ISO/IEC JTC 1/SC 22/WG14 BN

March 30, 2019 vl

Improved Rules for Tag Compatibility
Modification request for C2x

Martin Uecker

With some minor changes to the tag compatibility rules, we can remove some existing consistencies, facilitate
generic programming using macros, and enable the construction of algebraic types. This is a substantially
extended and revised version of N2105! taking into account the comments from the reflector.

1. INTRODUCTION: TYPE IDENTITY AND COMPATIBILITY
1.1. Overview

In a structural type system equivalence of types is determined by comparing the structure
of the types in question. In a nominal type system, only types with the same name are
equivalent. C mixes concepts from a structural type system with elements of a nominal
type system in sometimes complicated ways. To understand all rules, one has to differentiate
between identity of types ("same type’) and compatibilty of types which is a relaxed notion
of equivalence between types (6.2.7) and of crucial importance to the C language.

Identity:. For all types except tagged types (i.e. structs, unions, enums), the types are iden-
tified by their structural descriptions which can be part of a declaration (6.7) or part of type
names (6.7.7). If these descriptions at two different locations in the programm are iden-
tical also the denoted types are identical (’same type’). Typedef names can be introduced
as synonyms using typedef. A typedef name can be declared multiple times for same type
(6.7, p3). For tagged types completely different rules apply which also take into account
whether the syntactical description contains a tag and whether it contains a description
of the structure of the type (i.e. struct-declaration-list or enumerator-list). Currently, each
declaration of a union or struct with struct-declaration list declares a different type irre-
spective of tag name and structure. The full details and the proposed changes are discussed
later.

Compatibility:. Additional rules specify compatibility between types which are not identical.
For non-tagged types these are based only on the structure of the type. Inside a translation
unit all tagged types which are not identical are always considered incompatible irrespective
of tag name or structure. In contrast, between different translation units tagged types are
considered compatible exactly when both structure and tagname are identical.

Note:. There is also some concept of two types having the same representation, which is
even weaker than compatibility. It seems that compatibility of two types implies that they
must have the same representation.

1.2. Criticism

While all other types follow basic structural typing rules for identity and compatibility,
tagged types have much more complicated rules which are different when applied to types
declared inside the same or in different translation units. Implementations and tools per-
forming global program analysis have to track the translation unit of the type to determine
compatibility and aliasing sets. While it is a common and expected property of type sys-
tems that mutual compatibility of types is transitive, this is not the case in C: The sets
of types which are mutually compatible to each other do not form equivalence classes. In
the following example, TYPE 1 is compatible to TYPE 2 and TYPE 3, but TYPE 2 and
TYPE 3 are not compatible.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

QO O 00O UL wWwh -

—_

—_
O O 00O ULk wWh -

==
W N =

N2366:2 Martin Uecker

// translation unit 1:
typedef struct foo { int a; } TYPE1;

// translation unit 2:
typedef struct foo { int a; } TYPE2;

void bar(void)
{

typedef struct foo { int a; } TYPE3;
3

When the analysis is restricted to a single translation unit, this situation is not visible. On
the other hand, global analysis is important in many situations - such as correctness proofs,
global optimization (e.g. link-time optimization), or refactoring.

Another major downside of the current rules is that it is not practical to declare tagged
types inline: They always require a common previous declaration. While syntactically it is
legal to declare tagged types inline, such types can not be made compatible to any other
structurally equivalent declaration. These declarations are therefor almost completely use-
less. An example of such useless declarations are declarations in prototype scope. Removing
this restriction does not only remove such surprising limitations, but also opens up a lot of
new possibilities, e.g. to use these types in macros to define generic types.

2. PART 1: CONSISTENT RULES FOR COMPATIBILITY

Proposed change # 1:. Remove the five words “declared in separate translation units” in
6.2.7.

This is the core of the proposal. The effect of this change would be that the rules for
compatibility of structs and unions introduced in 6.2.7. would not only apply across but
also inside the same translation unit. As the only effect of this change is to make more types
compatible, this is a very safe change to make. The advantages and also potential downsides
are are discussed later.

3. PART 2: INCOMPLETE TYPES

If one type is not completed, then 6.2.7, pl implies that types with the same tag are
compatible when declared in the same translation unit. Already according to the existing
rules it can happen that incomplete types must at the same time be compatible to different
mutually incompatible types from a different translation unit.

// TU 1
void f(void)
{
struct s;
extern struct s *a, *b;
3
// TU 2
void h(void)
{
struct s { int a; };
extern struct s *a;

3

Improved Rules for Tag Compatibility N2366:3

14 |void 1i(void)

15 {

16 | struct s { double a; };
17 | extern struct s xb;

18 |}

—_

O UL W N~

~NO ULk WN

QO O 00O UL wWh -

With the proposed change, this would then also be possible inside a single translation unit.
To fix both problems, we require that incomplete types must be compatible to only a single
equivalence class of compatible types. To achieve this, we add one constraint:

Proposed Change #2:. At the end of 6.2.7, p2. add the following sentence:
“For all incomplete types that are not completed in their translation unit, it must be possible
to specify completed types so that this condition is fulfilled.”

Based on these changee, we consider three examples:

FEzample 1:. The incomplete type is never completed and with our proposal is now consid-
ered to be compatible to a different type with the same tag.

[
'struct s { int a; } x;

void f(void)

|

\ struct s; // new type considered compatible
| struct s *p = &x;

L

b

Ezample 2:. In constrast, when the type is later completed and then turns out to be incom-
patible, this is then undefined behavior (as before).

struct s { int a; } x;
void f(void)
{
struct s; // new type
struct s *p = &x;
struct s { double b; 3}; // .. turns out to be incompatible
3

Ezxample 3:. Finally, as was previously only possible when considering separate translation
units, it is now possible that an incomplete type which is never completed could at the same
time be required to be compatible to different mutually incompatible completed types.

struct s { int a; } x;
void f(void)
{
struct s { double b; } y; // different and not compatible
{
struct s; // new type
struct s *px = &x; // compatible
struct s *py = &y; // compatible
3
3

N2366:4 Martin Uecker

This final example is undefined behavior because there is no possible completed type that
simultaneously fulfills 6.2.7, p2. with respect to both objects.

4. PART 3: MULTIPLE DECLARATIONS OF CONTENT

With the previous changes two tagged types with the same tag name and content are
compatible, but two such declarations can still not occur in the same scope. To fully exploit
all benefits of this proposal it must also be possible to declare the same type multiple times
in the same scope. In the following, the existing rules and the required changes are discussed.

4.1. Summary of Existing Rules
In the following the existing rules regarding tags are summarized:

— Each declaration of a union or struct with struct-declaration list declares a different type
irrespective of tagname and structure (6.7.2.1, p8 and 6.7.2.3, pl).

— Otherwise all declarations in the same scope with the same tag refer to same type with
the content declared only once. The type is completed when the content is declared and
incomplete before (6.7.2.3, p4).

— Each declaration with a different tagname or which is in different scope declares a different
type (6.7.2.3, p5). In particular, it is possible to use the same tagname for a different
type when it is declared in a different scope.

To illustrate the situation for the case with tag, the follow table shows whether a decla-
ration declares a new complete or incomplete type or whether it refers to an existing
(complete or incomplete) type:

A. declaration | B. declaration C. usage
tag with content | without content
1. not visible complete incomplete* incomplete*
type (new) type (new) type (new)
2. different scope complete incomplete* existing
type (new) type (new) type
3. same scope, constraint existing existing
complete violation! type type
4. same scope, completes existing existing
incomplete existing type type type

(*) only struct or union but not enum.

Four cases need to be differentiated:

(1) tag not visible

(2) tag visible from different (enclosing) scope

(3) tag visible from same scope and refers to complete type
(4) tag visible from same scope and refers to incomplete type

Improved Rules for Tag Compatibility N2366:5

There are also three different usage forms:

A declaration with struct-declaration list (content) (6.7.2.3, p6)

struct foo { int a; };
struct foo { int a; } *x;
enum bar { BAR = 1 };
enum bar { BAR = 1 } =*y;

=W N

B declaration without struct-declaration list (content) (6.7.2.3, p7)

1| struct foo ;

C usage (without struct-declaration list) (6.7.2.3, p8,9)

1 struct foo *x;
2 enum bar =*y;

In a nutshell, the third part of the proposal is simply to make the exceptional case A.3 legal
and refer to the existing type while adding the constraint that the content must be identical
to the previous declaration.

Note 1:. Conceptually, this is not really different to declaring a typedef name for the same
type multiple times. Making this possible also for tags would further improve the consistency
of the language.

Note 2:. For declarations without tag there is only one case and the declared type is always
unique. With the first part of the proposal, these unique types are compatible if they fulfill
the conditions of 6.2.7.

Note 3:. Unrelated to this proposal, one could consider deprecating C.1 which only exists
for structs or unions but not for enums (6.7.2.3, p8). It is inconsistent with the other cases
which all require a visible declaration and violates the general principle of declaration before
use. Then A would allways declare the content of a type, B would always refer to a type
that may be completed elsewhere in the same scope, and C would always refer to a type
which must already exist.

4.2. Proposed Changes

To make redeclaration of the same type possible, we suggest a couple of changes to 6.7.2.1
“Structure or union specifiers”, 6.7.2.2 “Enumeration specifiers”, and 6.7.2.3 “Tags”. In
addition, some minor changes to the footnotes are suggested (see Appendix).

Proposed Change #3:. In 6.7.2.1, p8 the first sentence “The presence of a struct-
declaration-list in a struct-or-union-specifier declares a new type, within a translation unit.
...7 is removed and in the last sentence “The type is incomplete until immediately after
the } that terminates the list, and complete thereafter.” the term “of the first declaration
of the type” is added behind “list”. In 6.7.2.2, p4, we change “The enumerated type is
incomplete until immediately after the } that terminates the list of enumerator declarations,
and complete thereafter” to include the term “of the first declaration of the type” after “list
of enumerator declarations”.

Proposed Change #/:. In 6.7.2.3, p1l, we remove the following constraint: “A specific type
shall have its content defined at most once.”

N2366:6 Martin Uecker

Proposed Change #5:. In 6.7.2.3, p2 the constraint “Where two declarations that use the
same tag declare the same type, they shall both use the same choice of struct, union, or
enum.” is replaced by “Where two type specifiers for structure, union, or enumerated types
refer to the same type, they shall both use the same choice of struct, union, or enum and
the same tag. If they are declarations with a member declaration list or enumerator list,
they shall declare the same members in the same order.” with additional explanations in a
footnote.

Proposed Change #6:. In 6.7.2.3, p4, we suggest ot remove the following sentence com-
pletely because it is redundant: “Irrespective of whether there is a tag or what other decla-
rations of the type are in the same translation unit, the type is incomplete until immediately
after the closing brace of the list defining the content, and complete thereafter.”

Note: These changes imply that the type is then complete inside later declarations. One
could think that this could allow the definition of recursive types that contain themselves,
but because these later declarations are required to be identical to the first complete dec-
laration this cannot happen.

struct foo {
char (*x)[81;
ik

struct foo {
char (*x)[sizeof(struct foo)l;

N O Ul W~

b8

In this example the sizeof would be allowed because the type is complete but the re-
quirement for the types to be the same implies that 8 == sizeof(struct foo) which then
fulfills new constraint in 6.7.2.3, p2. (Alternatively, one could consider making the type
incomplete again inside the repeated struct-declaration-list.)

5. ADVANTAGES
There are several advantages:

(1) The language is simplified as constraints are removed.

(2) The rules of the language are more consistent as the same rules apply inside a single
translation unit as between different translation units.

(3) Global analysis is easier as compatibility of types depends only on inherent properties of
the types and not also on the relative location in the program code.

(4) Formal reasoning about aliasing is simplified as compatibility of structs and unions is
now transitive.

(5) Functions can no longer become undefined/defined merely by moving them from one
translation unit to another (assuming no other interaction with the environment). The
following example is valid only if the two function are located in different translation

units:

1 |int bar(void)

2 {

3 struct ex { int a; } x = { 1 };
4 return foo(&x);

53

6

7 |int foo(void =xp)

8 | {

==
wN = O

Improved Rules for Tag Compatibility N2366:7

\ struct ex { int a; }* x = p;
\ return x->a;
L

— O O

1
3

(6) Structs or unions in prototype scope are not useless anymore because they are compatible
to types with the same tag and structure.
(7) It is now practical to define generic types in macros.

Generic data types:. The proposed changes simplify a widely used programming idiom:
When defining generic types in macros depending on a parameter those can now directly be
used in-place instead of having to declare each instance separately before use. For example,
this affects common implementations of type-generic container data structures (e.g. BSD’s
sys/queue.h and sys/tree.h).

By removing the requirement to declare the types first, useful data types can be declared
inline, which makes it practical to compose complex generic data structures from smaller
building blocks inside macros. In particular, a full system of algebraic types can then easily
be constructed also in C similar to many other languages, as illustrated in the following
example:

© 00 ~JO UL~ wWhb K+

#define product_type(A, B) \

struct product_tag { A a; B b; }

#define sum_type(A, B) \

struct sum_tag { bool flag; union { A a; B b; 3}; 3}

void foo(product_type(int, sum_type(float, double)) x);
product_type(int, sum_type(float, double)) y;

foo(y); // proposal: types of x and y become compatible

For another example, see the recent discussion on the reflector about a sum type ’_Either’
used to specify a return type for error handling.

6. POTENTIAL DISADVANTAGES

Effects on strictly conforming programs:. As the only two changes of this proposal are to
make more types compatible and to make full redeclaration of tagged types possible, the
main effect is to make more programs legal. The only strictly conforming progams affected
are those who explicitely test for compatibility of types using _Generic. It is very unlikely
that such a program would depend on the fact that otherwise identical tagged types are
not compatible.

Loss of type safety:. For APIs where two different but structural equivalent structs without
tags (or with identical tags) are used to denote types with different semantics, the com-
piler would not produce an error anymore when arguments of such types are accidentally
switched.

In the case with identical tags and according to the old rules, the two types must be declared
in different scopes. For this reason, it is very unlikely that this situation occurs in existing
programs. Without tags the two types are useless except when used as part of a typedef.
Thus, the relevant example is the following:

OO Ui W~

© 00 ~JO UL~ W -

DO DO DO DO DO DO DD = b= b s s e e
SR WNR, OO0 Uk WK — O

N2366:8 Martin Uecker

typedef struct { int x; } A;
typedef struct { int x; } B;
void foo(A a, B b);

A a;

B b;

foo(b, a);

With the proposed changes the types are now compatible and it is possible to call foo(b, a)
without the compiler complaining about incompatible types anymore. Of course, this is
exactly the same situation as with other types, but as an error was given before programmers
may now rely on this behavior. A simply remedy for the programmer to make the API safe
again is to add tags. Because the situation of switched typedef names is easily detected, a
compiler could also add a warning when the “wrong” typedef name is used when compiling
in C2X mode (a helpful compiler message could suggest to add tags).

Implementation complexity:. For the most part, implementing a test for structural equiv-
alence for tagged types is not more difficult than for other types where it already exists,
except that recursion is possible. Recursion can be handled by storing the pairs of visited
types in a list or a cache (which typically exists anyway in the compiler so speed up testing
for compatibility). Assuming compatibility for already visited pairs then yields well-defined
semantics and avoids infinite recursion. A basic implementation of this algorithm can be
found here: The only function which needed to be added (is_compat_struct) is reproduced
here:

static bool is_compat_struct(
const struct struct_info =*a,
const struct struct_info *b,
const struct pairx v)

const struct pair v2 = { a, b, v };

// pair seen before -> assume equivalence
for (; NULL !'= v; v = v->1link)
if (((a == v->a) && (b == v->b))
|1 ((a == v->b) && (b == v->a)))
return true;

if ((a->N != b->N)
|| (0 !'= strcmp(a->tag, b->tag)))
return false;

for (int i = 0; i < a->N; i++)
if ((0 '= strcmp(a->members[i].name,
b->members[i].name))
|| 'is_compatible_r(a->members[i]. type,
b->members[i]. type, &v2))
return false;

return true;

© 00O ULk~ WwWN—

Improved Rules for Tag Compatibility N2366:9

Note: This is not expected to be a significant burden to implementors. It should be noted
that many existing compilers already implement a version of this algorithm, because they
need to to be able to determine compatibility of types across translation units when perform-
ing global optimization - removing the difference between compatibility of types declared in
the same translation unit and types declared between translation unit would simplify such
compilers.

7. COMPARISON TO N1237

N1237 points out the importance of being able to classify compatible types into equivalence
classes for optimization and global program analysis. Because the existing rules do not
ensure this, the following amendment is proposed there:

“6.2.7 after paragraph 2 insert: There shall exist a partition of all the structure and union
types in the program into disjoint classes such that (a) if two types are in the same class,
then they are compatible and (b) whenever two structure or union types are required to
be compatible, including by (a), they are in the same class. If there does not exist such a
partition, the behavior is undefined.”

This would simply make the behavior undefined if the set of all types cannot be partitioned
into equivalence classes of compatible types. With our proposal where compatibility of types
is only based on correspondence of inherent properties of the types themselves (structure
and tag names) and not on relative location, it is easy to prove that all complete tagged
types can always be partitioned into equivalence classes. For incomplete types we solve
the problem by requiring that it is possible to specifify a completed type. In the following
example (from N1237) all struct types would be compatible:

// TU 1
void f(void)
{

struct s { int a; };
extern struct s a, b;

}

void g(void)

{
struct s { int a; };
extern struct s c, d;

3

// TU 2
void h(void)
{

struct s { int a; 3;
extern struct s a, c;

}

void i(void)
{
struct s { int a; };
extern struct s b, d;

b

N2366:10 Martin Uecker

Appendix: pages with diffmarks of the proposed changes
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

21

22

23
24

25

26

27

28

29

30

ISO/TEC 9899:202x (E) working draft — March 30, 2019 C2x..tagcompat N

The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.*)

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope. >

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,51) corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.>?
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,
qualified, or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>? Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.

The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (x[5])(float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

4)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

*) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. The specification has to be complete before such a function is called or defined.

51)See 6.7.3 regarding qualified array and function types.

52The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

34 Language §6.2.5

ISO/TEC 9899:202x (E) working draft — March 30, 2019 C2x..tagcompat N

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and NV in the unsigned type, then A < N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value —(2M) (two’s complement);

— the sign bit has the value —(2 — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is a
trap representation or a normal value. In the case of sign and magnitude and ones’ complement, if
this representation is a normal value it is called a negative zero.

If the implementation supports negative zeros, they shall be generated only by:

— the &, |, *,~,<<, and >> operators with operands that produce such a value;
— the+,- ,*,/, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior of the &, |, *, ~, <<, and >>
operators with operands that would produce such a value is undefined.

The values of any padding bits are unspecified.?® A valid (non-trap) object representation of a
signed integer type where the sign bit is zero is a valid object representation of the corresponding
unsigned type, and shall represent the same value. For any integer type, the object representation
where all the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.”” Moreover, two structure, union, or enumerated types declared-in-separate
translation-units-are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or

58)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow. All other combinations of padding bits are alternative object representations of the value
specified by the value bits.

5)Two types need not be identical to be compatible.

36 Language §6.2.7

N working draft — March 30, 2019 ISO/IEC 9899:202x (E)

unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the

behavior is undefined. For all incomplete types that are not completed in their translation unit, it
must be possible to specify completed types so that this condition is fulfilled.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

o If one type is an array of known constant size, the composite type is an array of that size.

e Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

e Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

o Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

o Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,®” if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.6.2).

EXAMPLE Given the following two file scope declarations:

i int f(int (x)(), double (x)[3]);
\ int f(int (x)(char *), double (*)[1);

The resulting composite type for the function is:

| int f(int (%) (char %), double (x)[3]);

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the _Alignas keyword.

A fundamental alignment is a valid alignment less than or equal to_Alignof (max_align_t). Fun-
damental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

— all atomic, qualified, or unqualified basic types;

60) As specified in 6.2.1, the later declaration might hide the prior declaration.

6.2.8 Language 37
guag

1

N C2x..tagcompat working draft — March 30, 2019 ISO/IEC 9899:202x (E)

6.7.2.1 Structure and union specifiers
Syntax
struct-or-union-specifier:
struct-or-union identifierope { member-declaration-list }
struct-or-union identifier
struct-or-union:
struct
union
member-declaration-list:
member-declaration
member-declaration-list member-declaration
member-declaration:
specifier-qualifier-list member-declarator-listopt ;
static_assert-declaration
specifier-qualifier-list:
type-specifier specifier-qualifier-list,p.
type-qualifier specifier-qualifier-listop:
alignment-specifier specifier-qualifier-listop:
member-declarator-list:
member-declarator
member-declarator-list , member-declarator
member-declarator:
declarator
declaratorop: = constant-expression

Constraints

A member declaration that does not declare an anonymous structure or anonymous union shall
contain a member declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.!?® If the value is zero, the declaration shall have no
declarator.

A Dbit-field shall have a type that is a qualified or unqualified version of _Bool, signed int,
unsigned int, or some other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

The ber-declaration a struct-or-union-sp er-declares-anew-typewithin
a-translation-unit—The-member declaration list is a sequence of declarations for the members of
the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is

128)While the number of bits in a_Bool object is at least CHAR_BIT, the width of a _Bool can be just 1 bit.

§6.7.2.1 Language 83

10

11

12

13

14

15

16

17

18

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N

incomplete until immediately after the } that terminates the list of the first declaration of the type,
and complete thereafter.

A member of a structure or union may have any complete object type other than a variably modified
type.’?” In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;'*? its width is preceded by a colon.

A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.!3V If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a_Bool bit-field has the semantics of a
—Bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.1®? Asa special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

129) A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.

130 The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field
objects.

131) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-
tation-defined whether the bit-field is signed or unsigned.

132) An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

84 Language §6.7.2.1

N C2x..tagcompat working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Semantics

The identifiers in an enumerator list are declared as constants that have type int and may appear
wherever such are permitted.’® An enumerator with = defines its enumeration constant as the
value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,'® but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the } that terminates the list of enumerator declarations of the first declaration of the type, and
complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, x*cp;
col = claret;

cp = &col;
if (xcp != burgundy)
VA B Vi

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1, 20, 21}.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags
Constraints

" halld . lefined '
Where two-declarations-thatuse the sametag-declare Where two type specifiers for structure, union,
or enumerated types refer to the same type, they shall both use the same choice of struct, union,

or enum —and the same tag. If they are declarations with a member declaration list or enumerator
list, they shall declare the same members in the same order. 3%

A type specifier of the form
enum identifier
without an enumerator list shall only appear after the type it specifies is complete.

Semantics
All declarations of structure, union, or enumerated types that have the same scope and use the same

tag declare the same type.
. 136)
1 the listdefininetl and ! | s) &

Two declarations of structure, union, or enumerated types which are in different scopes or use

139 Except when identically redeclared as part of the same type, ihe identifiers of enumeration constants declared in the
same scope are all required to be distinct from each other and from other identifiers declared in ordinary declarators.
139 An implementation can delay the choice of which integer type until all enumeration constants have been seen.

1*9This implies that if there are multiple declarations of the same type with member declaration list they shall dedlare

members with the same types, alignments, and names in the same order and with corresponding bit fields having the
same size, and if there is a enumerator list, it shall declare the same enumeration constants in the same order. Because
nested declarations of a type which appear inside a repeated declaration of the same type are repeated declaration of the
corresponding type, this rule applies recursively.

§6.7.2.3 Language 87

ISO/TEC 9899:202x (E) working draft — March 30, 2019 C2x..tagcompat N

different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifierope { member-declaration-list }
or

enum identifierop { enumerator-list }
or

enum identifieroy { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,'3® the type specifier also declares the identifier to
be the tag of that type.

A declaration of the form

struct-or-union identifier ;
specifies a structure or union type and declares the identifier as a tag of that type.'>”
If a type specifier of the form

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.'”

If a type specifier of the form
struct-or-union identifier
or
enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

struct tnode xleft, *right;
h

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations, the
expression sp->left refers to the left struct tnode pointer of the object to which sp points; the expression s. right->count
designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

i typedef struct tnode TNODE; i
\ struct tnode { ‘
\ int count; ‘
\ TNODE xleft, xright; \
\ bt \

136)If there is no identifier, the type can ;within-the-translation-unit-only be referred to by the declaration of which it is a
part. Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to
declare objects having the specified structure, union, or enumerated type.

137) A similar construction with enum does not exist.

88 Language §6.7.2.3

