
ISO/IEC JTC 1/SC 22/WG14

November 18, 2019

N2458

v 3
Make false and true first-class language features v3
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

In its London 2019 meeting, WG14 has found consensus to elevate false and true to proper keywords. By

following the proposal of N2229 (vote in the Brno 2018 meeting of WG14), we should also change their type
from int to bool.

Changes in v2: WG14 was not sympathetic to force these keywords also to be macros, so we remove
the text corresponding to this idea. WG14 also was not in favor of the parts that proposed to introduce

recommended practice and to add future language directions, so these are also removed.

Changes in v3: It was then observed in a discussion on the reflector, that the possible use of these
predefined constants in the preprocessor needs some more precautions.

1. INTRODUCTION

The Boolean constants false and true are a bit ambivalent because in C17 they expand
to integer constants 0 and 1 that have type int and not _Bool. This is unfortunate when
they are used as arguments to type-generic macros, because there they could trigger an
unexpected expansion, namely for int instead of _Bool. Since for C++, these constants are
of type bool, we propose to do it the same.
The integration of these constants as proper language constructs, also allows to provide
a better feedback to programmers, where such constants seem to be used erroneously. In
particular, diagnostics may be provided when they are used in arithmetic or used contrary
to the intent, e.g as null pointer constants.

2. IMPACT

The change should not have a big impact on user code. In most contexts where these
constants are used (assignment, arithmetic, comparison, non-prototyped function call), bool
values will be promoted to int, anyhow, and the property of being macro expansions (or
not) should be transparent. So in these “regular” contexts the result after promotion would
be exactly the same, namely int values 0 and 1, respectively. As arguments to function
calls that provide a prototype, there is no change either, since the values 0 and 1 are valid
for any arithmetic type and so the value and type received by the function are exactly the
same.
The change can have marginal impact on existing code, when the constants are used in
sizeof, alignas or _Generic expressions. All should be relatively rare. The latter, _Generic,
is a sought effect of this change, because we think that choosing bool for these constants is a
much more natural choice and will surprise less. In any case, these usages are compile-time
detectable and we expect that quality implementations can provide diagnostics during the
transition phase to C2x.
Another possible impact could be the use of these constants in preprocessing conditional
expressions. Currently preprocessing arithmetic sees the existing macros from <stdbool.h>
as signed values, and thus the result of expressions is merely consistent between the pre-
processor and the rest of the language. When changing to keywords we should ensure that
false and true may still be used in the preprocessor with the same semantics as before.
This is done by enforcing the following:

— Other than other keywords false and true are not automatically rewritten to pp-token
0 in preprocessor arithmetic.

— We ensure that preprocessor arithmetic uses signed values for these constants, such that
results of such arithmetic remain the same between C17 and C2x.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2458:2 Jens Gustedt

3. REFERENCE IMPLEMENTATION

To add minimal support for the proposed changes, an implementation that does not want
to implement false and true as full-featured keywords would have to add definitions that
are equivalent to the following lines to their startup code:

#define false ((bool)+0)
#define true ((bool)+1)

Notice that these do not use the literals 0U or 1U because with that arithmetic with these
constants in the preprocessor would be performed as unsigned integers. This would have
the consequence that something like -true would result to UINTMAX_MAX in the preprocessor
and -1 otherwise.

4. CHANGES

Predefined constants need a little bit more effort for the integration, than the other keywords
in N2457, because up to now C did not have named constants on the level of the language. We
propose to integrate these constants by means of a new syntax term predefined constant.
Besides minor word replacements the proposed changes consist of the following:

— Add the constants to the list of keywords in 6.4.1.
— Add the ”predefined constant” syntax term and a new clause 6.4.4.5 that describes it.
— Add a specific clause for the two constants, 6.4.4.5.1.
— Exempt these constants from being replaced in preprocessor arithmetic, 6.10.1
— Add them to the optional predefined macros, 6.10.8.4.
— Adapt the text for <stdbool.h> (7.18) and make this header obsolescent.

Appendix: pages with diffmarks of the proposed changes
against modifications proposed in N2457.
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

6.2.5 Types
1 The meaning of a value stored in an object or returned by a function is determined by the type of the

expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).39)

2 An object declared as type bool is large enough to store the values 0 and 1
:::::
false

::::
and

:::::
true .

3 An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

4 There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.40) The
standard and extended signed integer types are collectively called signed integer types.41)

5 An object declared as type signed char occupies the same amount of storage as a "plain" char
object. A "plain" int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

6 For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. The standard and extended unsigned integer types are collectively called
unsigned integer types.42)

7 The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

8 For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

9 The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.43) A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

10 There are three standard floating types, designated as float, double, and long double.44) The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

39)A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

40)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.
41)Therefore, any statement in this document about signed integer types also applies to the extended signed integer types.
42)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer

types.
43)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.
44)See "future language directions" (6.11.1).

§ 6.2.5 Language 35

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.

— The rank of bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

2 The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type bool, int, signed int, or unsigned int.

If an int can represent all values of the original type (as restricted by the width, for a bit-field), the
value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.62) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a "plain" char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type
1 When any scalar value is converted to bool, the result is 0

::::::
false if the value compares equal to 0;

otherwise, the result is 1
:::::
true .63)

6.3.1.3 Signed and unsigned integers
1 When a value with integer type is converted to another integer type other than bool, if the value

can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.64)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

62)The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary+ ,- , and~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

63)NaNs do not compare equal to 0 and thus convert to true.
64)The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

42 Language § 6.3.1.3

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

6.4.1 Keywords
Syntax

1 keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double
else

enum
extern

::::::
false
float
for
goto
if
inline
int
long
register
restrict
return

short
signed
sizeof
static
static_assert
struct
switch
thread_local

:::::
true
typedef
union
unsigned
void

volatile
while
_Atomic
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn

Constraints
2 The keywords

alignas
alignof

bool

::::::
false

static_assert
thread_local

::::
true

:

may optionally be predefined macro names (6.10.8.4). None of these shall be the subject of a #define
or a #undef preprocessing directive.

Semantics
3 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords

except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.74)

4 The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.75)

keyword alternative spelling
alignas _Alignas
alignof _Alignof
bool _Bool
static_assert _Static_assert
thread_local _Thread_local

Their spelling inside expressions5
:::
The

::::::::
spelling

::
of

:::::::::
keywords

::::
that

:::
are

::::
also

::::::::::
predefined

:::::::
macros

::::
and that

are subject to the # and ## preprocessing operators is unspecified.76)

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

74)One possible specification for imaginary types appears in Annex G.
75)These alternative keywords are obsolescent features and should not be used for new code.
76)The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means of

a predefined macro.

48 Language § 6.4.2.1

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

::::::::::::::::::::::::::::::::
predefined-constant

:

Constraints
2 Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics
3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

§ 6.4.4.1 Language 51

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

15 EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight bits for objects
that have type char. In an implementation in which type char has the same range of values as signed char, the integer
character constant’\xFF’ has the value −1; if type char has the same range of values as unsigned char, the character
constant’\xFF’ has the value +255.

16 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are’\x12’ and’3’ , the
construction’\0223’ can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

17 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’ specifies the
implementation-defined value that results from the combination of the values 0123 and’4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants

::::::
Syntax

1
::::::::::::::::
predefined-constant:

:

:::::::::::::::::::::
false

::::::::::::::::::::
true

:::::::::::
Description

:::::
Some

:::::::::
keywords

:::::::::
represent

:::::::::
constants

::
of

:
a
::::::::
specific

:::::
value

::::
and

:::::
type.

6.4.4.5.1 The false and true constants

:::::::::::
Description

1
:::
The

::::::::::
keywords

::::::
false

::::
and

:::::
true

:::::::::
represent

:::::::::
constants

:::
of

::::
type

:::::
bool

:::::
that

:::
are

::::::::
suitable

:::
for

::::
use

::
as

::::
are

::::::
integer

::::::::
literals.

::::::
Their

:::::::
values

:::
are

::
0
::::

for
::::::
false

::::
and

::
1
::::

for
::::::
true.87)

::::::
When

:::::
used

::
in

:::::::::::::
preprocessor

::::::::::
conditional

:::::::::::
expressions,

::::
the

:::::::::
keywords

::::::
false

::::
and

::::
true

:::::::
behave

:::
as

:
if
::::::::
replaced

:::::
with

:::
the

::::::::::::
pp-numbers

:
0
::::
and

::
1,

:::::::::::
respectively.88)

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF–8

string literal.

87)
::::
When

::::
used

::
in

:::::::
arithmetic

:::::::::
expressions

::::
after

::::::::
translation

::::
phase

:
4
:::
the

:::::
values

::
of

::
the

::::::::
keywords

::
are

::::::::
promoted

::
to

:::
type

:::
int.

88)
:::::::
Therefore,

::::::::
arithmetic

:::
with

:::::
false

:::
and

::::
true

::
in

::::::::
translation

::::
phase

:
4
:::::::
presents

:::::
results

:::
that

::
are

:::::::
generally

::::::::
consistent

:::
with

::::
later

::::::::
translation

:::::
phases.

58 Language § 6.4.5

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

token (6.4).

Semantics
3 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and the defined unary operator have been performed, all remaining identifiers

::::
other

:::::
than

::::::
false

:::
and

:::::
true

:
(including those lexically identical to keywords) are replaced with the pp-number 0,

and then each preprocessing token is converted into a token. The resulting tokens compose the
controlling constant expression which is evaluated according to the rules of 6.6. For the purposes of
this token conversion and evaluation, all signed integer types and all unsigned integer types act as
if they have the same representation as, respectively, the types intmax_t and uintmax_t defined
in the header <stdint.h>.181) This includes interpreting character constants, which may involve
converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs
in an expression (other than within a #if or #elif directive) is implementation-defined.182) Also,
whether a single-character character constant may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose
control condition evaluates to true (nonzero) is processed; any following groups are skipped and
their controlling directives are processed as if they were in a group that is skipped. If none of the
conditions evaluates to true, and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped.183)

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.20.1.5).

181)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is 0xFFFF, the constant 0x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

182)Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if ’z’ - ’a’ == 25
if (’z’ - ’a’ == 25)

183)As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

§ 6.10.1 Language 135

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

2 An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_60559_COMPLEX__
or __STDC_IEC_559_COMPLEX__.

6.10.8.4 Optional macros
1 The keywords

alignas
alignof

bool

::::::
false

static_assert
thread_local

::::
true

:

optionally are also predefined macro names that expand to unspecified tokens.

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

§ 6.10.9 Language 147

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

Returns
5 The atomic_signal_fence function returns no value.

7.17.5 Lock-free property
1 The atomic lock-free macros indicate the lock-free property of integer and address atomic types. A

value of 0 indicates that the type is never lock-free; a value of 1 indicates that the type is sometimes
lock-free; a value of 2 indicates that the type is always lock-free.

Recommended practice
2 Operations that are lock-free should also be address-free. That is, atomic operations on the same

memory location via two different addresses will communicate atomically. The implementation
should not depend on any per-process state. This restriction enables communication via memory
mapped into a process more than once and memory shared between two processes.

7.17.5.1 The atomic_is_lock_free generic function
Synopsis

1 #include <stdatomic.h>
bool atomic_is_lock_free(const volatile A *obj);

Description
2 The atomic_is_lock_free generic function indicates whether or not atomic operations on objects

of the type pointed to by obj are lock-free.

Returns
3 The atomic_is_lock_free generic function returns nonzero (true)

:::::
true if and only if atomic

operations on objects of the type pointed to by the argument are lock-free. In any given program
execution, the result of the lock-free query shall be consistent for all pointers of the same type.280)

7.17.6 Atomic integer types
1 For each line in the following table,281) the atomic type name is declared as a type that has the same

representation and alignment requirements as the corresponding direct type.282)

Atomic type name Direct type
atomic_bool _Atomic bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_char16_t _Atomic char16_t
atomic_char32_t _Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t _Atomic int_least8_t
atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_least16_t _Atomic int_least16_t

280)obj can be a null pointer.
281)See "future library directions" (7.31.11).
282)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

252 Library § 7.17.6

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

Returns
3 Atomically returns the value pointed to by object.

7.17.7.3 The atomic_exchange generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired, memory_order order);

Description
2 Atomically replace the value pointed to by object with desired. Memory is affected according to

the value of order. These operations are read-modify-write operations (5.1.2.4).

Returns
3 Atomically returns the value pointed to by object immediately before the effects.

7.17.7.4 The atomic_compare_exchange generic functions
Synopsis

1 #include <stdatomic.h>
bool atomic_compare_exchange_strong(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_strong_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);
bool atomic_compare_exchange_weak(volatile A *object, C *expected, C desired);
bool atomic_compare_exchange_weak_explicit(volatile A *object, C *expected,

C desired, memory_order success, memory_order failure);

Description
2 The failure argument shall not be memory_order_release nor memory_order_acq_rel. The

failure argument shall be no stronger than the success argument.

3 Atomically, compares the contents of the memory pointed to by object for equality with that
pointed to by expected, and if true, replaces the contents of the memory pointed to by object
with desired, and if false, updates the contents of the memory pointed to by expected with that
pointed to by object. Further, if the comparison is true, memory is affected according to the value
of success, and if the comparison is false, memory is affected according to the value of failure.
These operations are atomic read-modify-write operations (5.1.2.4).

4 NOTE 1 For example, the effect of atomic_compare_exchange_strong is

if (memcmp(object, expected, sizeof (*object)) == 0)
memcpy(object, &desired, sizeof (*object));

else
memcpy(expected, object, sizeof (*object));

5 A weak compare-and-exchange operation may fail spuriously. That is, even when the contents of
memory referred to by expected and object are equal, it may return zero

::::::
false and store back to

expected the same memory contents that were originally there.
6 NOTE 2 This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g.

load-locked store-conditional machines.

254 Library § 7.17.7.4

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

atomic_flag guard = ATOMIC_FLAG_INIT;

7.17.8.1 The atomic_flag_test_and_set functions
Synopsis

1 #include <stdatomic.h>
bool atomic_flag_test_and_set(volatile atomic_flag *object);
bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 Atomically places the atomic flag pointed to by object in the set state and returns the value

corresponding to the immediately preceding state. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4).

Returns
3 The atomic_flag_test_and_set functions return the value that corresponds to the state of the

atomic flag immediately before the effects. The return value true
::::
true

:
corresponds to the set state

and the return value false
::::::
false corresponds to the clear state.

7.17.8.2 The atomic_flag_clear functions
Synopsis

1 #include <stdatomic.h>
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

Description
2 The order argument shall not be memory_order_acquire nor memory_order_acq_rel. Atomically

places the atomic flag pointed to by object into the clear state. Memory is affected according to the
value of order.

Returns
3 The atomic_flag_clear functions return no value.

256 Library § 7.17.8.2

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

7.18 Boolean type and values <stdbool.h>
1 The

::::::::::
obsolescent

:
header <stdbool.h> defines three macros that are

::
the

::::::::::
following

::::::
macro

::::::
which

::
is

suitable for use in #if preprocessing directives. They are which expands to the integer constant 1,
which expands to the integer constant 0, and

::::::::::
conditional

:::::::::::::
preprocessing

:::::::::
directives:

:

__bool_true_false_are_defined

which
:
It
:
expands to the integer constant 1

:::::::
constant

::::::
true .

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros bool, true, and false.

§ 7.18 Library 257

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

cracosh
cracospi
cracos
crasinh
crasinpi
crasin
cratan2pi
cratan2

cratanh
cratanpi
cratan
crcompoundn
crcosh
crcospi
crcos
crexp10m1

crexp10
crexp2m1
crexp2
crexpm1
crexp
crhypot
crlog10p1
crlog10

crlog1p
crlog2p1
crlog2
crlogp1
crlog
crpown
crpowr
crpow

crrootn
crrsqrt
crsinh
crsinpi
crsin
crtanh
crtanpi
crtan

and the same names suffixed with f, l, d32, d64, or d128 may be added to the <math.h> header.
The cr prefix is intended to indicate a correctly rounded version of the function.

7.31.9 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.10 Alignment <stdalign.h>
1 The header <stdalign.h> together with its defined macros __alignas_is_defined and

__alignas_is_defined is an obsolescent feature.

7.31.11 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.12 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros true, and false

::::::
header <stdbool.h>

:::::::
together

:::::
with

:::
its

:::::::
defined

::::::
macro

::::::::::::::::::::::::::::::::
__bool_true_false_are_defined is an obsolescent feature.

7.31.13 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.14 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.15 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.16 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

390 Library § 7.31.16

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

Annex A
(informative)

Language syntax summary

1 NOTE The notation is described in 6.1.

A.1 Lexical grammar
A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

A.1.2 Keywords

(6.4.1) keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double
else

enum
extern

::::::
false
float
for
goto
if
inline
int
long
register
restrict
return

short
signed
sizeof
static
static_assert
struct
switch
thread_local

:::::
true
typedef
union
unsigned
void

volatile
while
_Atomic
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn

A.1.3 Identifiers

(6.4.2.1) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

(6.4.2.1) identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

392 Language syntax summary § A.1.3

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

(6.4.2.1) nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

(6.4.2.1) digit: one of
0 1 2 3 4 5 6 7 8 9

A.1.4 Universal character names

(6.4.3) universal-character-name:
\u hex-quad
\U hex-quad hex-quad

(6.4.3) hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

A.1.5 Constants

(6.4.4) constant:
integer-constant
floating-constant
enumeration-constant
character-constant

::::::::::::::::::::::::::::::::
predefined-constant

:

(6.4.4.1) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

(6.4.4.1) decimal-constant:
nonzero-digit
decimal-constant digit

(6.4.4.1) octal-constant:
0
octal-constant octal-digit

(6.4.4.1) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.4.4.1) hexadecimal-prefix: one of
0x 0X

(6.4.4.1) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.4.1) octal-digit: one of
0 1 2 3 4 5 6 7

(6.4.4.1) hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

§ A.1.5 Language syntax summary 393

N2458 keywords..truebool working draft — November 18, 2019 ISO/IEC 9899:202x (E)

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
encoding-prefixopt ’ c-char-sequence ’

(6.4.4.4) encoding-prefix:
u8
u
U
L

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5.1 Predefined constants

(6.4.4.5)
:::::::::::::::::
predefined-constant:

:::::::::::::::::::::
false

::::::::::::::::::::
true

A.1.6 String literals

(6.4.5) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

(6.4.5) s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

§ A.1.6 Language syntax summary 395

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

Annex H
(informative)

Language independent arithmetic

H.1 Introduction
1 This annex documents the extent to which the C language supports the ISO/IEC 10967–1 standard

for language-independent arithmetic (LIA–1). LIA–1 is more general than IEC 60559 (Annex F) in
that it covers integer and diverse floating-point arithmetics.

H.2 Types
1 The relevant C arithmetic types meet the requirements of LIA–1 types if an implementation adds

notification of exceptional arithmetic operations and meets the 1 unit in the last place (ULP) accuracy
requirement (LIA–1 subclause 5.2.8).

H.2.1 Boolean type
1 The LIA–1 data type Boolean is implemented by the C data type bool with values of true and

false , all from .
:
.
:

H.2.2 Integer types
1 The signed C integer types int, long int, long long int, and the corresponding unsigned types

are compatible with LIA–1. If an implementation adds support for the LIA–1 exceptional values
"integer_overflow" and "undefined", then those types are LIA–1 conformant types. C’s unsigned
integer types are "modulo" in the LIA–1 sense in that overflows or out-of-bounds results silently
wrap. An implementation that defines signed integer types as also being modulo need not detect
integer overflow, in which case, only integer divide-by-zero need be detected.

2 The parameters for the integer data types can be accessed by the following:

maxint INT_MAX, LONG_MAX, LLONG_MAX, UINT_MAX, ULONG_MAX, ULLONG_MAX

minint INT_MIN, LONG_MIN, LLONG_MIN

3 The parameter "bounded" is always true, and is not provided. The parameter "minint" is always 0
for the unsigned types, and is not provided for those types.

H.2.2.1 Integer operations
1 The integer operations on integer types are the following:

addI x + y

subI x - y

mulI x * y

divI, divtI x / y

remI, remtI x % y

negI -x

absI abs(x), labs(x), llabs(x)

eqI x == y

neqI x != y

lssI x < y

leqI x <= y

476 Language independent arithmetic § H.2.2.1

ISO/IEC 9899:202x (E) working draft — November 18, 2019 keywords..truebool N2458

Annex M
(informative)

Change History

M.1 Fifth Edition
1 Major changes in this fifth edition (__STDC_VERSION__ yyyymmL) include:

— add a one-argument version of static_assert, make it a keyword and deprecate the
underscore-capital form

— support for function definitions with identifier lists has been removed

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: asctime_r, ctime_r, gmtime_r, localtime_r, memccpy,
strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added deprecated, fallthrough, maybe_unused, and nodiscard attributes

— added the u8 character prefix

— change bool, alignas, alignof and thread_local to be keywords and deprecate the
underscore-capital forms

—
::::::
change

::::::
false

::::
and

:::::
true

::
to

:::::::::
keywords

::::
and

::::::
make

:::::
them

::::
type

:::::
bool

M.2 Fourth Edition
1 There were no major changes in the fourth edition (__STDC_VERSION__ 201710L), only technical

corrections and clarifications.

M.3 Third Edition
1 Major changes in the third edition (__STDC_VERSION__ 201112L) included:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread-local storage (<stdatomic.h> and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 19769:2004)

— type-generic expressions

— static assertions

566 Change History § M.3

	Introduction
	Impact
	Reference implementation
	Changes

