
C provenance semantics: slides
(extracts from N2363)

Peter Sewell, Kayvan Memarian, Victor B. F. Gomes,
Jens Gustedt, Martin Uecker

30 April 2019

with thanks to many others: Frédéric Besson, Richard Biener, Chandler Carruth, David Chisnall, Pascal Cuoq, Hal Finkel,
Chung-Kil Hur, Ralf Jung, Robbert Krebbers, Chris Lattner, Juneyoung Lee, Xavier Leroy, Nuno Lopes, Justus Matthiesen,
Paul McKenney, Santosh Nagarakatte, John Regehr, Martin Sebor, Kostya Serebryany, Richard Smith, Hubert Tong, Freek
Wiedijk, Steve Zdancewic, other WG14 colleagues, EuroLLVM and GNU Cauldron attendees, and survey respondents.

WG14, London, 2019-04-29 – 2019-05-03

ISO/IEC JTC1/SC22/WG14 N2378

1/66

Context: previous discussions (selected)
WG14 Pittsburgh meeting, 2018-10
n2294: C Memory Object Model Study Group: Progress Report
n2263: Clarifying Pointer Provenance v4

WG14 Brno meeting, 2018-04 (CMOM SG created)
n2223: Clarifying the C Memory Object Model: Introduction to N2219 - N2222
n2219: Clarifying Pointer Provenance (Q1-Q20) v3
n2220: Clarifying Trap Representations (Q47) v3
n2221: Clarifying Unspecified Values (Q48-Q59) v3
n2222: Further Pointer Issues (Q21-Q46)

WG14 Pittsburgh meeting, 2016-10
n2089: Clarifying Unspecified Values (Draft Defect Report or Proposal for C2x)
n2090: Clarifying Pointer Provenance (Draft Defect Report or Proposal for C2x)
n2091: Clarifying Trap Representations (Draft Defect Report or Proposal for C2x)

WG14 London meeting, 2016-04
n2012: Clarifying the C memory object model
n2013: C Memory Object and Value Semantics: The Space of de facto and ISO Standards
n2014: What is C in Practice? (Cerberus Survey v2): Analysis of Response
n2015: What is C in practice? (Cerberus survey v2): Analysis of Responses - with Comments

Academic papers
Exploring C Semantics and Pointer Provenance (in POPL 2019, and as n2311)
Into the depths of C: elaborating the de facto standards (in PLDI 2016)

Elsewhere and Previously
WG21 p0137r1: Core Issue 1776: Replacement of class objects containing reference members (in C++17) (2016-06)
WG21 p0593r3: Implicit creation of objects for low-level object manipulation (2019-01)
In OOPSLA 2018: Reconciling High-level Optimizations and Low-level Code in LLVM (2018-11)
n1818 / DR451: Defect Report 451 (2014-04)
n1637: Subtleties of the ANSI/ISO C standard (2012-09)
DR260: indeterminate values and identical representations (2004-09)
mail 9350: What is an Object in C Terms? (2001-09) 2/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2294.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2219.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2220.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2221.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2222.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2089.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2091.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2012.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2013.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2014.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0137r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0593r3.html
https://sf.snu.ac.kr/publications/llvmtwin.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1818.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/9350

Study group activity
Activity:

I teleconferences, roughly every two weeks
(Hal Finkel, Jens Gustedt, Victor Gomes, Kayvan Memarian, Martin Sebor, Peter Sewell,
Hubert Tong, Martin Uecker,...)

I mailing list: https://lists.cam.ac.uk/mailman/listinfo/cl-c-memory-object-model

I discussion with C++, Clang, and GCC folk:
I gcc@gcc.gnu.org, ub@isocpp.open-std.org, parallel@lists.isocpp.org
I keynote at EuroLLVM 2018
I talk at GNU Tools Cauldron 2018

Focus:
Pointer provenance
Subobject provenance and effective types
Uninitialised reads, trap representations, and padding bytes
Further pointer issues

3/66

https://lists.cam.ac.uk/mailman/listinfo/cl-c-memory-object-model
gcc@gcc.gnu.org
ub@isocpp.open-std.org
parallel@lists.isocpp.org

This meeting (WG14 London, 2019-04)

Well-developed proposal for pointer provenance:
I Examples: [these slides are extracts from this]

n2363: C provenance semantics: examples

I Proposed standard text diff:
n2362: Moving to a provenance-aware memory object model for C
n2328: Introduce the term storage instance

I Mathematical semantics:
n2364: C provenance semantics: detailed semantics (for PNVI-plain, PNVI address-exposed, PNVI address-exposed
user-disambiguation, and PVI models)

I Executable Web-GUI semantics in Cerberus:
http://cerberus.cl.cam.ac.uk/cerberus

Also:
I n2369: Pointer lifetime-end zap 4/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2328.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
http://cerberus.cl.cam.ac.uk/cerberus
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf

Basic pointer provenance
Recall: pointers are typically simple concrete addresses at runtime, but compilers do
provenance-based alias analysis:

// provenance_basic_global_yx.c
1 #include <stdio.h>
2 #include <string.h>
3 int y=2, x=1;
4 int main() {
5 int *p = &x;
6 int *q = &y;
7 p=p+1;
8 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
9 if (memcmp(&p, &q, sizeof(p)) == 0) {

10 *p = 11; // does this have undefined behaviour?
11 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);
12 }
13 }

Clang 6.0 -O2 x=1 y=11 *p=11 *q=11

GCC 8.1 -O2 x=1 y=2 *p=11 *q=2

ICC 19 -O2 x=1 y=2 *p=11 *q=11 (with x and y swapped) 5/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

Basic pointer provenance

To make that GCC and ICC compiler optimisation legal w.r.t. the standard, this program has to
be deemed to have UB, so we have to recognise that the p in *p=11 is a one-past pointer, even
though it has the same numeric address as &y.

DR260 CR (2001) hints at this:

“Implementations are permitted to track the origins of a bit-pattern [...]. They may also
treat pointers based on different origins as distinct even though they are bitwise
identical.”

but it was never incorporated in the standard text, and it gives no more detail. That leaves
unclear whether some programming idioms are allowed or not, and what compiler alias analysis
and optimisation are allowed to do.

6/66

Our proposal

Our proposal in n2362/n2363/n2364 clarifies this. It reconciles existing C programming practice,
compiler implementation practice, and the standard text, as best we can, with a well-defined and
reasonably simple semantics.

We aim to be conservative with respect to all those – as far as possible, the proposal is capturing
the status quo in the specification. The proposal doesn’t involve any new features or change to
the language syntax.

7/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf

Our proposal: the basic idea

We associate a provenance @i with every pointer value in the abstract machine, identifying the
original storage instance it’s derived from
(if any, or @empty otherwise).

I On every allocation (for static, thread, automatic, and allocated storage durations), the
abstract machine chooses a fresh storage instance ID i (unique across the entire execution),
and the resulting pointer value carries that as its provenance @i .

I Provenance is preserved by pointer arithmetic that adds or subtracts an integer to a pointer.
I At any access via a pointer value, its numeric address must be consistent with its

provenance, with undefined behaviour otherwise

8/66

Our proposal: the basic idea

Note the storage instance IDs @i of the allocations and as part of the pointer values.

(try it live at https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c)
9/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

Our proposal: the basic idea

after the p=p+1, p has the address of y (in this execution), but it still has the provenance (@2) of x
10/66

Our proposal: the basic idea

at the *p=11 access, the address is not within the footprint of the allocation with that provenance,
so the access is UB, as required 11/66

So far so good, but...

C provides many other ways to construct pointer values:
I casts of pointers to integer types and back, possibly with integer arithmetic
I copying pointer values with memcpy

I manipulation of the representation bytes of pointers, e.g. via char* accesses
I type punning between pointer and integer values
I I/O, using either fprintf/fscanf and the %p format, fwrite/fread on the pointer

representation bytes, or pointer/integer casts and integer I/O
I copying pointer values with realloc

I constructing pointer values that embody knowledge established from linking, and from
constants that represent the addresses of memory-mapped devices.

We have to address all these, and the impact on optimisation.

12/66

Design options
I PVI: track provenance via integer computation (n2090, n2263)

Complex, poor algebraic properties, not good fit with implementation

I PNVI-plain: don’t track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

I PNVI-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

I PNVI exposed-address user-disambiguation (PNVI-ae-udi): a further refinement to
support roundtrip casts, pointer to integer and back, of one-past pointers. Our preferred
option.

13/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options
I PVI: track provenance via integer computation (n2090, n2263)

Complex, poor algebraic properties, not good fit with implementation

I PNVI-plain: don’t track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

I PNVI-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

I PNVI exposed-address user-disambiguation (PNVI-ae-udi): a further refinement to
support roundtrip casts, pointer to integer and back, of one-past pointers. Our preferred
option.

14/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options
I PVI: track provenance via integer computation (n2090, n2263)

Complex, poor algebraic properties, not good fit with implementation

I PNVI-plain: don’t track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

I PNVI-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

I PNVI exposed-address user-disambiguation (PNVI-ae-udi): a further refinement to
support roundtrip casts, pointer to integer and back, of one-past pointers. Our preferred
option.

15/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options
I PVI: track provenance via integer computation (n2090, n2263)

Complex, poor algebraic properties, not good fit with implementation

I PNVI-plain: don’t track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

I PNVI-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

I PNVI exposed-address user-disambiguation (PNVI-ae-udi): a further refinement to
support roundtrip casts, pointer to integer and back, of one-past pointers. Our preferred
option.

16/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Next

I Idioms: checking that various desirable idioms work
I Implications for optimisation: checking that various cases are UB, e.g. that function

arguments can’t alias its local variables
I PNVI-plain vs PNVI-ae-*: is the “exposed” machinery needed?
I PNVI-ae vs PNVI-ae-udi: what about one-past integers?
I Experimental checks: running the examples in an executable model and in GCC/Clang/ICC
I The proposed text diff (Jens) (n2362)
I Precise semantics (n2364)

More details and examples in n2363

17/66

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf

Idioms

18/66

Pointer/integer casts

This is a simple pointer-to-integer-to-pointer roundtrip; the result should be usable for access.
19/66

Pointer/integer casts

After the pointer-to-integer cast (intptr_t)p, the x allocation is marked as exposed.

20/66

Pointer/integer casts

so the integer-to-pointer cast (int*)i, of an integer within the footprint of x, will recover the
provenance (@1) of x 21/66

Pointer/integer casts

and the access *q=11 is defined behaviour.
22/66

Pointer provenance for pointer bit manipulations
Common in practice. For example, assuming int has alignment at least 4, the low-order pointer
bits are unused, and the implementation-defined pointer/integer conversions are as expected:

// provenance_tag_bits_via_uintptr_t_1.c
1 #include <stdio.h>
2 #include <stdint.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 // cast &x to an integer
7 uintptr_t i = (uintptr_t) p;
8 // set low-order bit
9 i = i | 1u;

10 // cast back to a pointer
11 int *q = (int *) i; // does this have UB?
12 // cast to integer and mask out low-order bits
13 uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
14 // cast back to a pointer
15 int *r = (int *) j;
16 // are r and p now equivalent?
17 *r = 11; // does this have UB?
18 _Bool b = (r==p); // is this true?
19 printf("x=%i *r=%i (r==p)=%s\n",x,*r,b?"t":"f");
20 }

As before, (uintptr_t)x will expose x, so the (int*)j cast will recover the correct provenance,
making the access *r=11 legal. 23/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c

Inter-object integer arithmetic

Can one move between objects with pointer arithmetic? No.

Can one move between objects with integer arithmetic? Debatable whether this must be
supported – we get conflicting reports as to how important it is in practice, e.g. for XOR linked
lists.

PNVI-* naturally allows it (if the implementation-defined pointer/integer conversions do).

24/66

Inter-object integer arithmetic
// pointer_offset_from_int_subtraction_global_yx.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int y=2, x=1;
6 int main() {
7 uintptr_t ux = (uintptr_t)&x;
8 uintptr_t uy = (uintptr_t)&y;
9 uintptr_t offset = uy - ux;

10 printf("Addresses: &x=%"PRIuPTR" &y=%"PRIuPTR\
11 " offset=%"PRIuPTR" \n",(unsigned long)ux,(unsigned long)uy,(unsigned long)offset);
12 int *p = (int *)(ux + offset);
13 int *q = &y;
14 if (memcmp(&p, &q, sizeof(p)) == 0) {
15 *p = 11; // is this free of UB?
16 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);
17 }
18 }

As before: the cast (uintptr_t)&y marks y as exposed, so the cast p=(int*)(ux+offset) can
recover the provenance of y and make the access *p=11 legal.

25/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_yx.c

Copying pointer values bytewise, with user-memcpy
C supports manipulation of object representations, e.g. as in the following naive user
implementation of memcpy:

// pointer_copy_user_dataflow_direct_bytewise.c
1 #include <stdio.h>
2 #include <string.h>
3 int x=1;
4 void user_memcpy(unsigned char* dest,
5 unsigned char *src, size_t n) {
6 while (n > 0) {
7 *dest = *src;
8 src += 1; dest += 1; n -= 1;
9 }

10 }
11 int main() {
12 int *p = &x;
13 int *q;
14 user_memcpy((unsigned char*)&q,
15 (unsigned char*)&p, sizeof(int *));
16 *q = 11; // is this free of undefined behaviour?
17 printf("*p=%d *q=%d\n",*p,*q);
18 }

which constructs a pointer value from copied bytes. This too should be allowed. 26/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

unspecified

27/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

unspecified

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffd8

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe0

 n: size_t [@7, 0xffffffc0]

8

28/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffd8

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe0

 n: size_t [@7, 0xffffffc0]

8

29/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffd9

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe1

 n: size_t [@7, 0xffffffc0]

7

30/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: 0xff @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffda

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe2

 n: size_t [@7, 0xffffffc0]

6

31/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffdb

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe3

 n: size_t [@7, 0xffffffc0]

5

32/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: unspecified @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffdc

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe4

 n: size_t [@7, 0xffffffc0]

4

33/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: unspecified @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffdd

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe5

 n: size_t [@7, 0xffffffc0]

3

34/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@empty, unspecified

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: unspecified @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffde

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe6

 n: size_t [@7, 0xffffffc0]

2

35/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@1, 0xffffffec

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

 dest: unsigned char* [@5, 0xffffffd0]

@4, 0xffffffdf

 src: unsigned char* [@6, 0xffffffc8]

@3, 0xffffffe7

 n: size_t [@7, 0xffffffc0]

1

36/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 1

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@1, 0xffffffec

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

37/66

Copying pointer values bytewise, with user-memcpy

 x: signed int [@1 exp, 0xffffffec]
 11

 p: signed int* [@3, 0xffffffe0]

@1, 0xffffffec

 q: signed int* [@4, 0xffffffd8]

 -: 0xec @empty

@1, 0xffffffec

 -: 0xff @empty

 -: 0xff @empty

 -: 0xff @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

 -: 0x0 @empty

The first read of a p pointer byte marked x as exposed, then the final *q=11 access follows the
integer-to-pointer cast semantics when reading a pointer value from the memory bytes, recovering
the provenance @1 that the concrete address is within.

38/66

Pointer provenance and union type punning
Pointer values can also be constructed by type punning, e.g. writing an int* union member,
reading it as a uintptr_t union member, and then casting back to a pointer type.
(The example assumes the object representations of the pointer and the result of the cast to integer are identical. This is not
guaranteed by the standard, but holds for many implementations.)

// provenance_union_punning_3_global.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <inttypes.h>
4 int x=1;
5 typedef union { uintptr_t ui; int *up; } un;
6 int main() {
7 un u;
8 int *p = &x;
9 u.up = p;

10 uintptr_t i = u.ui;
11 int *q = (int*)i;
12 *q = 11; // does this have UB?
13 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
14 return 0;
15 }

The same semantics as for representation-byte reads also permits this: x is deemed exposed by
the read of the provenanced representation bytes by the non-pointer-type read. The
integer-to-pointer cast then recreates the provenance of x.

39/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_3_global.c

Pointer provenance via IO

Three versions:
I using fprintf/fscanf and the %p format (which the standard says should work),
I using fwrite/fread on the pointer representation bytes, and
I converting the pointer to and from uintptr_t and using fprintf/fscanf.

The first gives a syntactic indication of a potentially escaping pointer value; the others do not.

Exotic, but used in practice.

In our proposal, these just work: we mark the storage instance as exposed on the %p printf,
pointer representation-byte read, or cast, and use the same semantics as integer-to-pointer casts
at input-, read-, or cast-time to recover the original provenance.

40/66

Implications for optimisation

41/66

Can a function argument alias its local variables? (1/3)
This should be forbidden:

// pointer_from_integer_1pg.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(int *p) {
5 int j=5;
6 if (p==&j)
7 *p=7;
8 printf("j=%d &j=%p\n",j,(void*)&j);
9 }

10 int main() {
11 uintptr_t i = ADDRESS_PFI_1PG;
12 int *p = (int*)i;
13 f(p);
14 }

main() guesses the address of f()’s local variable j, passing it in as a pointer, and f() checks it
before using it for an access. Here GCC -O0 optimises away the if and the write *p=7, even when
ADDRESS_PFI_1PG is the same as &j. That compiler behaviour should be permitted, so this
program should be deemed UB. In other words, code should not normally be allowed to rely on
implementation facts about the allocation addresses of C variables. 42/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

Can a function argument alias its local variables? (1/3)
This should be forbidden:

// pointer_from_integer_1pg.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(int *p) {
5 int j=5;
6 if (p==&j)
7 *p=7;
8 printf("j=%d &j=%p\n",j,(void*)&j);
9 }

10 int main() {
11 uintptr_t i = ADDRESS_PFI_1PG;
12 int *p = (int*)i;
13 f(p);
14 }

Our PNVI-* proposals correctly deems this to be UB: at the point of the (int*)i cast the j

storage instance does not yet even exist, so that cast gives a pointer with empty provenance; any
execution that goes into the if would thus flag UB, so the program as a whole is UB.

43/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

Can a function argument alias its local variables? (2/3)
Varying to do the (int*) cast after the j allocation:

// pointer_from_integer_1ig.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 int *p = (int*)i;
7 if (p==&j)
8 *p=7;
9 printf("j=%d &j=%p\n",j,(void*)&j);

10 }
11 int main() {
12 uintptr_t j = ADDRESS_PFI_1IG;
13 f(j);
14 }

This is still forbidden in PNVI-ae-*, as j is not exposed. It would be allowed in PNVI-plain, but
perhaps that would also be acceptable – it would just require compilers to be conservative about
the results of integer-to-pointer casts where they cannot see the source of the integer, which we
imagine is a rare case. 44/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c

Can a function argument alias its local variables? (3/3)
Varying again to remove the conditional guard and make j exposed:

// pointer_from_integer_1ie.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 uintptr_t k = (uintptr_t)&j;
7 int *p = (int*)i;
8 *p=7;
9 printf("j=%d\n",j);

10 }
11 int main() {
12 uintptr_t j = ADDRESS_PFI_1I;
13 f(j);
14 }

Executions in which &j == ADDRESS_PFI_1I would be ok, but, because the standard does not and
should not constrain allocation addresses (beyond alignment and non-overlapping properties),
there are always (unless the address space is almost exhausted) other executions in which
ADDRESS_PFI_1I does not match any allocation. So this is still (correctly) deemed UB. 45/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c

Can a function argument alias its local variables? (3/3)
Varying again to remove the conditional guard and make j exposed:

// pointer_from_integer_1ie.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 uintptr_t k = (uintptr_t)&j;
7 int *p = (int*)i;
8 *p=7;
9 printf("j=%d\n",j);

10 }
11 int main() {
12 uintptr_t j = ADDRESS_PFI_1I;
13 f(j);
14 }

In other words: the fact that programmers cannot assume anything about allocation addresses
licenses the desired compiler optimisation. That’s expressed in the abstract machine simply by
making allocation addresses nondeterministic.

46/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c

Can a function access local variables of its parent? (1/2)
This too should be forbidden in general.

// pointer_from_integer_2.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f() {
5 uintptr_t i=ADDRESS_PFI_2;
6 int *p = (int*)i;
7 *p=7;
8 }
9 int main() {

10 int j=5;
11 f();
12 printf("j=%d\n",j);
13 }

Here f() guesses the address of main()’s local variable j.

This is similarly UB by allocation-address nondeterminism: the abstract machine allows
executions in which the guess is correct, but also executions in which it is incorrect, where the
*p=7 flags UB. So the program is UB. 47/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

Can a function access local variables of its parent? (1/2)
This too should be forbidden in general.

// pointer_from_integer_2.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f() {
5 uintptr_t i=ADDRESS_PFI_2;
6 int *p = (int*)i;
7 *p=7;
8 }
9 int main() {

10 int j=5;
11 f();
12 printf("j=%d\n",j);
13 }

Here f() guesses the address of main()’s local variable j.

(In PNVI-ae-*, j is not exposed, so all executions flag UB, but the previous argument applies
even if j is exposed.)

48/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

Can a function access local variables of its parent? (2/2)
Varying to guard the call to f() with an address check:

// pointer_from_integer_2g.c
1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f() {
5 uintptr_t i=ADDRESS_PFI_2G;
6 int *p = (int*)i;
7 *p=7;
8 }
9 int main() {

10 int j=5;
11 if ((uintptr_t)&j == ADDRESS_PFI_2G)
12 f();
13 printf("j=%d &j=%p\n",j,(void*)&j);
14 }

This is allowed in PNVI-*, but the guard necessarily involves &j, so compilers should be able to
deem this escaped. In other words, while we don’t think this example needs to be allowed, it
should be ok to make it allowed.

49/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c

Optimisations based on equality tests

In any provenance-aware semantics, p==q can hold in some cases where p and q are not
interchangeable (e.g. *p is defined but *q UB).

(Otherwise, we’d have to require implementations track provenance at runtime for == testing; not
usually practical.)

As Lee et al. observe [OOPSLA 2018], that restricts optimisations, e.g. GVN, based on pointer
equality tests.

Solution: just don’t do those.

(There’s no alternative, short of compilers giving up on provenance-based alias analysis
altogether, which would be worse.)

50/66

PNVI-plain vs PNVI-ae-*

51/66

Is the PNVI-ae-* “exposed” machinery necessary?

Debatable. There’s not much difference between PNVI-plain and PNVI-ae for these examples
(pointer_from_integer_1ig.c is allowed in PNVI-plain but forbidden in PNVI-ae-*).

PNVI-plain is simpler, but relies on allocation-address nondeterminism (which some people aren’t
happy with) for more of the examples than PNVI-ae-*.

PNVI-ae-* is more complex, but makes some of these examples UB just by examining a single
execution path. It’s also subject to...

52/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c

The problem with lost address-takens and escapes
// provenance_lost_escape_1.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include "charon_address_guesses.h"
5 int x=1; // assume allocation ID @1, at ADDR_PLE_1
6 int main() {
7 int *p = &x;
8 uintptr_t i1 = (intptr_t)p; // (@1,ADDR_PLE_1)
9 uintptr_t i2 = i1 & 0x00000000FFFFFFFF;//

10 uintptr_t i3 = i2 & 0xFFFFFFFF00000000;// (@1,0x0)
11 uintptr_t i4 = i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)
12 int *q = (int *)i4;
13 printf("Addresses: p=%p\n",(void*)p);
14 if (memcmp(&i1, &i4, sizeof(i1)) == 0) {
15 *q = 11; // does this have defined behaviour?
16 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
17 }
18 }

In PNVI-plain, this is allowed, simply because x exists at the integer-to-pointer cast.
Implementations that are conservative w.r.t. all pointers formed from integers would
automatically be sound w.r.t. that. 53/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

The problem with lost address-takens and escapes
// provenance_lost_escape_1.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include "charon_address_guesses.h"
5 int x=1; // assume allocation ID @1, at ADDR_PLE_1
6 int main() {
7 int *p = &x;
8 uintptr_t i1 = (intptr_t)p; // (@1,ADDR_PLE_1)
9 uintptr_t i2 = i1 & 0x00000000FFFFFFFF;//

10 uintptr_t i3 = i2 & 0xFFFFFFFF00000000;// (@1,0x0)
11 uintptr_t i4 = i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)
12 int *q = (int *)i4;
13 printf("Addresses: p=%p\n",(void*)p);
14 if (memcmp(&i1, &i4, sizeof(i1)) == 0) {
15 *q = 11; // does this have defined behaviour?
16 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
17 }
18 }

In PNVI-ae-*, in the source program x is exposed before the integer-to-pointer cast, so this is
allowed here too.
But a compiler might optimise (in its intermediate language)... 54/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

The problem with lost address-takens and escapes
// provenance_lost_escape_1_optimised.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include "charon_address_guesses.h"
5 int x=1; // assume allocation ID @1, at ADDR_PLE_1
6 int main() {
7 int *p = &x;
8
9

10
11 uintptr_t i4 = ADDR_PLE_1;
12 int *q = (int *)i4;
13 printf("Addresses: p=%p\n",(void*)p);
14 uintptr_t i1 = (intptr_t)p;
15 if (memcmp(&i1, &i4, sizeof(i1)) == 0) {
16 *q = 11; // does this have defined behaviour?
17 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
18 }
19 }

and now x is no longer exposed before the cast. If this happens before alias analysis, the results
would be wrong. 55/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1_optimised.c

The problem with lost address-takens and escapes
Solutions: either

I simply be conservative (in alias analysis) w.r.t. all pointers formed from integers, or
I record, in optimisations that occur before alias analysis, any lost exposures, and pass those in

as an additional argument to alias analysis.

56/66

PNVI-ae vs PNVI-ae-udi

57/66

Should we allow one-past integer-to-pointer casts?
We have to decide whether casting a one-past pointer to integer and back gives a usable result.

// provenance_roundtrip_via_intptr_t_onepast.c
1 #include <stdio.h>
2 #include <inttypes.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 p=p+1;
7 intptr_t i = (intptr_t)p;
8 int *q = (int *)i;
9 q=q-1;

10 *q = 11; // is this free of undefined behaviour?
11 printf("*p=%d *q=%d\n",*p,*q);
12 }

Pro: it’s nice for one-past pointers to behave like in-bounds pointers

Con: if that’s allowed, we have to deal with ambiguous integers, which can be regarded either
one-past one object or the start of another.

58/66

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t_onepast.c

Should we allow one-past integer-to-pointer casts?

We have to decide whether casting a one-past pointer to integer and back gives a usable result.

PNVI-plain and PNVI-ae forbid this: an integer has to be properly within an object for it to be
castable to a usable pointer.

PNVI-ae-udi (user disambiguation) permits it: it leaves the provenance of pointer values resulting
from such casts unknown until the first operation (e.g. an access, pointer arithmetic, or pointer
relational comparison) that disambiguates them. This makes examples that use the result of the
cast in one consistent way well defined.

59/66

 y: signed int [@1 exp, 0xffffffe4]
 2

 x: signed int [@2 exp, 0xffffffe0]
 1

 p: signed int* [@4, 0xffffffd0]

@2, 0xffffffe4

 q: signed int* [@5, 0xffffffc8]

@1, 0xffffffe4

 i: uintptr_t [@6, 0xffffffc0]

0xffffffe4

 j: uintptr_t [@7, 0xffffffb8]

0xffffffe4

 r: signed int* [@11, 0xffffff98]

@a={1,2}, 0xffffffe4
 60/66

 y: signed int [@1 exp, 0xffffffe4]
 11

 x: signed int [@2 exp, 0xffffffe0]
 1

 p: signed int* [@4, 0xffffffd0]

@2, 0xffffffe4

 q: signed int* [@5, 0xffffffc8]

@1, 0xffffffe4

 i: uintptr_t [@6, 0xffffffc0]

0xffffffe4

 j: uintptr_t [@7, 0xffffffb8]

0xffffffe4

 r: signed int* [@11, 0xffffff98]

@a={1}, 0xffffffe4
 61/66

Experimental checks

62/66

Testing the example behaviour in Cerberus
We confirmed the examples behave as desired in each model by running them in Cerberus.

test

intended behaviour observed behaviour
Cerberus (decreasing allocator)

test family PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1

provenance_basic_global_xy.c

UB

not triggered
provenance_basic_global_yx.c UB (line 9)
provenance_basic_auto_xy.c not triggered
provenance_basic_auto_yx.c UB (line 9)

2 cheri_03_ii.c UB

3

pointer_offset_from_ptr_subtraction_global_xy.c

UB (pointer subtraction)
pointer_offset_from_ptr_subtraction_global_yx.c
pointer_offset_from_ptr_subtraction_auto_xy.c
pointer_offset_from_ptr_subtraction_auto_yx.c

4

provenance_equality_global_xy.c

defined, nondet

not triggered
provenance_equality_global_yx.c
provenance_equality_auto_xy.c not triggered
provenance_equality_auto_yx.c
provenance_equality_global_fn_xy.c not triggered
provenance_equality_global_fn_yx.c

5 provenance_roundtrip_via_intptr_t.c defined defined

6

provenance_basic_using_uintptr_t_global_xy.c

defined

not triggered
provenance_basic_using_uintptr_t_global_yx.c defined
provenance_basic_using_uintptr_t_auto_xy.c not triggered
provenance_basic_using_uintptr_t_auto_yx.c defined

7

pointer_offset_from_int_subtraction_global_xy.c

defined

defined
pointer_offset_from_int_subtraction_global_yx.c defined
pointer_offset_from_int_subtraction_auto_xy.c defined
pointer_offset_from_int_subtraction_auto_yx.c defined

8
pointer_offset_xor_global.c

defined
defined

pointer_offset_xor_auto.c defined
9 provenance_tag_bits_via_uintptr_t_1.c defined defined
10 pointer_arith_algebraic_properties_2_global.c defined defined
11 pointer_arith_algebraic_properties_3_global.c defined defined
12 pointer_copy_memcpy.c defined defined
13 pointer_copy_user_dataflow_direct_bytewise.c defined defined
13 provenance_tag_bits_via_repr_byte_1.c defined defined
15 pointer_copy_user_ctrlflow_bytewise.c defined defined
16 pointer_copy_user_ctrlflow_bitwise.c defined defined

17

provenance_equality_uintptr_t_global_xy.c

defined

not triggered
provenance_equality_uintptr_t_global_yx.c defined (true)
provenance_equality_uintptr_t_auto_xy.c not triggered
provenance_equality_uintptr_t_auto_yx.c defined (true)

18

provenance_union_punning_2_global_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_global_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)
provenance_union_punning_2_auto_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_auto_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)

19 provenance_union_punning_3_global.c defined defined

20
provenance_via_io_percentp_global.c

filesystem and scanf() are not currently supported by Cerberusprovenance_via_io_bytewise_global.c
provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c UB (line 7) UB in one exec (line 7)
pointer_from_integer_1ig.c defined (j = 7) UB (line 8) defined (j = 7) UB (line 8)
pointer_from_integer_1p.c UB (line 6) UB (line 6)
pointer_from_integer_1i.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_1ie.c defined (j = 7) defined (j = 7)
pointer_from_integer_2.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_2g.c defined (j = 7) defined (j = 7)
provenance_lost_escape_1.c defined defined

22 provenance_roundtrip_via_intptr_t_onepast.c UB (line 10) defined UB (line 10) defined

23

pointer_from_int_disambiguation_1.c
defined (y = 11)

defined (y = 11)
pointer_from_int_disambiguation_1_xy.c not triggered
pointer_from_int_disambiguation_2.c

UB (line 14) defined
UB (line 14) defined (x = 11)

pointer_from_int_disambiguation_2_xy.c not triggered
pointer_from_int_disambiguation_3.c

UB (line 15) UB (line 15)
UB (line 15)

pointer_from_int_disambiguation_3_xy.c not triggered

green = Cerberus behaviour matches intent

grey = Cerberus’ allocator doesn’t trigger the interesting behaviour

UB (except with permissive_pointer_arith switch)

UB (pointer subtraction)
Or

UB (out-of-bound store with permissive_pointer_arith switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

(bold = tests mentioned in the document)
blue = Cerberus behaviour matches intent (witch permissive_pointer_arith switch)

63/66

Testing the example behaviour in mainstream C implementations
Our examples are semantic test-cases, not compiler tests, and some compilers have known bugs in
this area. But, ignoring that, we show whether the observed behaviour of GCC, Clang, and ICC,
at various optimisation levels, is consistent with each model for these tests.

Compilers

Page 2

test

Observed behaviour (compilers), sound w.r.t PNVI-*? (relying on UB or ND?)

gcc-8.3 clang-7.0.1 icc-19

test family PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1

provenance_basic_global_xy.c y (n) y (n) y (y for O2+)

provenance_basic_global_yx.c y (y for O2+) not triggered not triggered

provenance_basic_auto_xy.c y (n) y (n) y (y for O2+)

provenance_basic_auto_yx.c y (n) y (n) y (y for O2+)

2 cheri_03_ii.c y (n) y (n) y (n)

3

pointer_offset_from_ptr_subtraction_global_xy.c

y (n) y (n)

y (n)

pointer_offset_from_ptr_subtraction_global_yx.c y (n)

pointer_offset_from_ptr_subtraction_auto_xy.c y (y for O2+)

pointer_offset_from_ptr_subtraction_auto_yx.c y (y for O2+)

4

provenance_equality_global_xy.c y (n)

y (n) y (n)

provenance_equality_global_yx.c y (y for O2+)

provenance_equality_auto_xy.c y (y for O2+)

provenance_equality_auto_yx.c y (n)

provenance_equality_global_fn_xy.c y (n)

provenance_equality_global_fn_yx.c y (y for O2+)

5 provenance_roundtrip_via_intptr_t.c y (n) y (n) y (n)

6

provenance_basic_using_uintptr_t_global_xy.c y (n) y (n) n (y)

provenance_basic_using_uintptr_t_global_yx.c n (y) not triggered not triggered

provenance_basic_using_uintptr_t_auto_xy.c y (n) not triggered n (y)

provenance_basic_using_uintptr_t_auto_yx.c y (n) y (n) n (y)

7

pointer_offset_from_int_subtraction_global_xy.c

y (n) y (n) y (n)
pointer_offset_from_int_subtraction_global_yx.c

pointer_offset_from_int_subtraction_auto_xy.c

pointer_offset_from_int_subtraction_auto_yx.c

8
pointer_offset_xor_global.c

y (n) y (n) y (n)
pointer_offset_xor_auto.c

9 provenance_tag_bits_via_uintptr_t_1.c y (n) y (n) y (n)

10 pointer_arith_algebraic_properties_2_global.c y (n) y (n) y (n)

11 pointer_arith_algebraic_properties_3_global.c y (n) y (n) y (n)

12 pointer_copy_memcpy.c y (n) y (n) y (n)

13 pointer_copy_user_dataflow_direct_bytewise.c y (n) y (n) y (n)

13 provenance_tag_bits_via_repr_byte_1.c y (n) y (n) y (n)

15 pointer_copy_user_ctrlflow_bytewise.c y (n) y (n) y (n)

16 pointer_copy_user_ctrlflow_bitwise.c y (n) y (n) y (n)

17

provenance_equality_uintptr_t_global_xy.c

y (n) y (n) y (n)
provenance_equality_uintptr_t_global_yx.c

provenance_equality_uintptr_t_auto_xy.c

provenance_equality_uintptr_t_auto_yx.c

18

provenance_union_punning_2_global_xy.c y (n) y (n) y (y for O2+) n (y)

provenance_union_punning_2_global_yx.c y (y for O2+) n (y) not triggered not triggered

provenance_union_punning_2_auto_xy.c y (n)
y (n)

y (y for O2+) n (y)

provenance_union_punning_2_auto_yx.c y (n) y (y for O2+) n (y)

19 provenance_union_punning_3_global.c y (n) y (n) y (n)

20

provenance_via_io_percentp_global.c

NO OPT NO OPT NO OPTprovenance_via_io_bytewise_global.c

provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c y (y for O0+) y (y for O2+) y (y for O2+)

pointer_from_integer_1ig.c n (y) y (y for O2+) n (y) y (y for O2+) n (y for O2+)

pointer_from_integer_1p.c

can't test with charon
pointer_from_integer_1i.c

pointer_from_integer_1ie.c

pointer_from_integer_2.c

pointer_from_integer_2g.c y (n) n (y) y (n)

provenance_lost_escape_1.c y (n) y (n) n (y for O2+)

22 provenance_roundtrip_via_intptr_t_onepast.c y (n) y (n) y (n)

23

pointer_from_int_disambiguation_1.c n (y) not triggered not triggered

pointer_from_int_disambiguation_1_xy.c not triggered y (n) n (y for O2+)

pointer_from_int_disambiguation_2.c y (n) not triggered not triggered

pointer_from_int_disambiguation_2_xy.c not triggered y (n) y (n)

pointer_from_int_disambiguation_3.c y (n) not triggered not triggered

pointer_from_int_disambiguation_3_xy.c not triggered y (n) y (y for O2+)

(bold = tests mentioned in the document)

Details: https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/

64/66

https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/

Testing the example behaviour in mainstream C implementations

It doesn’t seem possible to make a coherent and useful semantics that admits all the existing
observed compiler behaviour – but they do agree in many cases, and it may be that only mild
adaptions would be needed.

65/66

Pointer equality
Consider pointers p and q with different provenance. In an execution where they have the same
address (same pointer object representation), is p==q:
1. required to be true, or
2. allowed to be either true or false, or
3. undefined behaviour?

C18 6.5.9p6 says (1) “Two pointers compare equal if and only if both are [...] or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different array
object that happens to immediately follow the first array object in the address space” ,

GCC follows (2).

We suspect (3) would break existing code.

Pick one...
66/66

