
ISO/IEC JTC 1/SC 22/WG14

December 9, 2018

N 2328

v 1
Introduce the term storage instance
Modification request for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

There is a lack of terminology to describe the entity that is reserved and released by either an allocation

(malloc/free) or by the definition of a variable or compound literal.

1. INTRODUCTION

The current revision of the C standard has no precise words to describe the maximal area
of storage that is either obtained from

— allocating through malloc/realloc/aligned_alloc (allocated storage duration)
— instantiations of objects through the encouter of definitions (all other storage durations).

Already the term storage duration suggest that the “something” that is created through
such an event would be “storage”, but there are no precise words for it. In the contrary these
beast are called very differently in different places. Some citations from the C standard:

— ... a new instance of the object is created each time ..
— ... Allocated objects have no declared type. ...
— ... that would not make the structure larger than the object being accessed ...
— The value of a pointer that refers to space deallocated by a call to the free or realloc

function ...
— ... functions return a null pointer or a pointer to an allocated object ...
— The longjmp that returns control back to the point of the setjmp-invocation might cause

memory associated with a variable length array object to be squandered.

The terms “space”, “storage”, “memory”, and (maximal)“object” describing basically all
the same thing.
Especially the use of the term “object” is unfortunate and produces a lot of confusion.
There is a footnote

When referenced, an object can be interpreted as having a particular type.

So it seems implied that all objects have a type. Also objects can have subobjects, e.g the
members of a structure object are themselves objects.

2. FIX TERMINOLOGY

We should better make clearer distinctions between terms:

— A data storage facility that is allocated (or instantiated) and that by itself bares no type,
is a different concept than the object that is represented by it.

— An object in the abstract state machine is a different concept than the storage (memory,
address, space ...) that is used to represent it. An object should always have type, stor-
age (memory, address, space ...) has not. Some objects have no known address (register
variables).

— A memory location (address) that is used to identify an object or storage space is some-
thing else than the object or storage space itself. This is explicitly mentioned by the
standard: over time, the same address can be reused by several “object instances” (au-
tomatic storage duration), “space” (allocated storage duration), and will most likely also
occur for thread local objects.

© 2018 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License

N2328:2 Jens Gustedt

We propose to add the term storage instance, as being a “maximal region of data storage”
in the execution environment that is created when either an allocation is encountered or an
object instance is created.
The choice for the term itself (storage instance) stems from the fact that it seemed the
easiest to integrate to the closely related concepts of storage duration and storage class.
Also, this ensure a consistent terminology: storage should be the entity that is target of a
store operation. The instance part of the term is important to emphasize that this is an
entity that has temporal limits within the execution.

3. SUGGESTED CHANGES

This proposal is only intended to clarify the existing model and not to add any new features.
For clarification, realitively few text additions and modifications are needed. They can all
be found in the appendix that consists of the relevant pages of diff-mark to C17. Beware,
that these pages are not contiguous.

3.1. Text additions

We propose two text additions, that introduce the term and put it into context:

now 3.19:. A definition of the term with two notes that clarify where “storage in-
stances” come from, their relative placement and accessibility by different threads.
6.2.6.1, p1:. This puts storage instances into their context (object representations) and
states their basic properties, in particular that most of them can be viewed as ‘unsigned
char‘ array. A footnote clarify the absence of any induced positioning between any storage
instances.

3.2. Text modifications

With these additions there are two types of text modifications remaining, namely some that
really only are replacements of terms (space → storage instance, e.g.) and others that are
completely reformulated. For the latter we have:

6.2.4:. Here the paragraphs 1 and 2 are swapped, and the now paragraph 2 is a bit
sharpened.
6.2.6.1, p3:. Object representations can now be introduced a bit more clearly.
6.5, p18:. Clarify the extend of a flexible array member.
7.22.3:. Mostly just a consequent use of the new terminology. Clarification that realloc
does a byte-wise copy of the initial part. (And thus implicitly preserves effective type.)

Appendix: pages with diffmarks of the proposed changes
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2328

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

3.15
1 object

region of data storage in the execution environment, the contents of which can represent values
2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
1 parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18
1 runtime-constraint

requirement on a program when calling a library function
2 Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be

diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19
1 storage instance

:
a
::::::::
maximal

::::::
region

::
of

:::::
data

:::::::
storage

::
in

:::
the

:::::::::
execution

::::::::::::
environment

::::
that

::
is

:::::::
created

:::::
when

::::::
either

::
an

::::::
object

:::::::::
definition

::
or

:::
an

:::::::::
allocation

::
is

:::::::::::
encountered

:

2 Note 1 to entry:
::::::
Storage

:::::::
instances

::
are

::::::
created

:::
and

::::::::
destroyed

:::::
when

:::::
specific

::::::::
language

:::::::
constructs

:::::
(6.2.4)

:::
are

:::
met

::::::
during

::::::
program

::::::::
execution,

:::::::
including

:::::::
program

:::::
startup,

::
or
:::::
when

:::::
specific

::::::
library

:::::::
functions

:::::
(7.22.3)

:::
are

:::::
called.

3 Note 2 to entry:
::
A

::::
given

:::::
storage

:::::::
instance

:::
may

::
or

::::
may

::
not

::::
have

:
a
:::::::
memory

::::::
address,

:::
and

:::
may

::
or
::::
may

:::
not

::
be

:::::::
accessible

::::
from

::
all

:::::
threads

::
of
::::::::
execution.

3.20
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.20.1
1 implementation-defined value

unspecified value where each implementation documents how the choice is made

3.20.2
1 indeterminate value

either an unspecified value or a trap representation

6 General § 3.20.2

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations and object lifetimes
An object has a that determines its lifetime. There are four storage durations: static, thread,
automatic, and allocated. Allocated storage is described in ??.

1 The lifetime of an object is the portion of program execution during which storage
:
a
:::::::
storage

::::::::
instance

is guaranteed to be reserved for it.33) An object exists, has a constant address,34)
:
if
::::
any,

:
and retains

its last-stored value throughout its lifetime.35) If an object is referred to outside of its lifetime, the
behavior is undefined. The value of a pointer becomes indeterminate when the object it points to (or
just past) reaches the end of its lifetime.

2 An
::::
The

:::::::
lifetime

::
of

:::
an

:::::
object

::
is
:::::::::::
determined

:::
by

::
its

:
storage duration .

::::::
There

:::
are

::::
four

:::::::
storage

::::::::::
durations:

:::::
static,

:::::::
thread,

::::::::::
automatic,

::::
and

:::::::::
allocated.

:::::::::
Allocated

:::::::
storage

::::
and

::
its

::::::::
duration

::::
are

:::::::::
described

::
in

::::::
7.22.3.

:

3
:::
The

:::::::
storage

::::::::
instance

:::
of

::
an

:
object whose identifier is declared without the storage-class specifier

_Thread_local, and either with external or internal linkage or with the storage-class specifier
static, has static storage duration . Its

:
,
::
as

:::
do

:::::::
storage

::::::::
instances

:::
for

::::::
string

::::::
literals

::::
and

:::::
some

::::::::::
compound

::::::
literals.

::::
The

::::::::
object’s lifetime is the entire execution of the program and its stored value is initialized

only once, prior to program startup.

4 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with the storage-class specifier

_Thread_local has thread storage duration. Its
::::
The

:::::::
object’s lifetime is the entire execution of the

thread for which it is created, and its stored value is initialized when the thread is started. There
is a distinct object

::::::::
instance

::
of

:::
the

::::::
object

::::
and

:::::::::
associated

:::::::
storage

:
per thread, and use of the declared

name in an expression refers to the object associated with the thread evaluating the expression. The
result of attempting to indirectly access an object with thread storage duration from a thread other
than the one with which the object is associated is implementation-defined.

5 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with no linkage and without the

storage-class specifier static has automatic storage duration, as do
::
are

:::::::
storage

:::::::::
instances

::
of

::::::::::
temporary

::::::
objects

::::
and

:
some compound literals. The result of attempting to indirectly access an object with

automatic storage duration from a thread other than the one with which the object is associated is
implementation-defined.

6 For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object

::::
and

:::::::::
associated

:::::::
storage

:
is created each

time. The initial value of the object is indeterminate. If an initialization is specified for the object, it
is performed each time the declaration or compound literal is reached in the execution of the block;
otherwise, the value becomes indeterminate each time the declaration is reached.

7 For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.36) If the scope is
entered recursively, a new instance of the object

:::
and

::::::::::
associated

:::::::
storage is created each time. The

initial value of the object is indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object

:
a
:
temporary object with automatic storage duration and temporary lifetime.37) Its

lifetime begins when the expression is evaluated and its initial value is the value of the expression.
Its lifetime ends when the evaluation of the containing full expression ends. Any attempt to modify

33)
:::
This

:::::
storage

:::::::
instance

::::
might

:::
not

::
be

:::::
unique

::
if
:::
the

::::
object

::
is

:
a
::::
string

:::::
literal,

:
a
:::::::::

compound
::::
literal

::
or

:::
has

::::::::
temporary

::::::
lifetime.

34)The term "constant address" means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

35)In the case of a volatile object, the last store need not be explicit in the program.
36)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior

to the declaration, leaves the scope of the declaration.
37)The address of such an object is taken implicitly when an array member is accessed.

§ 6.2.4 Language 31

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.
:::
An

::::::
object

:
is
::::::::::::

represented
:::
by

:
a
::::::::

storage
::::::::
instance

:::
(or

::::
part

::::::::
thereof)

::::
that

::
is
::::::

either
:::::::

created
:::

by
:::

an
::::::::::

allocation
::::
(for

::::::::
allocated

:::::::
storage

::::::::::
duration),

:::
at

::::::::
program

::::::::
startup

::::
(for

:::::
static

::::::::
storage

:::::::::
duration),

:::
at

:::::::
thread

:::::::
startup

:::
(for

:::::::
thread

:::::::
storage

::::::::::
duration),

:::
or

::::::
when

::::
the

:::::::
lifetime

:::
of

::::
the

::::::
object

:::::
starts

:::::
(for

:::::::::
automatic

::::::::
storage

:::::::::
duration).

:::::
An

:::::::::::
addressable

:::::::
storage

:::::::::
instance51)

:
of

:::::
size

::
m

::::::
shall

:::::::
behave

:::
as

::
a

::::
byte

::::::
array

:::
of

:::::
type

:::::::::::::::::::
unsigned char[m].

:::
No

::::
life

:::::::
storage

::::::::
instances

:::::
shall

:::::::
overlap

:::
in

::::
any

::::
way,

::::
and

::::
the

:::::::
relative

::::::::
position

::
in

::::::::
memory

::
of

::::::::
different

:::::::
storage

:::::::::
instances

::
is

:::::::::::
unspecified.52)

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

3 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.53)

4 Values stored in non-bit-field objects of any other object type consist of n× CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type

::::::::::
Converting

::
a
:::::::
pointer

:::
of

::::
such

:::
an

::::::
object

:::
to

::::::::::::::::
unsigned char*::::::

yields
::
a

:::::::
pointer

::::
into

::::
the

::::
byte

::::::
array

::
of

:::
the

:::::::
storage

::::::::
instance

:::::
such

::::
that

::::
the

::::::
values

:::
of

:::
the

::::
first

:
n] (e.g., by memcpy); the resulting

:::::
bytes

:::::::::
determine

::::
the

:::::
value

:::
of

:::
the

::::::
object;

::::
this

:
set of bytes is called the object representation of the value.

:::
The

::::::
object

:::::::::::::
representation

:::::
may

::
be

:::::
used

::
to

:::::
copy

::::
the

:::::
value

::
of

::::
the

:::::
object

:::::
into

:::::::
another

::::::
object

::::
(e.g.,

:::
by

:

:::::::
memcpy). Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

5 Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.54) Such a representation is called a trap representation.

6 When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.55)

The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

8 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.56) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

51)
::
All

::::::
storage

:::::::
instances

:::
that

::
do

:::
not

::::::
originate

::::
from

::
an

:::::
object

:::::::
definition

::::
with

:::::::
register

::::::
storage

:::
class

:::
are

:::::::::
addressable.

:
52)

:::
This

:::::
means

:::
that

:::
the

::::::
relative

::::::::
positioning

:::::::
between

::::::
storage

:::::::
instances

:::
and

:::
the

:::::
objects

::::
they

:::::::
represent

:::::
cannot

::
be

:::::::
deduced

:::
from

:::::::::
syntactical

::::::::
properties

::
of

:::
the

::::::
program

:::::
(such

::
as

:::::::::
declaration

::::
order

::
or
:::::

order
:::::
inside

:
a
::::::::

parameter
::::

list)
::
or

:::::::::
sequencing

:::::::
properties

::
of

:::
the

:::::::
execution

::::
(such

::
as

:::
one

:::::::::
instantiation

::::::::
happening

:::::
before

:::::::
another).

53)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHAR

_BIT − 1.
54)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value

of the variable cannot be used until a proper value is stored in it.
55)Thus, for example, structure assignment need not copy any padding bits.
56)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects

of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

§ 6.2.6.1 Language 35

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

6.5 Expressions
1 An expression is a sequence of operators and operands that specifies computation of a value,89) or

that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

2 If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.90)

3 The grouping of operators and operands is indicated by the syntax.91) Except as specified later, side
effects and value computations of subexpressions are unsequenced.92)

4 Some operators (the unary operator ~ , and the binary operators << , >>, &, ^, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

5 If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

6 The effective type of an object for an access to its stored value is the declared type of the object, if
any.93) If a value is stored into an object having no declared type

::::
with

::::::::
allocated

:::::::
storage

:::::::::
duration

through an lvalue having a type that is not a character type, then the type of the lvalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify the stored
value. If a value is copied into an object having no declared type

::::
with

::::::::
allocated

:::::::
storage

:::::::::
duration

using memcpy or memmove, or is copied as an array of character type, then the effective type of the
modified object for that access and for subsequent accesses that do not modify the value is the
effective type of the object from which the value is copied, if it has one. For all other accesses to
an object having no declared type

::::
with

::::::::
allocated

:::::::
storage

::::::::
duration, the effective type of the object is

simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:94)

— a type compatible with the effective type of the object,

89)Annex H documents the extent to which the C language supports the ISO/IEC 10967–1 standard for language-
independent arithmetic (LIA–1).

90)This paragraph renders undefined statement expressions such as

i = ++i + 1;
a[i++] = i;

while allowing

i = i + 1;
a[i] = i;

91)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

92)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

93)Allocated objects have
::
An

:::::
object

:::
with

:::::::
allocated

::::::
storage

::::::
duration

:::
has

::
no

:::::::::
declaration

:::
and

:::
thus

:
no declared type.

94)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§ 6.5 Language 57

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2328

incomplete until immediately after the} that terminates the list, and complete thereafter.

9 A member of a structure or union may have any complete object type other than a variably modified
type.129) In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;130) its width is preceded by a colon.

10 A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.131) If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a _Bool bit-field has the semantics of a
_Bool.

11 An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

12 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.132) As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

13 An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

14 Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

15 Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

16 The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

17 There may be unnamed padding at the end of a structure or union.

18 As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object

::::::
storage

::::::::
instance being accessed; the offset of the array shall remain that of the flexible array

member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to
access that element or to generate a pointer one past it.

129)A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.
130)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field

objects.
131)As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-

tation-defined whether the bit-field is signed or unsigned.
132)An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

84 Language § 6.7.2.1

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

Semantics
7 The declarator in a function definition specifies the name of the function being defined and the

identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a function prototype for later calls to the
same function in the same translation unit. If the declarator includes an identifier list,169) the types
of the parameters shall be declared in a following declaration list. In either case, the type of each
parameter is adjusted as described in 6.7.6.3 for a parameter type list; the resulting type shall be a
complete object type.

8 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

9 Each parameter has automatic storage duration; its identifier is an lvalue.170) The layout of the
storage for parameters is unspecified. 171)

10 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

11 After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

12 Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

13 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ return a > b ? a: b; }

is the function body. The following similar definition uses the identifier-list form for the parameter declarations:

168)The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

169)See "future language directions" (6.11.7).
170)A parameter identifier cannot be redeclared in the function body except in an enclosed block.
171)

::
As

:::
any

::::
object

::::
with

::::::::
automatic

:::::
storage

:::::::
duration,

::::
each

:::::::
parameter

:::::
gives

:::
rise

:
to
::

its
::::

own
::::::
storage

::::::
instance.

::::
Thus

:::
the

::::::
relative

:::::
layout

:
of
:::::::::
parameters

:
in
:::::::

memory
:
is
:::::::::

unspecified.

§ 6.9.1 Language 117

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Description
2 The longjmp function restores the environment saved by the most recent invocation of the setjmp

macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution257) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine258) have state,
as of the time the longjmp function was called, except that the values of objects of automatic storage
duration that are local to the function containing the invocation of the corresponding setjmp macro
that do not have volatile-qualified type and have been changed between the setjmp invocation and
longjmp call are indeterminate.

Returns
4 After longjmp is completed, thread execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
::

the

:::::
storage

::::::
instance

:
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // a may remain allocated
h(n);

}

void h(int n)
{

int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss

}

257)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
258)This includes, but is not limited to, the floating-point status flags and the state of open files.

§ 7.13.2.1 Library 195

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2328

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.22.3 Storage management functions
1 The order and contiguity of storage

::::::::
instances

:
allocated by successive calls to the aligned_alloc,

calloc, malloc, and realloc functions is unspecified. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object with a
fundamental alignment requirement and then used to access such an object or an array of such objects
in the space

:::::::
storage

::::::::
instance allocated (until the space

::::::
storage

::::::::
instance

:
is explicitly deallocated).

The lifetime of an allocated object extends from the allocation
::
of

:::
the

:::::::
storage

::::::::
instance

:
until the

deallocation. Each such allocation shall yield a pointer to an object
:
a
:::::::
storage

::::::::
instance

::::
that

::
is disjoint

from any other object
::::::
storage

::::::::
instance. The pointer returned points to the start (lowest byte address)

of the allocated space
::::::
storage

::::::::
instance. If the space

:::::::
storage

::::::::
instance cannot be allocated, a null

pointer is returned. If the size of the space
:::::::
storage

::::::::
instance requested is zero, the behavior is imple-

mentation-defined: either a null pointer is returned to indicate an error, or the behavior is as if the
size were some nonzero value, except that the returned pointer shall not be used to access an object.

2 For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations

:::::::
storage

::::::::
instances

:
accessible through their arguments

and not other static duration storage
::::::::
instances. These functions may, however, visibly modify the

storage
:::::::
instance

:
that they allocate or deallocate. Calls to these functions that allocate or deallocate

::::::
storage

:::::::::
instances

::
in

:
a particular region of memory

::::::::::
(identified

::
by

:::
its

:::::::
address

::::
and

:::::
size) shall occur in

a single total order, and each such deallocation call shall synchronize with the next allocation (if any)
in this order.306)

7.22.3.1 The aligned_alloc function
Synopsis

1 #include <stdlib.h>
void *aligned_alloc(size_t alignment, size_t size);

Description
2 The aligned_alloc function allocates space for an object

:
a
:::::::
storage

::::::::
instance

:
whose alignment

is specified by alignment, whose size is specified by size, and whose value is
::::
byte

::::::
values

::::
are

indeterminate. If the value of alignment is not a valid alignment supported by the implementation
the function shall fail by returning a null pointer.

Returns
3 The aligned_alloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

:::::::
instance.

7.22.3.2 The calloc function
Synopsis

1
306)

:::
This

:::::
means

:::
that

::
an

::::::::::::
implementation

:::
may

::::
only

::::
reuse

:
a
::::
valid

::::::
address

:::
that

::
is

:::::::
computed

::::
from

::
an

:::::::
allocated

::::::
storage

::::::
instance

::
for

:
a
:::::::
different

::::::
allocated

::::::
storage

::::::
instance

::
if

::
the

::::
calls

::
to

:::::
allocate

:::
and

::::::::
deallocate

:::
the

:::::
storage

:::::::
instances

:::::::::
synchronize.

258 Library § 7.22.3.2

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2328

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
2 The calloc function allocates space

:
a
:::::::
storage

::::::::
instance for an array of nmemb objects, each of whose

size is size. The space
::::::
storage

::::::::
instance is initialized to all bits zero.307)

Returns
3 The calloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

::::::::
instance.

7.22.3.3 The free function
Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description
2 The free function causes the space

::::::
storage

::::::::
instance pointed to by ptr to be deallocated, that is,

made available for further allocation.
:::
use.308)If ptr is a null pointer, no action occurs. Otherwise, if

the argument does not match a pointer earlier returned by a memory
:::::::
storage management function,

or if the space
:::::::
storage

:::::::
instance

:
has been deallocated by a call to free or realloc, the behavior is

undefined.

Returns
3 The free function returns no value.

7.22.3.4 The malloc function
Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description
2 The malloc function allocates space for an object

:
a
:::::::
storage

::::::::
instance

:
whose size is specified by size

and whose value is
::::
byte

::::::
values

::::
are indeterminate.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated space

:::::::
storage

::::::::
instance.

7.22.3.5 The realloc function
Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description
2 The realloc function deallocates the old object

:::::::
storage

::::::::
instance pointed to by ptr and returns a

pointer to a new object
::::::
storage

::::::::
instance

:
that has the size specified by size. The contents

::::
bytes

:
of

the new object shall be the same as that of the old object prior to deallocation,
::::::
storage

::::::::
instance up

to the lesser of the new and old sizes .
::::
have

:::
the

:::::
same

::::::
value

::
as

::::
the

:::::
bytes

::
in

::::
the

:::::
same

::::::::
positions

:::
of

:::
the

:::
old

:::::::
storage

::::::::
instance.309) Any bytes in the new object

:::::::
storage

::::::::
instance beyond the size of the old

object have indeterminate values.
307)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.
308)

:::
That

:::::
means

:::
that

:::
the

::::::::::::
implementation

::::
may

::::
reuse

:::
the

::::::
address

::::
range

::
of

:::
the

:::::
storage

:::::::
instance

:::::::::
(determined

::
by

:::
ptr

::::
and

::
its

:::
size)

:::
for

:::
any

:::::
storage

::::::
instance

:::::
whose

::::::::::
instantiation

:::::::::
synchronizes

::::
with

:::
the

:::
call.

309)
:::
Thus

::::
this

::::
initial

:::
part

:::::::
behaves

::
as

:
if
::
it

::::
were

:::::
copied

::
by

::::::
memcpy.

::
In
::::::::
particular,

:::
the

::::
initial

::::
part

::
of

::
the

::::
new

:::::
storage

:::::::
instance

:::::::
represents

:::::
objects

::::
with

::::
same

::::
value

::::
and

::::::
effective

:::
type

::
as
:::
the

::::
initial

::::
part

::
of

::
the

:::
old

::::::
storage

::::::
instance,

::
if

:::
any.

260 Library § 7.22.3.5

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

3 If ptr is a null pointer, the realloc function behaves like the malloc function for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by a memory

:::::::
storage management

function, or if the space
:::::::
storage

::::::::
instance has been deallocated by a call to the free or realloc

function, the behavior is undefined. If size is nonzero and memory for the new object is not
:::
no

::::::
storage

::::::::
instance

::
is

:
allocated, the old object

:::::::
storage

::::::::
instance is not deallocated. If size is zero and

memory for the new object is not
::
no

:::::::
storage

::::::::
instance

:::
is allocated, it is implementation-defined

whether the old object
:::::::
storage

::::::::
instance

:
is deallocated. If the old object

:::::::
storage

::::::::
instance

:
is not

deallocated, its value
:
it
:
shall be unchanged.

Returns
4 The realloc function returns a pointer to the new object

::::::
storage

::::::::
instance (which may have the

same value as a pointer to the old object
::::::
storage

::::::::
instance), or a null pointer if the new object has not

::
no

:::::
new

::::::
storage

::::::::
instance

::::
has been allocated.

7.22.4 Communication with the environment
7.22.4.1 The abort function
Synopsis

1 #include <stdlib.h>
_Noreturn void abort(void);

Description
2 The abort function causes abnormal program termination to occur, unless the signal SIGABRT

is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise(SIGABRT).

Returns
3 The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

1 #include <stdlib.h>
int atexit(void (*func)(void));

Description
2 The atexit function registers the function pointed to by func, to be called without arguments at

normal program termination.310) It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the at_quick_exit function (7.22.4.3), the exit function (7.22.4.4).

7.22.4.3 The at_quick_exit function
Synopsis

1 #include <stdlib.h>
int at_quick_exit(void (*func)(void));

310)The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call
both registration functions with the same argument.

§ 7.22.4.3 Library 261

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

— Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.4).

— Whether or not a size expression is evaluated when it is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the
operator (6.7.6.2).

— The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.9).

— The
::::::
relative

:
layout of storage

::::::::
instances

:
for function parameters (6.9.1).

— When a fully expanded macro replacement list contains a function-like macro name as its
last preprocessing token and the next preprocessing token from the source file is a (, and
the fully expanded replacement of that macro ends with the name of the first macro and the
next preprocessing token from the source file is again a (, whether that is considered a nested
replacement (6.10.3).

— The order in which # and ## operations are evaluated during macro substitution (6.10.3.2,
6.10.3.3).

— The line number following a directive of the form #line __LINE__ new-line (6.10.4).

— The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on" (7.6.1).

— The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.6
(7.6.2.3).

— Whether math_errhandling is a macro or an identifier with external linkage (7.12).

— The results of the frexp functions when the specified value is not a floating-point number
(7.12.6.4).

— The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.6.5, F.10.3.5).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, F.10.6.5).

— The value stored by the remquo functions in the object pointed to by quo when y is zero
(7.12.10.3).

— Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.14).

— Whether setjmp is a macro or an identifier with external linkage (7.13).

— Whether va_copy and va_end are macros or identifiers with external linkage (7.16.1).

— The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.21.6.1, 7.29.2.1).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.21.7.10, 7.29.3.10).

— The details of the value stored by the fgetpos function (7.21.9.1).

— The details of the value returned by the ftell function for a text stream (7.21.9.4).

— Whether the strtod, strtof, strtold, wcstod, wcstof, and wcstold functions convert a
minus-signed sequence to a negative number directly or by negating the value resulting from
converting the corresponding unsigned sequence (7.22.1.3, 7.29.4.1.1).

§ J.1 Portability issues 411

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

— A c, s, or [conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

— A c, s, or [conversion specifier with an l qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.21.6.2, 7.29.2.2).

— The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.21.6.2, 7.29.2.2).

— The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.21.6.8, 7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5, 7.29.2.6, 7.29.2.7, 7.29.2.8, 7.29.2.9, 7.29.2.10).

— The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.21.7.2, 7.29.3.2).

— The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.21.7.10).

— The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.21.8.1, 7.21.8.2).

— A partial element read by a call to the fread function is used (7.21.8.1).

— The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.21.9.2).

— The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.21.9.3).

— A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (??

:::::
7.22.3).

— The value of a pointer that refers to space
:::::::
storage deallocated by a call to the free or realloc

function is used (??
:::::
7.22.3).

— The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory

::::::
storage

:
management function, or the space

:::::::
storage has been deallocated

by a call to free or realloc (7.22.3.3, 7.22.3.5).

— The value of the object allocated by the malloc function is used (7.22.3.4).

— The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.22.3.5).

— The program calls the exit or quick_exit function more than once, or calls both functions
(7.22.4.4, 7.22.4.7).

— During the call to a function registered with the atexit or at_quick_exit function, a call is
made to the longjmp function that would terminate the call to the registered function (7.22.4.4,
7.22.4.7).

— The string set up by the getenv or strerror function is modified by the program (7.22.4.6,
7.24.6.2).

— A signal is raised while the quick_exit function is executing (7.22.4.7).

— A command is executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.22.4.8).

§ J.2 Portability issues 421

N2328 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

— Whether the last line of a text stream requires a terminating new-line character (7.21.2).

— Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.21.2).

— The number of null characters that may be appended to data written to a binary stream (7.21.2).

— Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.21.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.21.3).

— The characteristics of file buffering (7.21.3).

— Whether a zero-length file actually exists (7.21.3).

— The rules for composing valid file names (7.21.3).

— Whether the same file can be simultaneously open multiple times (7.21.3).

— The nature and choice of encodings used for multibyte characters in files (7.21.3).

— The effect of the remove function on an open file (7.21.4.1).

— The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).

— Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).

— Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

— The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

— The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

— The interpretation of a- character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.21.6.2, 7.29.2.1).

— The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

— The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.21.9.1, 7.21.9.3, 7.21.9.4).

— The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.3,
7.29.4.1.1).

— Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underflow occurs (7.22.1.3, 7.29.4.1.1).

— Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an allocated object

:::::::
storage when the size requested is zero (??

:::::
7.22.3).

— Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.5).

— The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

— The value returned by the system function when its argument is not a null pointer (7.22.4.8).

— The range and precision of times representable in clock_t and time_t (7.27).

§ J.3.12 Portability issues 427

