250, 253, 255–258,

392, 423, 510
memory_order_acq_rel constant, 250, 251–

253, 255, 256, 258, 423, 510
memory_order_acquire constant, 250, 251,

253, 255, 258, 423, 510
memory_order_consume constant, 250, 251,

253, 255, 423, 510
memory_order_relaxed constant, 250, 251–

253, 423, 510
memory_order_release constant, 250, 251,

253, 255, 256, 423, 510
memory_order_seq_cst constant, 16, 39, 69,

81, 82, 249, 250, 251, 253, 423, 510
memset function, 324, 428, 510, 547
memset_s function, 428, 510, 547
minimum functions, 227, 464
minus operator, unary, 72, 443
miscellaneous functions

string, 324, 547
wide string, 379, 563

mktime function, 341, 342, 429, 517
modf family, 31, 213, 326
modf function, 213, 326, 327, 414, 457, 481, 517
modfd128 function, 213, 418, 517
modfd32 function, 213, 418, 517
modfd64 function, 213, 418, 517
modff function, 213, 414, 481, 517
modfl function, 213, 414, 481, 517
modifiable lvalue, 45
modification order, 14
modulus functions, 213
modulus, complex, 159
mon_decimal_point structure member, 186,

188, 190, 517
mon_grouping structure member, 186, 188–

190, 517
mon_thousands_sep structure member, 186,

188, 190, 517
mtx_ identifier prefix, 393, 506
mtx_destroy function, 333, 429, 510
mtx_init function, 331, 333, 334, 429, 510
mtx_lock function, 334, 429, 497, 510
mtx_plain constant, 330, 334, 429, 510
mtx_recursive constant, 331, 334, 429, 510
mtx_t type, 330, 332–335, 429, 510
mtx_timed constant, 331, 334, 429, 510
mtx_timedlock function, 334, 429, 497, 510
mtx_trylock function, 334, 335, 429, 510
mtx_unlock function, 334, 335, 429, 497, 510
multibyte character, 4, 18, 57
multibyte conversion functions

wide character, 314, 539

618 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

extended, 380, 564
restartable, 348, 381, 564

wide string, 315, 539
restartable, 382, 565

multibyte string, 149
multibyte/wide character conversion func-

tions, 314, 539
extended, 380, 564
restartable, 348, 381, 564

multibyte/wide string conversion functions,
315, 539

restartable, 382, 565
multidimensional array, 66
multiplication assignment operator (*=), 82
multiplication operator (*), 74, 470
multiplicative expressions, 74, 470
multiply and round to narrower type, 233

n-char sequence, 301
n-wchar sequence, 369
n_cs_precedes structure member, 186, 188,

190, 517
n_sep_by_space structure member, 186, 188–

190, 517
n_sign_posn structure member, 186, 189, 190,

517
name

external, 20, 49, 148
file, 268
internal, 20, 49
label, 33
structure/union member, 33

name spaces, 33
named label, 122
NaN, 22
nan function, 225, 276, 354, 415, 463, 517
NAN macro, ii, 24, 193, 276, 301–303, 354, 369–

371, 410, 412, 440
nand128 function, 225, 420, 517
nand32 function, 225, 420, 517
nand64 function, 225, 420, 517
nanf function, 225, 416, 517
nanl function, 225, 416, 517
NDEBUG macro, 119, 150, 153, 408, 517
nearbyint function, 219, 220, 415, 443, 445,

457, 461, 482, 517
nearbyint type-generic macro, 327
nearbyintd128 function, 219, 419, 517
nearbyintd32 function, 219, 419, 517
nearbyintd64 function, 219, 419, 517
nearbyintf function, 219, 415, 517
nearbyintl function, 219, 415, 517
nearest integer functions, 219, 460
negation operator (!), 72
negative zero, 22, 225
negative_sign structure member, 186, 188–

190, 517

new line, 19
new-line character, 9, 17, 47, 134, 143
new-line escape sequence (\n), 19, 57, 165
nextafter function, 225, 226, 329, 416, 443,

463, 464, 517
nextafter type-generic macro, 327
nextafterd128 function, 225, 420, 517
nextafterd32 function, 225, 420, 517
nextafterd64 function, 225, 420, 517
nextafterf function, 225, 416, 517
nextafterl function, 225, 416, 517
nextdown function, 226, 227, 416, 441, 464, 517
nextdown type-generic macro, 327
nextdownd128 function, 227, 420, 517
nextdownd32 function, 227, 420, 517
nextdownd64 function, 227, 420, 517
nextdownf function, 227, 416, 517
nextdownl function, 227, 416, 517
nexttoward function, 226, 416, 443, 464, 517
nexttoward type-generic macro, 327
nexttowardd128 function, 226, 420, 517
nexttowardd32 function, 226, 420, 517
nexttowardd64 function, 226, 420, 517
nexttowardf function, 226, 329, 416, 517
nexttowardl function, 226, 416, 517
nextup function, 226, 416, 441, 464, 517
nextup type-generic macro, 327
nextupd128 function, 226, 420, 517
nextupd32 function, 226, 420, 517
nextupd64 function, 226, 420, 517
nextupf function, 226, 416, 517
nextupl function, 226, 416, 517
no linkage, 33
no-return function, 101
nodiscard attribute, ii, xiii, 116, 117, 118, 119,

517, 570
non-canonical, 22
non-canonical representation, 22
non-stop floating-point control mode, 178
nongraphic characters, 19, 57
nonlocal jumps header, 240
noreturn macro, 317, 427, 517
norm, complex, 159
normalized, 548
normalized broken-down time, 548, 549
normalized floating-point numbers, 22
not macro, 184, 411, 517
not-equal-to operator, see inequality operator
not_eq macro, 184, 411, 517
null character (\0), 17, 58, 59

padding of binary stream, 267
NULL macro, 46, 186, 225, 260, 265, 299, 300,

318, 321, 324, 340, 348, 349, 351, 375,
378, 381, 411, 424, 426, 427, 429, 430,
502, 517, 546, 547, 563

null pointer, 46

Index 619

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

null pointer constant, 46
null preprocessing directive, 145
null statement, 123
null wide character, 149
number classification macros, 193, 197
numeric conversion functions, 182, 299

wide string, 182, 368
numerical limits, 20

O format modifier, 346
object, 6
object representation, 39
object type, 35
object types, 35
object-like macro, 138
observable behavior, 12
obsolescence, xv, 148, 391
octal constant, 51
octal digit, 51, 57
octal-character escape sequence (\octal digits),

57
OFF pragma, 471, 517
offsetof macro, i, ii, 92, 260, 424, 494, 517
ON pragma, 83, 171, 176, 177, 179, 447, 448, 457,

461, 463, 517
on-off switch, 144
once_flag type, 330, 331, 429, 517
ONCE_FLAG_INIT macro, 330, 429, 517
opening, 268
operand, 60, 63
operating system, 10, 310
operations on files, 269, 523
operator, 60
operators, 63

_Alignof operator, 72
additive, 74
assignment, 81
associativity, 63
equality, 77
multiplicative, 74, 470
postfix, 65
precedence, 63
preprocessing, 134, 139, 147
relational, 76
shift, 76
sizeof operator, 72
unary, 71
unary arithmetic, 72

optional features, see conditional features
or macro, 184, 411, 517
OR operators

bitwise exclusive (^), 78
bitwise exclusive assignment (^=), 82
bitwise inclusive (|), 79
bitwise inclusive assignment (|=), 82
logical (||), 79
logical (||), 15

or_eq macro, 184, 411, 517
order of allocated storage, 306
order of evaluation, 63, 81, 139, see also se-

quence points
ordinary identifier name space, 34
orientation, 267
orientation of stream, 267, 366
out-of-bounds store, 568
outer scope, 32
over-aligned, 41

p_cs_precedes structure member, 186, 188,
190, 191, 517

p_sep_by_space structure member, 186, 188–
191, 518

p_sign_posn structure member, 186, 188, 190,
191, 518

padding
binary stream, 267
bits, 39, 261
structure/union, 39, 91

parameter, 6
array, 130
ellipsis, 107, 138
function, 66, 87, 130
macro, 138
main function, 11
program, 11

parameter type list, 107
parentheses punctuator (()), 106, 124, 125
parenthesized expression, 64
parse state, 267
perform a trap, 7
permitted form of initializer, 84
perror function, 298, 425, 517
phase angle, complex, 160
physical source lines, 9
placemarker, 139
plus operator, unary, 72
pointer arithmetic, 75
pointer comparison, 77
pointer declarator, 104
pointer operator (->), 67
pointer to a string, 149
pointer to a wide string, 149
pointer to function, 66
pointer type, 38
pointer type conversion, 45, 46
pointer, null, 46
pole error, 195, 205, 210–218
portability, 8, 485
position indicator, file, see file position indica-

tor
positive difference, 228
positive difference functions, 227, 464
positive_sign structure member, 186, 188–

190, 517

620 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

postfix decrement operator (--), 45, 69
postfix expressions, 65
postfix increment operator (++), 45, 69
pow function, ii, 215, 327, 414, 445, 458, 517
pow type-generic macro, 327
powd128 function, 215, 419, 517
powd32 function, 215, 419, 517
powd64 function, 215, 329, 419, 517
power functions

complex, 159, 478
real, 213, 457

powf function, 215, 414, 517
powl function, 215, 414, 443, 517
pown function, 215, 216, 414, 445, 459, 517
pown type-generic macro, 327
pownd128 function, 215, 419, 517
pownd32 function, 215, 419, 517
pownd64 function, 215, 419, 517
pownf function, 215, 414, 517
pownl function, 215, 414, 517
powr function, iii, 216, 414, 445, 459, 517
powr type-generic macro, 327
powrd128 function, 216, 419, 517
powrd32 function, 216, 419, 517
powrd64 function, 216, 419, 517
powrf function, 216, 414, 517
powrl function, 216, 414, 517
pp-number, 61
pragma

CX_LIMITED_RANGE, viii, 144, 145, 155,
406, 408, 470, 493, 514

DEFAULT, 514
FE_DEC_DOWNWARD, 144
FE_DEC_DYNAMIC, 144, 173, 508
FE_DEC_TONEAREST, 144
FE_DEC_TONEARESTFROMZERO, 144
FE_DEC_TOWARDZERO, 144
FE_DEC_UPWARD, 144
FE_DOWNWARD, 144
FE_DYNAMIC, 144, 171, 172, 410, 508
FE_TONEAREST, 144
FE_TONEARESTFROMZERO, 144
FE_TOWARDZERO, 144
FE_UPWARD, 144
FENV_ACCESS, viii, 83, 144, 145, 170, 171,

176, 177, 179, 406, 410, 446–451, 457,
461, 463, 486, 493, 500, 515

FENV_DEC_ROUND, viii, 55, 144, 145, 170,
172, 173, 406, 410, 444, 515

FENV_ROUND, viii, 144, 145, 170, 171, 172,
173, 406, 410, 443, 515

FP_CONTRACT, viii, 64, 144, 145, 196, 406,
412, 471, 493, 500, 508

OFF, 471, 517
ON, 83, 171, 176, 177, 179, 447, 448, 457,

461, 463, 517

STDC, 83, 144, 148, 155, 170–173, 176, 177,
179, 196, 406, 408, 410, 412, 447, 448,
457, 461, 463, 471, 492, 501, 519

pragma operator, 147
pragma preprocessing directive, 47, 61, 83, 133,

144, 144, 147, 148, 155, 170–173, 176,
177, 179, 196, 406, 408, 410, 412, 447,
448, 457, 461, 463, 471, 484, 492, 501,
517

precedence of operators, 63
precedence of syntax rules, 9
precision, 40, 42, 274, 352

excess, 23, 45, 128
predefined macro names, 145, 148
preferred quantum exponent, 30
prefix decrement operator (--), 45, 71
prefix increment operator (++), 45, 71
preprocessing, 134
preprocessing concatenation, 139
preprocessing directive, 134
preprocessing directives, 9, 133
preprocessing file, 9, 133
preprocessing files, 9
preprocessing numbers, 47, 61
preprocessing operators

#, 139
##, 139
_Pragma operator, 147

preprocessing tokens, 9, 47, 134
preprocessing translation unit, 9
preprocessor, 133
PRI identifier prefix, 181, 391, 506
PRIcFASTN macros, 181
PRIcLEASTN macros, 181
PRIcMAX macro, 181
PRIcN macros, 181
PRIcPTR macro, 181
PRId identifier prefix, 181, 411
PRId32 macro, 510
PRId64 macro, 510
PRIdFAST identifier prefix, 181, 411
PRIdFAST32 macro, 181, 510
PRIdFAST64 macro, 510
PRIdLEAST identifier prefix, 181, 411
PRIdLEAST32 macro, 510
PRIdLEAST64 macro, 510
PRIdMAX macro, 181, 411, 510
PRIdPTR macro, 181, 411, 510
PRIi identifier prefix, 181, 411
PRIi32 macro, 510
PRIi64 macro, 510
PRIiFAST identifier prefix, 181, 411
PRIiFAST32 macro, 510
PRIiFAST64 macro, 510
PRIiLEAST identifier prefix, 181, 411
PRIiLEAST32 macro, 510

Index 621

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

PRIiLEAST64 macro, 510
PRIiMAX macro, 181, 411, 510
PRIiPTR macro, 181, 411, 510
primary expression, 64
printf_s function, 425, 518, 527, 528
printing character, 19, 163, 164
printing wide character, 385
PRIo identifier prefix, 181, 411
PRIo32 macro, 510
PRIo64 macro, 510
PRIoFAST identifier prefix, 181, 411
PRIoFAST32 macro, 510
PRIoFAST64 macro, 510
PRIoLEAST identifier prefix, 181, 411
PRIoLEAST32 macro, 510
PRIoLEAST64 macro, 510
PRIoMAX macro, 181, 411, 510
PRIoPTR macro, 181, 411, 510
PRIu identifier prefix, 181, 411
PRIu32 macro, 510
PRIu64 macro, 510
PRIuFAST identifier prefix, 181, 411
PRIuFAST32 macro, 510
PRIuFAST64 macro, 510
PRIuLEAST identifier prefix, 181, 411
PRIuLEAST32 macro, 510
PRIuLEAST64 macro, 510
PRIuMAX macro, 181, 411, 510
PRIuPTR macro, 181, 411, 510
PRIX identifier prefix, 181, 411
PRIx identifier prefix, 181, 411
PRIX32 macro, 510
PRIX64 macro, 510
PRIXFAST identifier prefix, 181, 411
PRIxFAST identifier prefix, 181, 411
PRIXFAST32 macro, 510
PRIXFAST64 macro, 510
PRIXLEAST identifier prefix, 181, 411
PRIxLEAST identifier prefix, 181, 411
PRIXLEAST32 macro, 510
PRIXLEAST64 macro, 510
PRIXMAX macro, 181, 411, 510
PRIxMAX macro, 181, 411
PRIXPTR macro, 181, 411, 510
PRIxPTR macro, 181, 411
program diagnostics, 153
program execution, 11
program file, 9
program image, 10
program name, 11
program name (argv[0]), 11
program parameters, 11
program startup, 10, 11
program structure, 9
program termination, 10, 11, 12
program, conforming, 8

program, strictly conforming, 8
promotions

default argument, 67
integer, 13, 43

prototype, 107, see function prototype
pseudo-random sequence functions, 305
PTRDIFF_MAX macro, 263, 424, 518
PTRDIFF_MIN macro, 263, 264, 424, 518
ptrdiff_t type, 75, 249, 255, 260, 263, 276,

282, 353, 358, 424, 490, 518
PTRDIFF_WIDTH macro, 263, 518
punctuators, 60
putc macro, 266, 292, 293, 425, 518
putchar macro, 266, 292, 293, 425, 518
puts function, 143, 266, 294, 425, 518
putwc function, 266, 367, 431, 518
putwchar function, 266, 367, 431, 518

qsort function, 311, 313, 426, 487, 518
qsort_s function, 427, 518, 537, 538, 539
qualified types, 38
qualified version of type, 38
quantize macro, 31, 173, 328, 441, 518
quantized identifier prefix, 234, 235, 328, 518
quantized128 function, 234, 421, 518
quantized32 function, 234, 421, 518
quantized64 function, 234, 421, 518
quantum, 29
quantum exponent, 29
quantum exponent functions, 234
quantum functions, 234
quantum macro, 31, 328, 441, 518
quantumd identifier prefix, 235, 328, 444, 518
quantumd128 function, 235, 421, 518
quantumd32 function, 235, 421, 518
quantumd64 function, 235, 421, 518
question-mark escape sequence (\?), 57
quick_exit function, 243, 309, 310, 426, 487,

494, 496, 503, 518, 571
quiet NaN, 22

raise function, 242, 243, 244, 250, 308, 422,
493, 494, 518

rand function, 299, 305, 306, 426, 518
RAND_MAX macro, 299, 305, 306, 426, 518
range

excess, 23, 45, 128
range error, 195, 200–209, 211–218, 220, 221,

226, 228, 232
rank, see integer conversion rank
read-modify-write operations, 14
read-read coherence, 16
read-write coherence, 16
real floating type conversion, 43, 44, 445
real type domain, 37
real types, 37
real-floating, 196

622 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

realloc function, 306, 307, 308, 392, 426, 487,
496, 503, 518

recommended practice, 6
recursion, 67
recursive function call, 67
redefinition of macro, 137
reentrancy, 12, 19

library functions, 151
referenced type, 38
register storage-class specifier, 87, 129
relational expressions, 76
relaxed atomic operations, 14
release fence, 253
release operation, 14
release sequence, 15
reliability of data, interrupted, 12
remainder assignment operator (%=), 82
remainder function, i, 224, 329, 415, 441, 444,

463, 482, 502, 518
remainder functions, 223, 462
remainder operator (%), 74
remainder type-generic macro, 327
remainderd128 function, 224, 420, 518
remainderd32 function, 224, 420, 518
remainderd64 function, 224, 420, 518
remainderf function, 224, 415, 518
remainderl function, 224, 415, 518
remove function, 269, 270, 424, 502, 518, 523
remquo function, 224, 415, 441, 444, 463, 486,

502, 518
remquo type-generic macro, 327
remquof function, 224, 415, 518
remquol function, 224, 415, 518
rename function, 269, 270, 424, 502, 518
representation

canonical, 22
non-canonical, 22

representations of types, 39
pointer, 38

rescanning and replacement, 140
reserved identifier, 506, 512
reserved identifiers, 48, 150, 521
restartable multibyte/wide character conver-

sion functions, 348, 381, 564
restartable multibyte/wide string conversion

functions, 382, 565
restore calling environment function, 240
restrict type qualifier, 96, 99
restrict-qualified type, 38, 97
rewind function, 272, 294, 297, 367, 425, 518
right-shift assignment operator (>>=), 82
right-shift operator (>>), 76
rint function, 220, 415, 441, 445, 461, 462, 482,

518
rint type-generic macro, 327
rintd128 function, 220, 419, 518

rintd32 function, 220, 419, 518
rintd64 function, 220, 419, 518
rintf function, 220, 415, 518
rintl function, 220, 415, 518
rootn function, 216, 414, 445, 459, 518
rootn type-generic macro, 327
rootnd128 function, 216, 419, 518
rootnd32 function, 216, 419, 518
rootnd64 function, 216, 419, 518
rootnf function, 216, 414, 518
rootnl function, 216, 414, 518
round function, 193, 220, 221–223, 410, 415,

420, 440, 461, 482, 518
round to narrower type, 232
round type-generic macro, 327
roundd128 function, 221, 419, 518
roundd32 function, 220, 419, 518
roundd64 function, 221, 419, 518
roundeven function, 193, 221, 222, 415, 440,

462, 518
roundeven type-generic macro, 327
roundevend128 function, 221, 420, 518
roundevend32 function, 221, 420, 518
roundevend64 function, 221, 420, 518
roundevenf function, 221, 415, 518
roundevenl function, 221, 415, 518
roundf function, 220, 415, 518
rounding, 221
rounding control pragma, 171
rounding directions, 193
rounding mode, floating point, 23
roundl function, 220, 415, 518
RSIZE_MAX macro, 424, 518, 522, 523, 524, 528,

529, 532–534, 536, 538–547, 549, 550,
552, 553, 555, 556, 559–562, 564–566

rsize_t type, 424–428, 430, 432, 518, 522, 523,
527–529, 532–534, 535, 536–540, 541,
542–547, 548, 549, 550, 551, 552, 553,
555, 558–566

rsqrt function, 216, 217, 414, 445, 460, 518
rsqrt type-generic macro, 327
rsqrtd128 function, 217, 419, 518
rsqrtd32 function, 217, 419, 518
rsqrtd64 function, 217, 419, 518
rsqrtf function, 217, 414, 518
rsqrtl function, 217, 414, 518
runtime-constraint, 6
Runtime-constraint handling functions, 535
rvalue, 45

same scope, 32
samequantum macro, 328, 441, 518
samequantumd identifier prefix, 235, 328, 444,

518
samequantumd128 function, 235, 421, 518
samequantumd32 function, 235, 421, 518
samequantumd64 function, 235, 421, 518

Index 623

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

save calling environment function, 240
scalar types, 38
scalbln function, 213, 414, 441, 457, 481, 518
scalbln type-generic macro, 327
scalblnd128 function, 213, 418, 518
scalblnd32 function, 213, 418, 518
scalblnd64 function, 213, 418, 518
scalblnf function, 213, 414, 481, 518
scalblnl function, 213, 414, 481, 518
scalbn function, 213, 414, 441, 455, 456, 457,

472, 481, 518
scalbn type-generic macro, 327
scalbnd128 function, 213, 418, 518
scalbnd32 function, 213, 418, 518
scalbnd64 function, 213, 418, 518
scalbnf function, 213, 414, 481, 518
scalbnl function, 213, 414, 481, 518
scanf function, 30, 172, 173, 266, 287, 289, 425,

442, 518, 571
scanf_s function, 425, 518, 528, 532
scanlist, 284, 360
scanset, 284, 360
SCHAR_MAX macro, 21, 411, 436, 518
SCHAR_MIN macro, 21, 37, 411, 436, 518
SCHAR_WIDTH macro, 21, 411, 436, 518
SCN identifier prefix, 181, 391, 506
SCNcFASTN macros, 181
SCNcLEASTN macros, 181
SCNcMAX macro, 181
SCNcN macros, 181
SCNcPTR macro, 181
SCNd identifier prefix, 181, 411
SCNdFAST identifier prefix, 181, 411
SCNdLEAST identifier prefix, 181, 411
SCNdMAX macro, 181, 411, 510
SCNdPTR macro, 181, 411, 510
SCNi identifier prefix, 181, 411
SCNiFAST identifier prefix, 181, 411
SCNiLEAST identifier prefix, 181, 411
SCNiMAX macro, 181, 411, 510
SCNiPTR macro, 181, 411, 510
SCNo identifier prefix, 181, 411
SCNoFAST identifier prefix, 181, 411
SCNoLEAST identifier prefix, 181, 411
SCNoMAX macro, 181, 411, 510
SCNoPTR macro, 181, 411, 510
SCNu identifier prefix, 181, 411
SCNuFAST identifier prefix, 181, 411
SCNuLEAST identifier prefix, 181, 411
SCNuMAX macro, 181, 411, 510
SCNuPTR macro, 181, 411, 510
SCNx identifier prefix, 181, 411
SCNxFAST identifier prefix, 181, 411
SCNxLEAST identifier prefix, 181, 411
SCNxMAX macro, 181, 411, 510
SCNxPTR macro, 181, 411, 510

scope, 32
scope of identifier, 32, 131
search functions

string, 321, 545
utility, 311, 537
wide string, 375, 562

SEEK_CUR macro, 266, 296, 424, 518
SEEK_END macro, 266, 269, 296, 424, 518
SEEK_SET macro, 266, 296, 297, 424, 496, 518
selection statements, 124
self-referential structure, 95
semicolon punctuator (;), 86, 89, 123, 125, 126
separate compilation, 9
separate translation, 9
sequence points, 12, 67, 79, 80, 83, 97, 99, 122,

151, 274, 311, 351, 434, 537
sequenced after, see sequenced before
sequenced before, 12, 63, 67, 69, 81, see

also indeterminately sequenced, un-
sequenced

sequencing of statements, 122
sequential consistency, 16
set_constraint_handler_s function, 427,

518, 521, 535, 536
setbuf function, 265, 268, 269, 271, 273, 425,

518
setjmp function, 150, 240, 241, 422, 486, 493,

518, 569
setlocale function, 149, 186, 187, 190, 343,

411, 493, 501, 518
setpayload function, 422, 441, 467, 518
setpayloadd128 function, 422, 467, 518
setpayloadd32 function, 422, 467, 518
setpayloadd64 function, 422, 467, 518
setpayloadf function, 422, 467, 518
setpayloadl function, 422, 467, 518
setpayloadsig function, 422, 441, 467, 518
setpayloadsigd128 function, 422, 467, 518
setpayloadsigd32 function, 422, 467, 518
setpayloadsigd64 function, 422, 467, 518
setpayloadsigf function, 422, 467, 518
setpayloadsigl function, 422, 467, 518
setvbuf function, 265, 268, 269, 271, 273, 274,

425, 495, 518
shall, 8
shift expressions, 76
shift sequence, 149
shift states, 18
short identifier, character, 20, 50
short int type, 35, 88
short int type conversion, 42–44
SHRT_MAX macro, 21, 411, 436, 518
SHRT_MIN macro, 21, 411, 436, 518
SHRT_WIDTH macro, 21, 411, 518
side effects, 12, 39, 46, 63, 69, 81, 113, 123, 168,

171, 292, 366, 367, 447, 448, 450

624 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

SIG identifier prefix, 242, 392, 506
SIG_ identifier prefix, 242, 392, 506
SIG_ATOMIC_MAX macro, 263, 424, 510
SIG_ATOMIC_MIN macro, 264, 424, 510
sig_atomic_t type, 12, 242, 243, 263, 422, 485,

494, 518
SIG_ATOMIC_WIDTH macro, 263, 424, 510
SIG_DFL macro, 242, 243, 422, 502, 510
SIG_ERR macro, 242, 243, 422, 494, 510
SIG_IGN macro, 242, 243, 422, 498, 510
SIGABRT macro, 242, 308, 422, 510
SIGFPE macro, 195, 242, 243, 422, 483, 493, 498,

506, 510
SIGILL macro, 242, 243, 422, 493, 498, 510
SIGINT macro, 242, 422, 510
sign bit, 40
signal function, 12, 14, 110, 111, 242, 243, 309,

310, 422, 494, 498, 502, 518
signal handler, 12, 19, 242, 244
signal handling functions, 242
signal handling header, 242, 392
signaling NaN, 22, 440
signals, 12, 19, 242
signbit macro, 198, 412, 442, 463, 518
signed char type, 35
signed character, 43
signed integer types, 35, 43, 52
signed type, 88
signed type conversion, 42–44
signed types, 35
significand part, 54
SIGSEGV macro, 242, 243, 422, 493, 498, 510
SIGTERM macro, 242, 422, 510
simple assignment, 81
simple assignment operator (=), 81
sin function, 68, 201, 327, 329, 412, 445, 453,

479, 518
sin type-generic macro, 327
sin type-generic macro, 479
sind128 function, 201, 417, 518
sind32 function, 201, 417, 518
sind64 function, 201, 417, 518
sinf function, 201, 412, 518
single-byte character, 18
single-byte/wide character conversion func-

tions, 380
single-precision arithmetic, 13
single-quote escape sequence (\’), 57, 59
singularity, 195
sinh function, 205, 206, 327, 413, 445, 454, 479,

518
sinh type-generic macro, 327
sinh type-generic macro, 479
sinhd128 function, 206, 417, 518
sinhd32 function, 206, 417, 518
sinhd64 function, 206, 417, 518

sinhf function, 206, 413, 518
sinhl function, 206, 413, 518
sinl function, 201, 412, 518
sinpi function, 203, 204, 412, 445, 454, 518
sinpi type-generic macro, 327
sinpid128 function, 204, 417, 518
sinpid32 function, 203, 417, 518
sinpid64 function, 203, 417, 518
sinpif function, 203, 412, 518
sinpil function, 203, 412, 518
SIZE_MAX macro, 424, 518, 522
SIZE_WIDTH macro, 263, 424, 518
sizeof operator, 45, 71, 72
SNAN macro, 412, 440, 518
SNAND128 macro, 518
SNAND32 macro, 518
SNAND64 macro, 518
SNANF macro, 412, 440, 518
SNANL macro, 412, 440, 518
snprintf function, iii, 287, 290, 300, 301, 343,

425, 518, 529, 572
snprintf_s function, 425, 518, 528, 529
snwprintf_s function, 432, 518, 552, 553
sorting utility functions, 311, 537
source character set, 9, 17
source file, 9

name, 143, 146
source file inclusion, 136
source lines, 9
source text, 9
space character (’ ’), 9, 17, 47, 163, 165, 386
space format flag, 275, 352
spilling, 13
sprintf function, 287, 288, 290, 425, 518, 529
sprintf_s function, 425, 518, 529
sqrt function, 217, 327, 414, 441, 460, 465, 518
sqrt type-generic macro, 327
sqrtd128 function, 217, 419, 518
sqrtd32 function, 217, 329, 419, 518
sqrtd64 function, 217, 419, 518
sqrtf function, 217, 414, 518
sqrtl function, 217, 414, 518
square root rounded to narrower type, 234
srand function, 305, 306, 426, 518
sscanf function, 286, 288, 290, 425, 518
sscanf_s function, 425, 518, 530, 533
standard attribute, 116
standard error stream, 266, 268, 298
standard floating types, 36
standard headers, 8, 149

<assert.h>, 149, 150, 153, 177, 408
<complex.h>, 22, 27, 113, 147, 149, 154–

161, 326, 327, 391, 408, 470, 471, 472,
473, 497, 500, 506, 571

<ctype.h>, 149, 163, 164, 165, 391, 409
<errno.h>, 149, 167, 391, 409, 521

Index 625

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

<fenv.h>, 8, 12, 14, 23, 27, 31, 83, 149, 168,
170–172, 174–179, 195, 391, 409, 440,
443, 446–448, 457, 461, 463, 483, 572

<float.h>, iii, 8, 20, 21, 23, 26, 27, 28, 149,
180, 193, 279, 302, 356, 369, 391, 410,
436, 445, 503, 570, 571

<inttypes.h>, 149, 181, 182, 183, 391,
411, 571

<iso646.h>, 8, 149, 184, 411, 571, 572
<limits.h>, iii, 8, 20, 21, 35, 37, 149, 185,

411, 436, 503
<locale.h>, 149, 186, 187, 391, 411
<math.h>, 8, 22, 27, 31, 64, 149, 172, 173,

192, 193, 195–198, 199–231, 232, 233,
234–239, 279, 326–328, 357, 391, 392,
411, 439, 440, 445, 451, 457, 461, 463,
465–467, 470, 471, 487, 497, 500, 503,
506, 572

<setjmp.h>, 149, 240, 241, 422
<signal.h>, 150, 242, 243, 392, 422
<stdalign.h>, 8, 150, 245, 422, 570
<stdarg.h>, 8, 107, 150, 246, 247, 248,

288–290, 362–364, 422, 530–533, 554–
557

<stdatomic.h>, 147, 149, 150, 243, 249,
250, 252–258, 392, 423, 494, 570

<stdbool.h>, 8, 150, 259, 392, 423, 480,
572

<stddef.h>, 8, 46, 58, 59, 73, 75, 76, 116,
150, 183, 260, 286, 424, 522

<stdint.h>, 8, 20, 21, 135, 150, 181, 214–
216, 222, 261, 262, 264, 392, 424, 503,
522, 571

<stdio.h>, 14, 22, 27, 31, 50, 137, 150, 172,
173, 265, 269–274, 279, 281, 285–298,
342, 352, 357, 361, 362, 364–367, 392,
424, 500, 522, 523–534, 551, 554, 571,
572

<stdlib.h>, 8, 22, 27, 31, 150, 152, 172,
173, 299, 300–302, 304–311, 313–316,
392, 426, 500, 521, 535, 536–540, 570,
571

<stdnoreturn.h>, 8, 150, 317, 427
<string.h>, 150, 318, 319–325, 392, 427,

541, 542–548
<tgmath.h>, 31, 150, 326, 329, 428, 439,

451, 479, 571
<threads.h>, 147, 149, 150, 330, 331–338,

393, 429, 570
<time.h>, 150, 330, 340, 341–345, 379,

393, 429, 548, 549, 550
<uchar.h>, 58, 59, 150, 348, 349, 350, 430,

570
<wchar.h>, 22, 27, 31, 150, 172, 173, 181,

266, 351, 352, 357, 361–368, 370–375,
377–383, 393, 430, 500, 551, 552–566,

571, 572
<wctype.h>, 150, 385, 386–390, 393, 432,

571, 572
standard input stream, 266, 268
standard integer types, 35
standard output stream, 266, 268
standard signed integer types, 35
standard unsigned integer types, 35
state-dependent encoding, 18, 314, 539
statement, 122
statements, 122

break, 127
compound, 123
continue, 127
do, 125
else, 124
expression, 123
for, 126
goto, 126
if, 124
iteration, 125
jump, 126
labeled, 122
null, 123
return, 127, 446
selection, 124
sequencing, 122
switch, 124
while, 125

static assertions, 116
static storage duration, 34
static storage-class specifier, 33, 34, 87
static, in array declarators, 105, 107
static_assert declaration, 116
static_assert macro, ii, 153, 408, 519
STDC pragma, 83, 144, 148, 155, 170–173, 176,

177, 179, 196, 406, 408, 410, 412, 447,
448, 457, 461, 463, 471, 492, 501, 519

stderr stream, 143, 266, 267, 268, 273, 289,
362, 424, 505, 519

stdin stream, 266, 267, 268, 273, 285–287, 292,
361, 364, 366, 367, 424, 519, 527, 528,
534, 558

stdout stream, 266, 267, 268, 273, 279–281,
287, 293, 294, 357, 364, 367, 424, 519

storage duration, 34
storage order of array, 66
storage unit (bit-field), 39, 91
storage-class specifiers, 87, 148
store and load, 13
str identifier prefix, 391, 392, 506
strcat function, 319, 427, 511
strcat_s function, 428, 511, 544
strchr function, 322, 427, 511
strcmp function, 320, 321, 427, 511
strcoll function, 187, 320, 321, 427, 511

626 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

strcpy function, 285, 319, 427, 511
strcpy_s function, 428, 511, 543
strcspn function, 322, 427, 511
strdup function, ii, xiii, 325, 428, 511, 570
streams, 267, 309

fully buffered, 268
line buffered, 268
orientation, 267
standard error, 266, 268
standard input, 266, 268
standard output, 266, 268
unbuffered, 268

strerror function, 298, 324, 428, 496, 497, 504,
511

strerror_s function, 324, 428, 511, 547, 548
strerrorlen_s function, 428, 511, 548
strfrom identifier prefix, 172, 173
strfromd function, 300, 368, 426, 442, 511
strfromd identifier prefix, 300, 301
strfromd128 function, 300, 427, 511
strfromd32 function, 300, 427, 511
strfromd64 function, 300, 427, 511
strfromf function, 300, 368, 426, 511
strfroml function, 300, 426, 511
strftime function, ii, xiii, 187, 343, 345, 347,

379, 430, 487, 495, 497, 503, 511, 548–
550, 570, 572

stricter, 42
strictly conforming program, 8
string, 149

comparison functions, 320
concatenation functions, 319, 544
conversion functions, 187
copying functions, 318, 541
library function conventions, 318
literal, 10, 17, 45, 58, 64, 112
miscellaneous functions, 324, 547
numeric conversion functions, 182, 299
search functions, 321, 545

string duplicate function, 325
string handling header, 318, 392, 541
stringizing, 139, 147
strlen function, 320, 325, 428, 511
strncat function, 320, 427, 511
strncat_s function, 428, 511, 544, 545
strncmp function, 142, 320, 321, 427, 511
strncpy function, 319, 427, 511
strncpy_s function, 428, 511, 543, 544
strndup function, ii, xiii, 325, 428, 511, 570
strnlen_s function, 428, 511, 543–545, 548
stronger, 42
strpbrk function, 322, 427, 511
strrchr function, 322, 323, 427, 511
strspn function, 323, 428, 511
strstr function, 323, 428, 511
strto family, 30, 31, 55, 56, 172, 173, 302, 511

strtod family, 302, 303
strtod function, 55, 225, 282, 283, 287, 299,

300, 301, 426, 442, 446, 447, 487, 503,
511

strtod128 function, 302, 503, 511
strtod32 function, 302, 503, 511
strtod64 function, 302, 303, 503, 511
strtof function, 225, 287, 300, 301, 426, 487,

503, 511
strtoimax function, 182, 411, 511
strtok function, 323, 324, 428, 497, 511
strtok_s function, 324, 428, 511, 545, 546, 547
strtol function, 182, 282, 283, 287, 300, 304,

305, 426, 511
strtold function, 225, 287, 300, 301, 426, 487,

503, 511
strtoll function, 182, 287, 300, 304, 305, 426,

511
strtoul function, 182, 283, 287, 300, 304, 305,

426, 511
strtoull function, 182, 287, 300, 304, 305, 426,

511
strtoumax function, 182, 411, 511
struct hack, see flexible array member
structure

arrow operator (->), 67
content, 95
dot operator (.), 67
initialization, 112
member alignment, 91
member name space, 33
member operator (.), 45, 67
pointer operator (->), 67
specifier, 89
tag, 33, 95
type, 37, 89

structure content, 95
strxfrm function, 187, 321, 427, 497, 511
subnormal floating-point numbers, 22
subscripting, 66
subtract and round to narrower type, 232
subtraction assignment operator (-=), 82
subtraction operator (-), 75, 472
successful termination, 309
suffix

floating constant, 54
integer constant, 52

switch body, 124
switch case label, 122, 124
switch default label, 122, 124
switch statement, 123
swprintf function, 361, 363, 430, 519, 552, 553
swprintf_s function, 432, 519, 553
swscanf function, 361, 362, 363, 430, 519
swscanf_s function, 432, 519, 553, 554, 556
symbols, 3

Index 627

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

synchronization operation, 14
synchronize with, 15
syntactic categories, 32
syntax notation, 32
syntax rule precedence, 9
syntax summary, language, 394
system function, 310, 311, 426, 496, 498, 503,

519

t format modifier, 276, 282, 353, 358
tab characters, 17, 47
tag compatibility, 40
tag name space, 33
tags, 33, 94
tan function, 201, 202, 327, 412, 445, 453, 479,

519
tan type-generic macro, 327
tan type-generic macro, 479
tand128 function, 201, 417, 519
tand32 function, 201, 417, 519
tand64 function, 201, 417, 519
tanf function, 201, 412, 519
tanh function, 206, 327, 413, 445, 454, 479, 519
tanh type-generic macro, 327
tanh type-generic macro, 479
tanhd128 function, 205, 206, 417, 519
tanhd32 function, 205, 206, 417, 519
tanhd64 function, 205, 206, 417, 519
tanhf function, 206, 413, 519
tanhl function, 206, 413, 519
tanl function, 201, 412, 519
tanpi function, 204, 412, 445, 454, 519
tanpi type-generic macro, 327
tanpid128 function, 204, 417, 519
tanpid32 function, 204, 417, 519
tanpid64 function, 204, 417, 519
tanpif function, 204, 413, 519
tanpil function, 204, 413, 519
temporary lifetime, 34
tentative definition, 131
terms, 3
text streams, 267, 294, 296, 297
tgamma function, 218, 219, 415, 460, 519
tgamma type-generic macro, 327
tgammad128 function, 218, 419, 519
tgammad32 function, 218, 419, 519
tgammad64 function, 218, 419, 519
tgammaf function, 218, 415, 519
tgammal function, 218, 415, 519
thousands_sep structure member, 186, 188,

519
thrd_ identifier prefix, 393, 506
thrd_busy constant, 331, 335, 429, 511
thrd_create function, 330, 335, 429, 511
thrd_current function, 335, 429, 511
thrd_detach function, 336, 429, 497, 511
thrd_equal function, 336, 429, 511

thrd_error constant, 331, 332–339, 429, 511
thrd_exit function, 335, 336, 429, 487, 511
thrd_join function, 336, 337, 429, 497, 511
thrd_nomem constant, 331, 332, 335, 429, 511
thrd_sleep function, 337, 429, 511
thrd_start_t type, 330, 335, 429, 511
thrd_success constant, 331, 332–339, 429,

511
thrd_t type, 330, 335, 336, 429, 511
thrd_timedout constant, 331, 333, 334, 429,

511
thrd_yield function, 337, 429, 511
thread, 14
thread of execution, 14, 151, 152, 168, 310, 537
thread storage duration, 34, 168
thread_local macro, 330, 429, 519
threads header, 330, 393
time

broken down, 340, 341, 343–345, 549–551
calendar, 340, 341, 342, 344, 345, 550, 551
components, 340, 548
conversion functions, 343, 548

wide character, 379
local, 340
manipulation functions, 341
normalized broken down, 548, 549

time base, 340, 342
time function, 341, 342, 429, 487, 519
TIME_ identifier prefix, 340, 393, 506
time_t type, 340, 341, 342, 344, 345, 429, 430,

503, 519, 550
TIME_UTC macro, 333, 334, 337, 340, 342, 429,

503, 511
timespec structure type, 332, 334, 337, 340,

342, 343, 429, 430, 519
timespec_get function, 342, 343, 429, 519
timespec_getres function, 343, 430, 519
tm structure type, 340, 341–345, 351, 379, 429–

431, 519, 548, 549, 550
tm_hour structure member, 341, 342, 344, 346,

519, 549
tm_isdst structure member, 341, 342, 346, 519
tm_mday structure member, 341, 342, 344, 345,

519, 549
tm_min structure member, 340, 342, 344, 346,

519, 549
tm_mon structure member, 341, 342, 344–346,

519, 549
tm_sec structure member, 340, 342, 344, 346,

519, 549
tm_wday structure member, 341, 342, 344–346,

519, 549
tm_yday structure member, 341, 345, 346, 519
tm_year structure member, 341, 342, 344–346,

519, 549
TMP_MAX macro, 266, 270, 271, 424, 519

628 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

TMP_MAX_S macro, 425, 519, 522, 523, 524
tmpfile function, 270, 309, 424, 519
tmpfile_s function, 425, 519, 523, 524
tmpnam function, 266, 270, 271, 424, 519, 524
tmpnam_s function, 425, 519, 522, 523, 524
to identifier prefix, 391, 393, 506
token, 10, 47, see also preprocessing tokens
token concatenation, 139
token pasting, 139
tolower function, 165, 409, 511
totalorder function, i, 421, 443, 465, 466, 511
totalorderd128 function, 422, 465, 511
totalorderd32 function, 422, 465, 511
totalorderd64 function, 422, 465, 511
totalorderf function, 421, 465, 511
totalorderl function, 422, 465, 511
totalordermag function, 422, 443, 466, 511
totalordermagd128 function, 422, 466, 511
totalordermagd32 function, 422, 466, 511
totalordermagd64 function, 422, 466, 511
totalordermagf function, 422, 466, 511
totalordermagl function, 422, 466, 511
toupper function, 165, 166, 409, 511
towctrans function, 389, 390, 433, 498, 504,

511
towlower function, 389, 390, 433, 511
towupper function, 389, 390, 433, 511
translation environment, 9
translation limits, 19
translation phases, 9
translation unit, 9, 129
trap, see perform a trap
trap representation, 7, 39, 46, 67
trigonometric functions

complex, 155, 473
real, 199, 452

trigraph sequences, 9, 18
true macro, ii, iii, 235, 259, 392, 423, 450, 480,

519
trunc function, 193, 222, 415, 440, 462, 482,

519
trunc type-generic macro, 327
truncation, 43, 222, 268, 272
truncation toward zero, 74
truncd128 function, 222, 420, 519
truncd32 function, 222, 420, 519
truncd64 function, 222, 420, 519
truncf function, 222, 415, 519
truncl function, 222, 415, 519
tss_ identifier prefix, 393, 506
tss_create function, 337, 338, 429, 497, 511
tss_delete function, 338, 429, 487, 497, 511
TSS_DTOR_ITERATIONS macro, 330, 336, 429,

519
tss_dtor_t type, 330, 337, 429, 511
tss_get function, 338, 429, 497, 511

tss_set function, 338, 339, 429, 497, 511
tss_t type, 330, 337, 338, 429, 511
tv_nsec structure member, 340, 342, 519
tv_sec structure member, 340, 342, 519
two’s complement, 40
type, 35
type category, 38
type conversion, 42
type definitions, 109
type domain, 37, 469
type name, 109
type names, 108
type punning, 67
type qualifiers, 96
type specifiers, 88
type-generic macro, 479
type-generic macros, 326
type-generic math header, 326
typedef declaration, 109
typedef storage-class specifier, 87, 109
types, 35

atomic, 12, 38, 39, 45, 68, 69, 82, 96, 147,
254

character, 112
compatible, 40, 89, 97, 104
complex, 37, 469
composite, 40
const qualified, 97
conversions, 42
imaginary, 469
restrict qualified, 97
volatile qualified, 97

U encoding prefix, 56–59, 397
u encoding prefix, 56–59, 397
u8 encoding prefix, 56–58, 397
UCHAR_MAX macro, 21, 411, 436, 519
UCHAR_WIDTH macro, 21, 411, 436, 519
ufromfp function, 193, 222, 223, 415, 441, 445,

462, 519
ufromfp functions, 222
ufromfp type-generic macro, 327
ufromfpd128 function, 222, 420, 519
ufromfpd32 function, 222, 420, 519
ufromfpd64 function, 222, 420, 519
ufromfpf function, 222, 415, 519
ufromfpl function, 222, 415, 519
ufromfpx function, 193, 223, 415, 442, 445, 462,

519
ufromfpx functions, 223
ufromfpx type-generic macro, 327
ufromfpxd128 function, 223, 420, 519
ufromfpxd32 function, 223, 420, 519
ufromfpxd64 function, 223, 420, 519
ufromfpxf function, 223, 415, 519
ufromfpxl function, 223, 415, 519
UINT identifier prefix, 263, 264, 392, 424, 506

Index 629

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

uint identifier prefix, 261, 392, 424, 506
UINTN_C macros, 264
UINTN_MAX macros, 263
uintN_t types, 261
UINT16_C macro, 511
UINT16_MAX macro, 511
uint16_t type, 511
UINT16_WIDTH macro, 511
UINT32_C macro, 511
UINT32_MAX macro, 511
uint32_t type, 511
UINT32_WIDTH macro, 511
UINT64_C macro, 264, 511
UINT64_MAX macro, 511
uint64_t type, 223, 511
UINT64_WIDTH macro, 511
UINT8_C macro, 511
UINT8_MAX macro, 511
uint8_t type, 511
UINT8_WIDTH macro, 512
UINT_FAST identifier prefix, 263, 424
uint_fast identifier prefix, 262, 424
UINT_LEAST identifier prefix, 263, 424
uint_least identifier prefix, 261, 264, 424
UINT_FASTN_MAX macros, 263
uint_fast16_t type, 255, 262, 512
uint_fast32_t type, 255, 262, 512
uint_fast64_t type, 255, 262, 512
uint_fast8_t type, 255, 262, 512
uint_fastN_t types, 262
UINT_LEASTN_MAX macros, 263
uint_leastN_t types, 261
uint_least16_t type, 255, 261, 262, 348, 512
uint_least32_t type, 255, 262, 348, 512
uint_least64_t type, 255, 262, 264, 512
uint_least8_t type, 254, 262, 512
UINT_MAX macro, 21, 135, 411, 436, 480, 512
UINT_WIDTH macro, 21, 223, 411, 436, 512
UINTMAX_C macro, 264, 424, 512
UINTMAX_MAX macro, 181–183, 263, 424, 446,

512
uintmax_t type, 135, 181–183, 222, 223, 255,

262, 264, 275, 282, 353, 358, 411, 424,
512, 571

UINTMAX_WIDTH macro, 263, 424, 512
UINTPTR_MAX macro, 263, 424, 512
uintptr_t type, 255, 262, 424, 512
UINTPTR_WIDTH macro, 263, 424, 512
ULLONG_MAX macro, 21, 305, 372, 411, 436, 480,

519
ULLONG_WIDTH macro, 21, 411, 436, 519
ULONG_MAX macro, 21, 305, 372, 411, 436, 480,

519
ULONG_WIDTH macro, 21, 411, 436, 519
unary arithmetic operators, 72
unary expression, 71

unary minus operator (-), 72, 443
unary operators, 71
unary plus operator (+), 72
unbuffered, 268
unbuffered stream, 268
undef, 49, 133, 134, 140, 141, 145, 151, 152, 406,

492, 519
undef preprocessing directive, 140, 151
undefined behavior, 4, 8, 488
underscore character, 48
underscore, leading, in identifier, 150
ungetc function, 266, 294, 296, 392, 425, 486,

496, 506, 519, 572
ungetwc function, 266, 367, 368, 431, 486, 506,

519
Unicode, 348, see also char16_t type,

char32_t type, wchar_t type
Unicode required set, 146
unicode utilities header, 348
union

arrow operator (->), 67
content, 95
dot operator (.), 67
initialization, 112
member alignment, 91
member name space, 33
member operator (.), 45, 67
pointer operator (->), 67
specifier, 89
tag, 33, 95
type, 37, 89

union content, 95
universal character name, 50
unnormalized floating-point numbers, 22
unqualified type, 38
unqualified version of type, 38
unsequenced, 12, 63, 81, see also indetermi-

nately sequenced, sequenced before
unsigned integer suffix, u or U, 52
unsigned integer types, 35, 43, 52
unsigned type, 88, 275, 282, 353, 358
unsigned type conversion, 42–44
unsigned types, 35
unspecified behavior, 4, 8, 485
unspecified value, 6
unsuccessful termination, 308, 309
uppercase letters, 17
use of library functions, 151
USHRT_MAX macro, 21, 411, 436, 519
USHRT_WIDTH macro, 21, 411, 436, 519
usual arithmetic conversions, 44, 74, 75, 77–80
UTF–16, 146
UTF–32, 146
UTF–8 string literal, see string literal
utilities, general, 299, 392, 535

wide string, 368, 558

630 Index

N2596 working draft — December 11, 2020 ISO/IEC 9899:202x (E)

utilities, unicode, 348

va_arg function, 246, 247, 248, 278, 288–290,
356, 362–364, 423, 494, 519, 531–533,
555–557

va_copy function, 150, 246, 247, 248, 423, 486,
494, 519, 572

va_end function, 150, 246, 247, 248, 288–290,
362–364, 423, 486, 494, 496, 519, 531–
533, 555–557

va_list type, 246, 247, 248, 288–290, 362–364,
422, 423, 425, 426, 430, 432, 494, 496,
519, 530–533, 554–557

va_start function, 246, 247, 248, 288–290, 362–
364, 423, 494, 519, 531–533, 555–557

value, 6
value bits, 39
value of a string, 149
value of a wide string, 149
variable arguments, 138
variable arguments header, 246
variable length array, 104, 105, 147
variably modified, 104
variably modified type, 104, 105, 147
vertical tab, 19
vertical-tab character, 17, 47
vertical-tab escape sequence (\v), 19, 57, 165
vfprintf function, 266, 288, 289, 425, 496, 519,

530
vfprintf_s function, 425, 519, 530, 531–533
vfscanf function, 266, 288, 289, 425, 496, 519
vfscanf_s function, 426, 519, 531, 532, 533
vfwprintf function, 266, 362, 430, 496, 519,

554
vfwprintf_s function, 432, 519, 554
vfwscanf function, 266, 362, 363, 367, 430, 496,

519
vfwscanf_s function, 432, 519, 554, 555–557
visibility of identifier, 32
visible, 32
visible side effect, 16
VLA, see variable length array
void expression, 46
void function parameter, 107
void type, 46, 88
void type conversion, 46
volatile access, 11, 12
volatile type qualifier, 96
volatile-qualified type, 38, 97
vprintf function, 266, 288, 289, 425, 496, 519,

531
vprintf_s function, 426, 519, 531, 532, 533
vscanf function, 266, 288, 289, 425, 496, 519,

572
vscanf_s function, 426, 519, 531, 532–534
vsnprintf function, 288, 290, 425, 496, 519,

532

vsnprintf_s function, 426, 519, 531, 532, 533
vsnwprintf_s function, 432, 519, 555, 556
vsprintf function, 288, 290, 425, 496, 519, 533
vsprintf_s function, 426, 519, 531, 532, 533
vsscanf function, 288, 290, 425, 496, 519
vsscanf_s function, 426, 519, 531, 532, 533,

534
vswprintf function, 362, 363, 430, 496, 519,

555, 556
vswprintf_s function, 432, 519, 555, 556
vswscanf function, 362, 363, 430, 496, 519
vswscanf_s function, 432, 519, 555, 556, 557
vwprintf function, 266, 362, 363, 364, 430, 496,

519, 557
vwprintf_s function, 432, 519, 556, 557
vwscanf function, 266, 362, 364, 367, 430, 496,

519
vwscanf_s function, 432, 519, 555, 556, 557

warnings, 10, 484
WCHAR_MAX macro, 351, 424, 430, 519
WCHAR_MIN macro, 264, 351, 424, 430, 519
wchar_t type, 5, 57–59, 112, 146, 183, 254, 260,

264, 275, 278, 279, 282–284, 286, 299,
314–316, 351, 352, 353, 356–368, 370–
375, 377–379, 381–383, 385, 407, 411,
424, 426, 427, 430–432, 487, 498, 499,
519, 539, 540, 551–566

WCHAR_WIDTH macro, 264, 351, 424, 519
wcrtomb function, 269, 278, 281, 287, 351, 359–

361, 382, 383, 431, 487, 519, 541, 564,
566

wcrtomb_s function, 432, 519, 564, 565
wcs identifier prefix, 391–393, 506
wcscat function, 373, 431, 512
wcscat_s function, 432, 512, 561
wcschr function, 375, 431, 512
wcscmp function, 374, 375, 431, 512
wcscoll function, 374, 375, 431, 512
wcscpy function, 372, 431, 512
wcscpy_s function, 432, 512, 558, 559
wcscspn function, 375, 376, 431, 512
wcsftime function, 187, 379, 431, 487, 495, 497,

503, 512
wcslen function, 374, 379, 431, 512, 563
wcsncat function, 373, 374, 431, 512
wcsncat_s function, 432, 512, 561, 562
wcsncmp function, 374, 431, 512
wcsncpy function, 372, 373, 431, 512
wcsncpy_s function, 432, 512, 559, 560
wcsnlen_s function, 432, 512, 559, 561, 562,

563, 564
wcspbrk function, 377, 431, 512
wcsrchr function, 377, 431, 512
wcsrtombs function, 383, 384, 431, 512, 565
wcsrtombs_s function, 432, 512, 565, 566, 567
wcsspn function, 377, 431, 512

Index 631

ISO/IEC 9899:202x (E) working draft — December 11, 2020 N2596

wcsstr function, 377, 431, 512
wcsto family, 30, 31, 172, 173, 370, 512
wcstod family, 370, 371
wcstod function, 358, 359, 361, 368, 431, 442,

487, 503, 512
wcstod128 function, 368, 370, 503, 512
wcstod32 function, 368, 370, 503, 512
wcstod64 function, 368, 370, 503, 512
wcstof function, 361, 368, 431, 487, 503, 512
wcstoimax function, 182, 183, 411, 512
wcstok function, 378, 431, 497, 498, 512
wcstok_s function, 432, 512, 562, 563
wcstol function, 183, 358, 359, 361, 371, 372,

431, 512
wcstold function, 361, 368, 431, 487, 503, 512
wcstoll function, 183, 361, 371, 372, 431, 512
wcstombs function, 316, 382, 427, 512
wcstombs_s function, 427, 512, 540, 541
wcstoul function, 183, 359, 361, 371, 372, 431,

512
wcstoull function, 183, 361, 371, 372, 431, 512
wcstoumax function, 182, 183, 411, 512
wcsxfrm function, 375, 431, 497, 512
wctob function, 380, 385, 431, 519
wctomb function, 314, 315, 316, 381, 426, 519
wctomb_s function, 427, 519, 539
wctrans function, 389, 390, 433, 498, 519
wctrans_t type, 385, 389, 390, 432, 433, 519
wctype function, 388, 389, 433, 498, 519
wctype_t type, 385, 388, 389, 432, 433, 519
weaker, 42
WEOF macro, 351, 365–368, 380, 385, 430, 432,

498, 519
white space, 9, 47, 134, 165, 387
white-space character, 149
white-space characters, 47
white-space wide character, 149
wide character, 5

case mapping functions, 389
extensible, 389

classification functions, 385
extensible, 388

constant, 57
formatted input/output functions, 351,

551
input functions, 266

input/output functions, 266, 364
output functions, 266
single-byte conversion functions, 380

wide character classification and mapping util-
ities header, 385, 393

wide character constant, 57
wide character input functions, 266
wide character input/output functions, 266
wide character output functions, 266
wide string, 149
wide string comparison functions, 374
wide string concatenation functions, 373, 561
wide string copying functions, 372, 558
wide string literal, see string literal
wide string miscellaneous functions, 379, 563
wide string numeric conversion functions, 182,

368
wide string search functions, 375, 562
wide-oriented stream, 267
width, 40
WINT_MAX macro, 424, 519
WINT_MIN macro, 264, 424, 519
wint_t type, 264, 275, 278, 279, 351, 353, 356,

365–367, 380, 385, 386–389, 430–433,
498, 519

WINT_WIDTH macro, 264, 424, 519
wmemchr function, 378, 379, 431, 519
wmemcmp function, 375, 431, 519
wmemcpy function, 373, 431, 519
wmemcpy_s function, 432, 519, 560
wmemmove function, 373, 431, 519
wmemmove_s function, 432, 519, 560, 561
wmemset function, 379, 431, 519
wprintf function, 172, 173, 181, 266, 363, 364,

430, 442, 519, 558
wprintf_s function, 432, 519, 557, 558
write-read coherence, 16
write-write coherence, 16
wscanf function, 172, 173, 266, 364, 367, 430,

442, 519
wscanf_s function, 432, 519, 557, 558

xor macro, 184, 411, 519
xor_eq macro, 184, 411, 519

z format modifier, 275, 282, 353, 358
zero, 469

632 Index

	Front matter
	Contents
	Foreword
	Introduction

	1 Scope
	2 Normative references
	3 Terms, definitions, and symbols
	3.1 access (verb)
	3.2 alignment
	3.3 argument
	3.4 behavior
	3.4.1 implementation-defined behavior
	3.4.2 locale-specific behavior
	3.4.3 undefined behavior
	3.4.4 unspecified behavior

	3.5 bit
	3.6 byte
	3.7 character
	3.7.1 character
	3.7.2 multibyte character
	3.7.3 wide character

	3.8 constraint
	3.9 correctly rounded result
	3.10 diagnostic message
	3.11 forward reference
	3.12 implementation
	3.13 implementation limit
	3.14 memory location
	3.15 object
	3.16 parameter
	3.17 recommended practice
	3.18 runtime-constraint
	3.19 value
	3.19.1 implementation-defined value
	3.19.2 indeterminate value
	3.19.3 unspecified value
	3.19.4 trap representation
	3.19.5 perform a trap

	3.20 x
	3.21 x

	4 Conformance
	5 Environment
	5.1 Conceptual models
	5.1.1 Translation environment
	5.1.1.1 Program structure
	5.1.1.2 Translation phases
	5.1.1.3 Diagnostics

	5.1.2 Execution environments
	5.1.2.1 Freestanding environment
	5.1.2.2 Hosted environment
	5.1.2.2.1 Program startup
	5.1.2.2.2 Program execution
	5.1.2.2.3 Program termination

	5.1.2.3 Program execution
	5.1.2.4 Multi-threaded executions and data races

	5.2 Environmental considerations
	5.2.1 Character sets
	5.2.1.1 Trigraph sequences
	5.2.1.2 Multibyte characters

	5.2.2 Character display semantics
	5.2.3 Signals and interrupts
	5.2.4 Environmental limits
	5.2.4.1 Translation limits
	5.2.4.2 Numerical limits
	5.2.4.2.1 Characteristics of integer types <limits.h>
	5.2.4.2.2 Characteristics of floating types <float.h>
	5.2.4.2.3 Characteristics of decimal floating types in <float.h>

	6 Language
	6.1 Notation
	6.2 Concepts
	6.2.1 Scopes of identifiers
	6.2.2 Linkages of identifiers
	6.2.3 Name spaces of identifiers
	6.2.4 Storage durations of objects
	6.2.5 Types
	6.2.6 Representations of types
	6.2.6.1 General
	6.2.6.2 Integer types

	6.2.7 Compatible type and composite type
	6.2.8 Alignment of objects

	6.3 Conversions
	6.3.1 Arithmetic operands
	6.3.1.1 Boolean, characters, and integers
	6.3.1.2 Boolean type
	6.3.1.3 Signed and unsigned integers
	6.3.1.4 Real floating and integer
	6.3.1.5 Real floating types
	6.3.1.6 Complex types
	6.3.1.7 Real and complex
	6.3.1.8 Usual arithmetic conversions

	6.3.2 Other operands
	6.3.2.1 Lvalues, arrays, and function designators
	6.3.2.2 void
	6.3.2.3 Pointers

	6.4 Lexical elements
	6.4.1 Keywords
	6.4.2 Identifiers
	6.4.2.1 General
	6.4.2.2 Predefined identifiers

	6.4.3 Universal character names
	6.4.4 Constants
	6.4.4.1 Integer constants
	6.4.4.2 Floating constants
	6.4.4.3 Enumeration constants
	6.4.4.4 Character constants

	6.4.5 String literals
	6.4.6 Punctuators
	6.4.7 Header names
	6.4.8 Preprocessing numbers
	6.4.9 Comments

	6.5 Expressions
	6.5.1 Primary expressions
	6.5.1.1 Generic selection

	6.5.2 Postfix operators
	6.5.2.1 Array subscripting
	6.5.2.2 Function calls
	6.5.2.3 Structure and union members
	6.5.2.4 Postfix increment and decrement operators
	6.5.2.5 Compound literals

	6.5.3 Unary operators
	6.5.3.1 Prefix increment and decrement operators
	6.5.3.2 Address and indirection operators
	6.5.3.3 Unary arithmetic operators
	6.5.3.4 The sizeof and _Alignof operators

	6.5.4 Cast operators
	6.5.5 Multiplicative operators
	6.5.6 Additive operators
	6.5.7 Bitwise shift operators
	6.5.8 Relational operators
	6.5.9 Equality operators
	6.5.10 Bitwise AND operator
	6.5.11 Bitwise exclusive OR operator
	6.5.12 Bitwise inclusive OR operator
	6.5.13 Logical AND operator
	6.5.14 Logical OR operator
	6.5.15 Conditional operator
	6.5.16 Assignment operators
	6.5.16.1 Simple assignment
	6.5.16.2 Compound assignment

	6.5.17 Comma operator

	6.6 Constant expressions
	6.7 Declarations
	6.7.1 Storage-class specifiers
	6.7.2 Type specifiers
	6.7.2.1 Structure and union specifiers
	6.7.2.2 Enumeration specifiers
	6.7.2.3 Tags
	6.7.2.4 Atomic type specifiers

	6.7.3 Type qualifiers
	6.7.3.1 Formal definition of restrict

	6.7.4 Function specifiers
	6.7.5 Alignment specifier
	6.7.6 Declarators
	6.7.6.1 Pointer declarators
	6.7.6.2 Array declarators
	6.7.6.3 Function declarators

	6.7.7 Type names
	6.7.8 Type definitions
	6.7.9 Initialization
	6.7.10 Static assertions
	6.7.11 Attributes
	6.7.11.1 General
	6.7.11.2 The nodiscard attribute
	6.7.11.3 The maybe_unused attribute
	6.7.11.4 The deprecated attribute
	6.7.11.5 The fallthrough attribute

	6.8 Statements and blocks
	6.8.1 Labeled statements
	6.8.2 Compound statement
	6.8.3 Expression and null statements
	6.8.4 Selection statements
	6.8.4.1 The if statement
	6.8.4.2 The switch statement

	6.8.5 Iteration statements
	6.8.5.1 The while statement
	6.8.5.2 The do statement
	6.8.5.3 The for statement

	6.8.6 Jump statements
	6.8.6.1 The goto statement
	6.8.6.2 The continue statement
	6.8.6.3 The break statement
	6.8.6.4 The return statement

	6.9 External definitions
	6.9.1 Function definitions
	6.9.2 External object definitions

	6.10 Preprocessing directives
	6.10.1 Conditional inclusion
	6.10.2 Source file inclusion
	6.10.3 Macro replacement
	6.10.3.1 Argument substitution
	6.10.3.2 The # operator
	6.10.3.3 The ## operator
	6.10.3.4 Rescanning and further replacement
	6.10.3.5 Scope of macro definitions

	6.10.4 Line control
	6.10.5 Error directive
	6.10.6 Pragma directive
	6.10.7 Null directive
	6.10.8 Predefined macro names
	6.10.8.1 Mandatory macros
	6.10.8.2 Environment macros
	6.10.8.3 Conditional feature macros

	6.10.9 Pragma operator

	6.11 Future language directions
	6.11.1 Floating types
	6.11.2 Linkages of identifiers
	6.11.3 External names
	6.11.4 Character escape sequences
	6.11.5 Storage-class specifiers
	6.11.6 Function declarators
	6.11.7 Pragma directives
	6.11.8 Predefined macro names

	7 Library
	7.1 Introduction
	7.1.1 Definitions of terms
	7.1.2 Standard headers
	7.1.3 Reserved identifiers
	7.1.4 Use of library functions

	7.2 Diagnostics <assert.h>
	7.2.1 Program diagnostics
	7.2.1.1 The assert macro

	7.3 Complex arithmetic <complex.h>
	7.3.1 Introduction
	7.3.2 Conventions
	7.3.3 Branch cuts
	7.3.4 The CX_LIMITED_RANGE pragma
	7.3.5 Trigonometric functions
	7.3.5.1 The cacos functions
	7.3.5.2 The casin functions
	7.3.5.3 The catan functions
	7.3.5.4 The ccos functions
	7.3.5.5 The csin functions
	7.3.5.6 The ctan functions

	7.3.6 Hyperbolic functions
	7.3.6.1 The cacosh functions
	7.3.6.2 The casinh functions
	7.3.6.3 The catanh functions
	7.3.6.4 The ccosh functions
	7.3.6.5 The csinh functions
	7.3.6.6 The ctanh functions

	7.3.7 Exponential and logarithmic functions
	7.3.7.1 The cexp functions
	7.3.7.2 The clog functions

	7.3.8 Power and absolute-value functions
	7.3.8.1 The cabs functions
	7.3.8.2 The cpow functions
	7.3.8.3 The csqrt functions

	7.3.9 Manipulation functions
	7.3.9.1 The carg functions
	7.3.9.2 The cimag functions
	7.3.9.3 The CMPLX macros
	7.3.9.4 The conj functions
	7.3.9.5 The cproj functions
	7.3.9.6 The creal functions

	7.4 Character handling <ctype.h>
	7.4.1 Character classification functions
	7.4.1.1 The isalnum function
	7.4.1.2 The isalpha function
	7.4.1.3 The isblank function
	7.4.1.4 The iscntrl function
	7.4.1.5 The isdigit function
	7.4.1.6 The isgraph function
	7.4.1.7 The islower function
	7.4.1.8 The isprint function
	7.4.1.9 The ispunct function
	7.4.1.10 The isspace function
	7.4.1.11 The isupper function
	7.4.1.12 The isxdigit function

	7.4.2 Character case mapping functions
	7.4.2.1 The tolower function
	7.4.2.2 The toupper function

	7.5 Errors <errno.h>
	7.6 Floating-point environment <fenv.h>
	7.6.1 The FENV_ACCESS pragma
	7.6.2 The FENV_ROUND pragma
	7.6.3 The FENV_DEC_ROUND pragma
	7.6.4 Floating-point exceptions
	7.6.4.1 The feclearexcept function
	7.6.4.2 The fegetexceptflag function
	7.6.4.3 The feraiseexcept function
	7.6.4.4 The fesetexcept function
	7.6.4.5 The fesetexceptflag function
	7.6.4.6 The fetestexceptflag function
	7.6.4.7 The fetestexcept function

	7.6.5 Rounding and other control modes
	7.6.5.1 The fegetmode function
	7.6.5.2 The fegetround function
	7.6.5.3 The fedecgetround function
	7.6.5.4 The fesetmode function
	7.6.5.5 The fesetround function
	7.6.5.6 The fedecsetround function

	7.6.6 Environment
	7.6.6.1 The fegetenv function
	7.6.6.2 The feholdexcept function
	7.6.6.3 The fesetenv function
	7.6.6.4 The feupdateenv function

	7.7 Characteristics of floating types <float.h>
	7.8 Format conversion of integer types <inttypes.h>
	7.8.1 Macros for format specifiers
	7.8.2 Functions for greatest-width integer types
	7.8.2.1 The imaxabs function
	7.8.2.2 The imaxdiv function
	7.8.2.3 The strtoimax and strtoumax functions
	7.8.2.4 The wcstoimax and wcstoumax functions

	7.9 Alternative spellings <iso646.h>
	7.10 Characteristics of integer types <limits.h>
	7.11 Localization <locale.h>
	7.11.1 Locale control
	7.11.1.1 The setlocale function

	7.11.2 Numeric formatting convention inquiry
	7.11.2.1 The localeconv function

	7.12 Mathematics <math.h>
	7.12.1 Treatment of error conditions
	7.12.2 The FP_CONTRACT pragma
	7.12.3 Classification macros
	7.12.3.1 The fpclassify macro
	7.12.3.2 The iscanonical macro
	7.12.3.3 The isfinite macro
	7.12.3.4 The isinf macro
	7.12.3.5 The isnan macro
	7.12.3.6 The isnormal macro
	7.12.3.7 The signbit macro
	7.12.3.8 The issignaling macro
	7.12.3.9 The issubnormal macro
	7.12.3.10 The iszero macro

	7.12.4 Trigonometric functions
	7.12.4.1 The acos functions
	7.12.4.2 The asin functions
	7.12.4.3 The atan functions
	7.12.4.4 The atan2 functions
	7.12.4.5 The cos functions
	7.12.4.6 The sin functions
	7.12.4.7 The tan functions
	7.12.4.8 The acospi functions
	7.12.4.9 The asinpi functions
	7.12.4.10 The atanpi functions
	7.12.4.11 The atan2pi functions
	7.12.4.12 The cospi functions
	7.12.4.13 The sinpi functions
	7.12.4.14 The tanpi functions

	7.12.5 Hyperbolic functions
	7.12.5.1 The acosh functions
	7.12.5.2 The asinh functions
	7.12.5.3 The atanh functions
	7.12.5.4 The cosh functions
	7.12.5.5 The sinh functions
	7.12.5.6 The tanh functions

	7.12.6 Exponential and logarithmic functions
	7.12.6.1 The exp functions
	7.12.6.2 The exp10 functions
	7.12.6.3 The exp10m1 functions
	7.12.6.4 The exp2 functions
	7.12.6.5 The exp2m1 functions
	7.12.6.6 The expm1 functions
	7.12.6.7 The frexp functions
	7.12.6.8 The ilogb functions
	7.12.6.9 The ldexp functions
	7.12.6.10 The llogb functions
	7.12.6.11 The log functions
	7.12.6.12 The log10 functions
	7.12.6.13 The log10p1 functions
	7.12.6.14 The log1p and logp1 functions
	7.12.6.15 The log2 functions
	7.12.6.16 The log2p1 functions
	7.12.6.17 The logb functions
	7.12.6.18 The modf functions
	7.12.6.19 The scalbn and scalbln functions

	7.12.7 Power and absolute-value functions
	7.12.7.1 The cbrt functions
	7.12.7.2 The compoundn functions
	7.12.7.3 The fabs functions
	7.12.7.4 The hypot functions
	7.12.7.5 The pow functions
	7.12.7.6 The pown functions
	7.12.7.7 The powr functions
	7.12.7.8 The rootn functions
	7.12.7.9 The rsqrt functions
	7.12.7.10 The sqrt functions

	7.12.8 Error and gamma functions
	7.12.8.1 The erf functions
	7.12.8.2 The erfc functions
	7.12.8.3 The lgamma functions
	7.12.8.4 The tgamma functions

	7.12.9 Nearest integer functions
	7.12.9.1 The ceil functions
	7.12.9.2 The floor functions
	7.12.9.3 The nearbyint functions
	7.12.9.4 The rint functions
	7.12.9.5 The lrint and llrint functions
	7.12.9.6 The round functions
	7.12.9.7 The lround and llround functions
	7.12.9.8 The roundeven functions
	7.12.9.9 The trunc functions
	7.12.9.10 The fromfp and ufromfp functions
	7.12.9.11 The fromfpx and ufromfpx functions

	7.12.10 Remainder functions
	7.12.10.1 The fmod functions
	7.12.10.2 The remainder functions
	7.12.10.3 The remquo functions

	7.12.11 Manipulation functions
	7.12.11.1 The copysign functions
	7.12.11.2 The nan functions
	7.12.11.3 The nextafter functions
	7.12.11.4 The nexttoward functions
	7.12.11.5 The nextup functions
	7.12.11.6 The nextdown functions
	7.12.11.7 The canonicalize functions

	7.12.12 Maximum, minimum, and positive difference functions
	7.12.12.1 The fdim functions
	7.12.12.2 The fmax functions
	7.12.12.3 The fmin functions
	7.12.12.4 The fmaximum functions
	7.12.12.5 The fminimum functions
	7.12.12.6 The fmaximummag functions
	7.12.12.7 The fminimummag functions
	7.12.12.8 The fmaximumnum functions
	7.12.12.9 The fminimumnum functions
	7.12.12.10 The fmaximummagnum functions
	7.12.12.11 The fminimummagnum functions

	7.12.13 Floating multiply-add
	7.12.13.1 The fma functions

	7.12.14 Functions that round result to narrower type
	7.12.14.1 Add and round to narrower type
	7.12.14.2 Subtract and round to narrower type
	7.12.14.3 Multiply and round to narrower type
	7.12.14.4 Divide and round to narrower type
	7.12.14.5 Floating point multiply-add and round to narrower type
	7.12.14.6 Square root rounded to narrower type

	7.12.15 Quantum and quantum exponent functions
	7.12.15.1 The quantizedN functions
	7.12.15.2 The samequantumdN functions
	7.12.15.3 The quantumdN functions
	7.12.15.4 The llquantexpdN functions

	7.12.16 Decimal re-encoding functions
	7.12.16.1 The encodedecdN functions
	7.12.16.2 The decodedecdN functions
	7.12.16.3 The encodebindN functions
	7.12.16.4 The decodebindN functions

	7.12.17 Comparison macros
	7.12.17.1 The isgreater macro
	7.12.17.2 The isgreaterequal macro
	7.12.17.3 The isless macro
	7.12.17.4 The islessequal macro
	7.12.17.5 The islessgreater macro
	7.12.17.6 The isunordered macro
	7.12.17.7 The iseqsig macro

	7.13 Nonlocal jumps <setjmp.h>
	7.13.1 Save calling environment
	7.13.1.1 The setjmp macro

	7.13.2 Restore calling environment
	7.13.2.1 The longjmp function

	7.14 Signal handling <signal.h>
	7.14.1 Specify signal handling
	7.14.1.1 The signal function

	7.14.2 Send signal
	7.14.2.1 The raise function

	7.15 Alignment <stdalign.h>
	7.16 Variable arguments <stdarg.h>
	7.16.1 Variable argument list access macros
	7.16.1.1 The va_arg macro
	7.16.1.2 The va_copy macro
	7.16.1.3 The va_end macro
	7.16.1.4 The va_start macro

	7.17 Atomics <stdatomic.h>
	7.17.1 Introduction
	7.17.2 Initialization
	7.17.2.1 The ATOMIC_VAR_INIT macro
	7.17.2.2 The atomic_init generic function

	7.17.3 Order and consistency
	7.17.3.1 The kill_dependency macro

	7.17.4 Fences
	7.17.4.1 The atomic_thread_fence function
	7.17.4.2 The atomic_signal_fence function

	7.17.5 Lock-free property
	7.17.5.1 The atomic_islockfree generic function

	7.17.6 Atomic integer types
	7.17.7 Operations on atomic types
	7.17.7.1 The atomic_store generic functions
	7.17.7.2 The atomic_load generic functions
	7.17.7.3 The atomic_exchange generic functions
	7.17.7.4 The atomic_compare_exchange generic functions
	7.17.7.5 The atomic_fetch and modify generic functions

	7.17.8 Atomic flag type and operations
	7.17.8.1 The atomic_flag_test_and_set functions
	7.17.8.2 The atomic_flag_clear functions

	7.18 Boolean type and values <stdbool.h>
	7.19 Common definitions <stddef.h>
	7.20 Integer types <stdint.h>
	7.20.1 Integer types
	7.20.1.1 Exact-width integer types
	7.20.1.2 Minimum-width integer types
	7.20.1.3 Fastest minimum-width integer types
	7.20.1.4 Integer types capable of holding object pointers
	7.20.1.5 Greatest-width integer types

	7.20.2 Widths of specified-width integer types
	7.20.2.1 Width of exact-width integer types
	7.20.2.2 Width of minimum-width integer types
	7.20.2.3 Width of fastest minimum-width integer types
	7.20.2.4 Width of integer types capable of holding object pointers
	7.20.2.5 Width of greatest-width integer types

	7.20.3 Width of other integer types
	7.20.3.1 Width of ptrdifft
	7.20.3.2 Width of sigatomict
	7.20.3.3 Width of sizet
	7.20.3.4 Width of wchart
	7.20.3.5 Width of wintt

	7.20.4 Macros for integer constants
	7.20.4.1 Macros for minimum-width integer constants
	7.20.4.2 Macros for greatest-width integer constants

	7.20.5 Maximal and minimal values of integer types

	7.21 Input/output <stdio.h>
	7.21.1 Introduction
	7.21.2 Streams
	7.21.3 Files
	7.21.4 Operations on files
	7.21.4.1 The remove function
	7.21.4.2 The rename function
	7.21.4.3 The tmpfile function
	7.21.4.4 The tmpnam function

	7.21.5 File access functions
	7.21.5.1 The fclose function
	7.21.5.2 The fflush function
	7.21.5.3 The fopen function
	7.21.5.4 The freopen function
	7.21.5.5 The setbuf function
	7.21.5.6 The setvbuf function

	7.21.6 Formatted input/output functions
	7.21.6.1 The fprintf function
	7.21.6.2 The fscanf function
	7.21.6.3 The printf function
	7.21.6.4 The scanf function
	7.21.6.5 The snprintf function
	7.21.6.6 The sprintf function
	7.21.6.7 The sscanf function
	7.21.6.8 The vfprintf function
	7.21.6.9 The vfscanf function
	7.21.6.10 The vprintf function
	7.21.6.11 The vscanf function
	7.21.6.12 The vsnprintf function
	7.21.6.13 The vsprintf function
	7.21.6.14 The vsscanf function

	7.21.7 Character input/output functions
	7.21.7.1 The fgetc function
	7.21.7.2 The fgets function
	7.21.7.3 The fputc function
	7.21.7.4 The fputs function
	7.21.7.5 The getc function
	7.21.7.6 The getchar function
	7.21.7.7 The putc function
	7.21.7.8 The putchar function
	7.21.7.9 The puts function
	7.21.7.10 The ungetc function

	7.21.8 Direct input/output functions
	7.21.8.1 The fread function
	7.21.8.2 The fwrite function

	7.21.9 File positioning functions
	7.21.9.1 The fgetpos function
	7.21.9.2 The fseek function
	7.21.9.3 The fsetpos function
	7.21.9.4 The ftell function
	7.21.9.5 The rewind function

	7.21.10 Error-handling functions
	7.21.10.1 The clearerr function
	7.21.10.2 The feof function
	7.21.10.3 The ferror function
	7.21.10.4 The perror function

	7.22 General utilities <stdlib.h>
	7.22.1 Numeric conversion functions
	7.22.1.1 The atof function
	7.22.1.2 The atoi, atol, and atoll functions
	7.22.1.3 The strfromd, strfromf, and strfroml functions
	7.22.1.4 The strfromdN functions
	7.22.1.5 The strtod, strtof, and strtold functions
	7.22.1.6 The strtodN functions
	7.22.1.7 The strtol, strtoll, strtoul, and strtoull functions

	7.22.2 Pseudo-random sequence generation functions
	7.22.2.1 The rand function
	7.22.2.2 The srand function

	7.22.3 Memory management functions
	7.22.3.1 The alignedalloc function
	7.22.3.2 The calloc function
	7.22.3.3 The free function
	7.22.3.4 The malloc function
	7.22.3.5 The realloc function

	7.22.4 Communication with the environment
	7.22.4.1 The abort function
	7.22.4.2 The atexit function
	7.22.4.3 The atquickexit function
	7.22.4.4 The exit function
	7.22.4.5 The Exit function
	7.22.4.6 The getenv function
	7.22.4.7 The quickexit function
	7.22.4.8 The system function

	7.22.5 Searching and sorting utilities
	7.22.5.1 The bsearch function
	7.22.5.2 The qsort function

	7.22.6 Integer arithmetic functions
	7.22.6.1 The abs, labs, and llabs functions
	7.22.6.2 The div, ldiv, and lldiv functions

	7.22.7 Multibyte/wide character conversion functions
	7.22.7.1 The mblen function
	7.22.7.2 The mbtowc function
	7.22.7.3 The wctomb function

	7.22.8 Multibyte/wide string conversion functions
	7.22.8.1 The mbstowcs function
	7.22.8.2 The wcstombs function

	7.23 _Noreturn <stdnoreturn.h>
	7.24 String handling <string.h>
	7.24.1 String function conventions
	7.24.2 Copying functions
	7.24.2.1 The memcpy function
	7.24.2.2 The memccpy function
	7.24.2.3 The memmove function
	7.24.2.4 The strcpy function
	7.24.2.5 The strncpy function

	7.24.3 Concatenation functions
	7.24.3.1 The strcat function
	7.24.3.2 The strncat function

	7.24.4 Comparison functions
	7.24.4.1 The memcmp function
	7.24.4.2 The strcmp function
	7.24.4.3 The strcoll function
	7.24.4.4 The strncmp function
	7.24.4.5 The strxfrm function

	7.24.5 Search functions
	7.24.5.1 The memchr function
	7.24.5.2 The strchr function
	7.24.5.3 The strcspn function
	7.24.5.4 The strpbrk function
	7.24.5.5 The strrchr function
	7.24.5.6 The strspn function
	7.24.5.7 The strstr function
	7.24.5.8 The strtok function

	7.24.6 Miscellaneous functions
	7.24.6.1 The memset function
	7.24.6.2 The strerror function
	7.24.6.3 The strlen function
	7.24.6.4 The strdup function
	7.24.6.5 The strndup function

	7.25 Type-generic math <tgmath.h>
	7.26 Threads <threads.h>
	7.26.1 Introduction
	7.26.2 Initialization functions
	7.26.2.1 The callonce function

	7.26.3 Condition variable functions
	7.26.3.1 The cndbroadcast function
	7.26.3.2 The cnddestroy function
	7.26.3.3 The cndinit function
	7.26.3.4 The cndsignal function
	7.26.3.5 The cndtimedwait function
	7.26.3.6 The cndwait function

	7.26.4 Mutex functions
	7.26.4.1 The mtxdestroy function
	7.26.4.2 The mtxinit function
	7.26.4.3 The mtxlock function
	7.26.4.4 The mtxtimedlock function
	7.26.4.5 The mtxtrylock function
	7.26.4.6 The mtxunlock function

	7.26.5 Thread functions
	7.26.5.1 The thrdcreate function
	7.26.5.2 The thrdcurrent function
	7.26.5.3 The thrddetach function
	7.26.5.4 The thrdequal function
	7.26.5.5 The thrdexit function
	7.26.5.6 The thrdjoin function
	7.26.5.7 The thrdsleep function
	7.26.5.8 The thrdyield function

	7.26.6 Thread-specific storage functions
	7.26.6.1 The tsscreate function
	7.26.6.2 The tssdelete function
	7.26.6.3 The tssget function
	7.26.6.4 The tssset function

	7.27 Date and time <time.h>
	7.27.1 Components of time
	7.27.2 Time manipulation functions
	7.27.2.1 The clock function
	7.27.2.2 The difftime function
	7.27.2.3 The mktime function
	7.27.2.4 The time function
	7.27.2.5 The timespecget function
	7.27.2.6 The timespecgetres function

	7.27.3 Time conversion functions
	7.27.3.1 The asctime functions
	7.27.3.2 The ctime functions
	7.27.3.3 The gmtime functions
	7.27.3.4 The localtime functions
	7.27.3.5 The strftime function

	7.28 Unicode utilities <uchar.h>
	7.28.1 Restartable multibyte/wide character conversion functions
	7.28.1.1 The mbrtoc16 function
	7.28.1.2 The c16rtomb function
	7.28.1.3 The mbrtoc32 function
	7.28.1.4 The c32rtomb function

	7.29 Extended multibyte and wide character utilities <wchar.h>
	7.29.1 Introduction
	7.29.2 Formatted wide character input/output functions
	7.29.2.1 The fwprintf function
	7.29.2.2 The fwscanf function
	7.29.2.3 The swprintf function
	7.29.2.4 The swscanf function
	7.29.2.5 The vfwprintf function
	7.29.2.6 The vfwscanf function
	7.29.2.7 The vswprintf function
	7.29.2.8 The vswscanf function
	7.29.2.9 The vwprintf function
	7.29.2.10 The vwscanf function
	7.29.2.11 The wprintf function
	7.29.2.12 The wscanf function

	7.29.3 Wide character input/output functions
	7.29.3.1 The fgetwc function
	7.29.3.2 The fgetws function
	7.29.3.3 The fputwc function
	7.29.3.4 The fputws function
	7.29.3.5 The fwide function
	7.29.3.6 The getwc function
	7.29.3.7 The getwchar function
	7.29.3.8 The putwc function
	7.29.3.9 The putwchar function
	7.29.3.10 The ungetwc function

	7.29.4 General wide string utilities
	7.29.4.1 Wide string numeric conversion functions
	7.29.4.1.1 The wcstod, wcstof, and wcstold functions
	7.29.4.1.2 The wcstodN functions
	7.29.4.1.3 The wcstol, wcstoll, wcstoul, and wcstoull functions

	7.29.4.2 Wide string copying functions
	7.29.4.2.1 The wcscpy function
	7.29.4.2.2 The wcsncpy function
	7.29.4.2.3 The wmemcpy function
	7.29.4.2.4 The wmemmove function

	7.29.4.3 Wide string concatenation functions
	7.29.4.3.1 The wcscat function
	7.29.4.3.2 The wcsncat function

	7.29.4.4 Wide string comparison functions
	7.29.4.4.1 The wcscmp function
	7.29.4.4.2 The wcscoll function
	7.29.4.4.3 The wcsncmp function
	7.29.4.4.4 The wcsxfrm function
	7.29.4.4.5 The wmemcmp function

	7.29.4.5 Wide string search functions
	7.29.4.5.1 The wcschr function
	7.29.4.5.2 The wcscspn function
	7.29.4.5.3 The wcspbrk function
	7.29.4.5.4 The wcsrchr function
	7.29.4.5.5 The wcsspn function
	7.29.4.5.6 The wcsstr function
	7.29.4.5.7 The wcstok function
	7.29.4.5.8 The wmemchr function

	7.29.4.6 Miscellaneous functions
	7.29.4.6.1 The wcslen function
	7.29.4.6.2 The wmemset function

	7.29.5 Wide character time conversion functions
	7.29.5.1 The wcsftime function

	7.29.6 Extended multibyte/wide character conversion utilities
	7.29.6.1 Single-byte/wide character conversion functions
	7.29.6.1.1 The btowc function
	7.29.6.1.2 The wctob function

	7.29.6.2 Conversion state functions
	7.29.6.2.1 The mbsinit function

	7.29.6.3 Restartable multibyte/wide character conversion functions
	7.29.6.3.1 The mbrlen function
	7.29.6.3.2 The mbrtowc function
	7.29.6.3.3 The wcrtomb function

	7.29.6.4 Restartable multibyte/wide string conversion functions
	7.29.6.4.1 The mbsrtowcs function
	7.29.6.4.2 The wcsrtombs function

	7.30 Wide character classification and mapping utilities <wctype.h>
	7.30.1 Introduction
	7.30.2 Wide character classification utilities
	7.30.2.1 Wide character classification functions
	7.30.2.1.1 The iswalnum function
	7.30.2.1.2 The iswalpha function
	7.30.2.1.3 The iswblank function
	7.30.2.1.4 The iswcntrl function
	7.30.2.1.5 The iswdigit function
	7.30.2.1.6 The iswgraph function
	7.30.2.1.7 The iswlower function
	7.30.2.1.8 The iswprint function
	7.30.2.1.9 The iswpunct function
	7.30.2.1.10 The iswspace function
	7.30.2.1.11 The iswupper function
	7.30.2.1.12 The iswxdigit function

	7.30.2.2 Extensible wide character classification functions
	7.30.2.2.1 The iswctype function
	7.30.2.2.2 The wctype function

	7.30.3 Wide character case mapping utilities
	7.30.3.1 Wide character case mapping functions
	7.30.3.1.1 The towlower function
	7.30.3.1.2 The towupper function

	7.30.3.2 Extensible wide character case mapping functions
	7.30.3.2.1 The towctrans function
	7.30.3.2.2 The wctrans function

	7.31 Future library directions
	7.31.1 Complex arithmetic <complex.h>
	7.31.2 Character handling <ctype.h>
	7.31.3 Errors <errno.h>
	7.31.4 Floating-point environment <fenv.h>
	7.31.5 Characteristics of floating types <float.h>
	7.31.6 Format conversion of integer types <inttypes.h>
	7.31.7 Localization <locale.h>
	7.31.8 Mathematics <math.h>
	7.31.9 Signal handling <signal.h>
	7.31.10 Atomics <stdatomic.h>
	7.31.11 Boolean type and values <stdbool.h>
	7.31.12 Integer types <stdint.h>
	7.31.13 Input/output <stdio.h>
	7.31.14 General utilities <stdlib.h>
	7.31.15 String handling <string.h>
	7.31.16 Date and time <time.h>
	7.31.17 Threads <threads.h>
	7.31.18 Extended multibyte and wide character utilities <wchar.h>
	7.31.19 Wide character classification and mapping utilities <wctype.h>

	Annex A (informative) Language syntax summary
	A.1 Lexical grammar
	A.1.1 Lexical elements
	A.1.2 Keywords
	A.1.3 Identifiers
	A.1.4 Universal character names
	A.1.5 Constants
	A.1.6 String literals
	A.1.7 Punctuators
	A.1.8 Header names
	A.1.9 Preprocessing numbers

	A.2 Phrase structure grammar
	A.2.1 Expressions
	A.2.2 Declarations
	A.2.3 Statements
	A.2.4 External definitions

	A.3 Preprocessing directives
	A.4 Floating-point subject sequence
	A.4.1 NaN char sequence
	A.4.2 NaN wchart sequence

	A.5 Decimal floating-point subject sequence
	A.5.1 NaN decimal char sequence
	A.5.2 NaN decimal wchart sequence

	Annex B (informative) Library summary
	B.1 Diagnostics <assert.h>
	B.2 Complex <complex.h>
	B.3 Character handling <ctype.h>
	B.4 Errors <errno.h>
	B.5 Floating-point environment <fenv.h>
	B.6 Characteristics of floating types <float.h>
	B.6.1 Characteristics of decimal floating types

	B.7 Format conversion of integer types <inttypes.h>
	B.8 Alternative spellings <iso646.h>
	B.9 Sizes of integer types <limits.h>
	B.10 Localization <locale.h>
	B.11 Mathematics <math.h>
	B.12 Nonlocal jumps <setjmp.h>
	B.13 Signal handling <signal.h>
	B.14 Alignment <stdalign.h>
	B.15 Variable arguments <stdarg.h>
	B.16 Atomics <stdatomic.h>
	B.17 Boolean type and values <stdbool.h>
	B.18 Common definitions <stddef.h>
	B.19 Integer types <stdint.h>
	B.20 Input/output <stdio.h>
	B.21 General utilities <stdlib.h>
	B.22 _Noreturn <stdnoreturn.h>
	B.23 String handling <string.h>
	B.24 Type-generic math <tgmath.h>
	B.25 Threads <threads.h>
	B.26 Date and time <time.h>
	B.27 Unicode utilities <uchar.h>
	B.28 Extended multibyte/wide character utilities <wchar.h>
	B.29 Wide character classification and mapping utilities <wctype.h>

	Annex C (informative) Sequence points
	Annex D (normative) Universal character names for identifiers
	D.1 Ranges of characters allowed
	D.2 Ranges of characters disallowed initially

	Annex E (informative) Implementation limits
	Annex F (normative) IEC 60559 floating-point arithmetic
	F.1 Introduction
	F.2 Types
	F.2.1 Infinities and NaNs

	F.3 Operations
	F.4 Floating to integer conversion
	F.5 Conversions between binary floating types and decimal character sequences
	F.6 The return statement
	F.7 Contracted expressions
	F.8 Floating-point environment
	F.8.1 Environment management
	F.8.2 Translation
	F.8.3 Execution
	F.8.4 Constant expressions
	F.8.5 Initialization
	F.8.6 Changing the environment

	F.9 Optimization
	F.9.1 Global transformations
	F.9.2 Expression transformations
	F.9.3 Relational operators
	F.9.4 Constant arithmetic

	F.10 Mathematics <math.h> and <tgmath.h>
	F.10.1 Trigonometric functions
	F.10.1.1 The acos functions
	F.10.1.2 The asin functions
	F.10.1.3 The atan functions
	F.10.1.4 The atan2 functions
	F.10.1.5 The cos functions
	F.10.1.6 The sin functions
	F.10.1.7 The tan functions
	F.10.1.8 The acospi functions
	F.10.1.9 The asinpi functions
	F.10.1.10 The atanpi functions
	F.10.1.11 The atan2pi functions
	F.10.1.12 The cospi functions
	F.10.1.13 The sinpi functions
	F.10.1.14 The tanpi functions

	F.10.2 Hyperbolic functions
	F.10.2.1 The acosh functions
	F.10.2.2 The asinh functions
	F.10.2.3 The atanh functions
	F.10.2.4 The cosh functions
	F.10.2.5 The sinh functions
	F.10.2.6 The tanh functions

	F.10.3 Exponential and logarithmic functions
	F.10.3.1 The exp functions
	F.10.3.2 The exp10 functions
	F.10.3.3 The exp10m1 functions
	F.10.3.4 The exp2 functions
	F.10.3.5 The exp2m1 functions
	F.10.3.6 The expm1 functions
	F.10.3.7 The frexp functions
	F.10.3.8 The ilogb functions
	F.10.3.9 The ldexp functions
	F.10.3.10 The llogb functions
	F.10.3.11 The log functions
	F.10.3.12 The log10 functions
	F.10.3.13 The log10p1 functions
	F.10.3.14 The log1p and logp1 functions
	F.10.3.15 The log2 functions
	F.10.3.16 The log2p1 functions
	F.10.3.17 The logb functions
	F.10.3.18 The modf functions
	F.10.3.19 The scalbn and scalbln functions

	F.10.4 Power and absolute value functions
	F.10.4.1 The cbrt functions
	F.10.4.2 The compoundn functions
	F.10.4.3 The fabs functions
	F.10.4.4 The hypot functions
	F.10.4.5 The pow functions
	F.10.4.6 The pown functions
	F.10.4.7 The powr functions
	F.10.4.8 The rootn functions
	F.10.4.9 The rsqrt functions
	F.10.4.10 The sqrt functions

	F.10.5 Error and gamma functions
	F.10.5.1 The erf functions
	F.10.5.2 The erfc functions
	F.10.5.3 The lgamma functions
	F.10.5.4 The tgamma functions

	F.10.6 Nearest integer functions
	F.10.6.1 The ceil functions
	F.10.6.2 The floor functions
	F.10.6.3 The nearbyint functions
	F.10.6.4 The rint functions
	F.10.6.5 The lrint and llrint functions
	F.10.6.6 The round functions
	F.10.6.7 The lround and llround functions
	F.10.6.8 The roundeven functions
	F.10.6.9 The trunc functions
	F.10.6.10 The fromfp and ufromfp functions
	F.10.6.11 The fromfpx and ufromfpx functions

	F.10.7 Remainder functions
	F.10.7.1 The fmod functions
	F.10.7.2 The remainder functions
	F.10.7.3 The remquo functions

	F.10.8 Manipulation functions
	F.10.8.1 The copysign functions
	F.10.8.2 The nan functions
	F.10.8.3 The nextafter functions
	F.10.8.4 The nexttoward functions
	F.10.8.5 The nextup functions
	F.10.8.6 The nextdown functions
	F.10.8.7 The canonicalize functions

	F.10.9 Maximum, minimum, and positive difference functions
	F.10.9.1 The fdim functions
	F.10.9.2 The fmax functions
	F.10.9.3 The fmin functions
	F.10.9.4 The fmaximum, fminimum, fmaximummag, and fminimummag functions
	F.10.9.5 The fmaximumnum, fminimumnum, fmaximummagnum, and fminimummagnum functions

	F.10.10 Floating multiply-add
	F.10.10.1 The fma functions

	F.10.11 Functions that round result to narrower type
	F.10.12 Total order functions
	F.10.12.1 The totalorder functions
	F.10.12.2 The totalordermag functions

	F.10.13 Payload functions
	F.10.13.1 The getpayload functions
	F.10.13.2 The setpayload functions
	F.10.13.3 The setpayloadsig functions

	F.10.14 Comparison macros
	F.10.14.1 The iseqsig macro

	Annex G (normative) IEC 60559-compatible complex arithmetic
	G.1 Introduction
	G.2 Types
	G.3 Conventions
	G.4 Conversions
	G.4.1 Imaginary types
	G.4.2 Real and imaginary
	G.4.3 Imaginary and complex

	G.5 Binary operators
	G.5.1 Multiplicative operators
	G.5.2 Additive operators

	G.6 Complex arithmetic <complex.h>
	G.6.1 Trigonometric functions
	G.6.1.1 The cacos functions

	G.6.2 Hyperbolic functions
	G.6.2.1 The cacosh functions
	G.6.2.2 The casinh functions
	G.6.2.3 The catanh functions
	G.6.2.4 The ccosh functions
	G.6.2.5 The csinh functions
	G.6.2.6 The ctanh functions

	G.6.3 Exponential and logarithmic functions
	G.6.3.1 The cexp functions
	G.6.3.2 The clog functions

	G.6.4 Power and absolute-value functions
	G.6.4.1 The cpow functions
	G.6.4.2 The csqrt functions

	G.7 Type-generic math <tgmath.h>

	Annex H (informative) Language independent arithmetic
	H.1 Introduction
	H.2 Types
	H.2.1 Boolean type
	H.2.2 Integer types
	H.2.2.1 Integer operations

	H.2.3 Floating-point types
	H.2.3.1 Floating-point parameters
	H.2.3.2 Floating-point operations
	H.2.3.3 Rounding styles

	H.2.4 Type conversions

	H.3 Notification
	H.3.1 Notification alternatives
	H.3.1.1 Indicators
	H.3.1.2 Traps

	Annex I (informative) Common warnings
	Annex J (informative) Portability issues
	J.1 Unspecified behavior
	J.2 Undefined behavior
	J.3 Implementation-defined behavior
	J.3.1 Translation
	J.3.2 Environment
	J.3.3 Identifiers
	J.3.4 Characters
	J.3.5 Integers
	J.3.6 Floating point
	J.3.7 Arrays and pointers
	J.3.8 Hints
	J.3.9 Structures, unions, enumerations, and bit-fields
	J.3.10 Qualifiers
	J.3.11 Preprocessing directives
	J.3.12 Library functions
	J.3.13 Architecture

	J.4 Locale-specific behavior
	J.5 Common extensions
	J.5.1 Environment arguments
	J.5.2 Specialized identifiers
	J.5.3 Lengths and cases of identifiers
	J.5.4 Scopes of identifiers
	J.5.5 Writable string literals
	J.5.6 Other arithmetic types
	J.5.7 Function pointer casts
	J.5.8 Extended bit-field types
	J.5.9 The fortran keyword
	J.5.10 The asm keyword
	J.5.11 Multiple external definitions
	J.5.12 Predefined macro names
	J.5.13 Floating-point status flags
	J.5.14 Extra arguments for signal handlers
	J.5.15 Additional stream types and file-opening modes
	J.5.16 Defined file position indicator
	J.5.17 Math error reporting

	J.6 Reserved identifiers and keywords
	J.6.1 Rule based identifiers
	J.6.2 Particular identifiers or keywords

	Annex K (normative) Bounds-checking interfaces
	K.1 Background
	K.2 Scope
	K.3 Library
	K.3.1 Introduction
	K.3.1.1 Standard headers
	K.3.1.2 Reserved identifiers
	K.3.1.3 Use of errno
	K.3.1.4 Runtime-constraint violations

	K.3.2 Errors <errno.h>
	K.3.3 Common definitions <stddef.h>
	K.3.4 Integer types <stdint.h>
	K.3.5 Input/output <stdio.h>
	K.3.5.1 Operations on files
	The tmpfile_s function
	The tmpnam_s function

	K.3.5.2 File access functions
	The fopen_s function
	The freopen_s function

	K.3.5.3 Formatted input/output functions
	The fprintf_s function
	The fscanf_s function
	The printf_s function
	The scanf_s function
	The snprintf_s function
	The sprintf_s function
	The sscanf_s function
	The vfprintf_s function
	The vfscanf_s function
	The vprintf_s function
	The vscanf_s function
	The vsnprintf_s function
	The vsprintf_s function
	The vsscanf_s function

	K.3.5.4 Character input/output functions
	The gets_s function

	K.3.6 General utilities <stdlib.h>
	K.3.6.1 Runtime-constraint handling
	The set_constraint_handler_s function
	The abort_handler_s function
	The ignore_handler_s function

	K.3.6.2 Communication with the environment
	The getenv_s function

	K.3.6.3 Searching and sorting utilities
	The bsearch_s function
	The qsort_s function

	K.3.6.4 Multibyte/wide character conversion functions
	The wctomb_s function

	K.3.6.5 Multibyte/wide string conversion functions
	The mbstowcs_s function
	The wcstombs_s function

	K.3.7 String handling <string.h>
	K.3.7.1 Copying functions
	The memcpy_s function
	The memmove_s function
	The strcpy_s function
	The strncpy_s function

	K.3.7.2 Concatenation functions
	The strcat_s function
	The strncat_s function

	K.3.7.3 Search functions
	The strtok_s function

	K.3.7.4 Miscellaneous functions
	The memset_s function
	The strerror_s function
	The strerrorlen_s function
	The strnlen_s function

	K.3.8 Date and time <time.h>
	K.3.8.1 Components of time
	K.3.8.2 Time conversion functions
	The asctime_s function
	The ctime_s function
	The gmtime_s function
	The localtime_s function

	K.3.9 Extended multibyte and wide character utilities <wchar.h>
	K.3.9.1 Formatted wide character input/output functions
	The fwprintf_s function
	The fwscanf_s function
	The snwprintf_s function
	The swprintf_s function
	The swscanf_s function
	The vfwprintf_s function
	The vfwscanf_s function
	The vsnwprintf_s function
	The vswprintf_s function
	The vswscanf_s function
	The vwprintf_s function
	The vwscanf_s function
	The wprintf_s function
	The wscanf_s function

	K.3.9.2 General wide string utilities
	Wide string copying functions
	The wcscpy_s function
	The wcsncpy_s function
	The wmemcpy_s function
	The wmemmove_s function

	Wide string concatenation functions
	The wcscat_s function
	The wcsncat_s function

	Wide string search functions
	The wcstok_s function

	Miscellaneous functions
	The wcsnlen_s function

	K.3.9.3 Extended multibyte/wide character conversion utilities
	Restartable multibyte/wide character conversion functions
	The wcrtomb_s function

	Restartable multibyte/wide string conversion functions
	The mbsrtowcs_s function
	The wcsrtombs_s function

	Annex L (normative) Analyzability
	L.1 Scope
	L.2 Definitions
	L.2.1 out-of-bounds store
	L.2.2 bounded undefined behavior
	L.2.3 critical undefined behavior

	L.3 Requirements

	Annex M (informative) Change History
	M.1 Fifth Edition
	M.2 Fourth Edition
	M.3 Third Edition
	M.4 Second Edition
	M.5 First Edition, Amendment 1

	Bibliography
	Index

