
ISO/IEC JTC 1/SC 22/WG14

March 8, 2017

N 2129

v 1
Deprecate __LINE__

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Because of the loophole for untyped function parameters, the usage of the __LINE__ macro can lead to
undefined behavior when used as integer literal. This papers reviews the possibilities to improve this situation
in C2x and proposes to replace __LINE__ by two new macros __line__ (producing a string) and __LINENO__
(producing a literal of type uintmax_t).

Introduction
The articulation between handling of numbers in the preprocessor and later compilation
phases can lead to undefined behavior:

printf("visiting␣line␣%d\n", __LINE__); // may have undefined behavior

This use of __LINE__ is only well defined if the current line number is less or equal to
INT_MAX. Otherwise __LINE__ has type long or maybe even long long, see below. Passing
a wider object to a "%d" format specifier has undefined behavior. In practice it can crash
programs, open vulnerabilities or even provide opportunities to introduce backdoors.

Such an overflow may sound unlikely, but on restricted platforms INT_MAX may be as
small as 215 − 1 = 32767. Automatically generated C code easily has more lines than this,
or it may have #line directives with larger numbers.

Usages of __LINE__ with values that exceed INT_MAX would be difficult to detect by code
review.

1. PROBLEM DISCUSSION
Arithmetic in C’s preprocessing and later compilation phases are only loosely coupled.
The only constraint that C11 imposes on numbers when they are treated as such during
preprocessing is that the arithmetic has to be performed as if these numbers where of type
[u]intmax_t.

The problem here described is caused by the unfortunate combination of several loopholes
in C’s type system:

— un-prototyped function parameters, in particular for variadic functions,
— type adjustment of decimal literals to fit the first in int, long or long long,
— a discrepancy between the minimal requirement for INT_MAX (215−1), permitted numbers

in #line directives (up to 231 − 1) and permitted numbers during preprocessing (up to
263 − 1).

The expansion of __LINE__ may have type long or long long

The type of the expansion of __LINE__ could be int or long for the reasons seen above, but
it could even be forced to long long by malicious use of a #line directive. C11’s section
6.10.4, p. 3, restricts line numbers to 231 − 1 = 2147483647 or less, but a line number then
could grow beyond that value.

344 #define LARGE 2147483600 // not at LONG_MAX , innocent?

21476 /* ... much later in the source */
21477 #line LARGE "automatically -generated -please -ignore"

2147483646 /* ... even later inside a function ... */

c© 2017 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License



N2129:2 Jens Gustedt

2147483647 printf("%s␣%ld:␣a␣toto␣failure ,␣please␣ignore\n",
-2147483648 __FILE__ , __LINE__); // __LINE__ is 2147483648

If long has a width of 32 this will result in a number literal of type long long.1
Setting #line manually to an arbitrary large value would probably not pass thorough

code review. But #line directives as demonstrated that are subject to macro expansion are
easily overlooked.

The problem is difficult to diagnose
If the preprocessing phase is implemented as a separate program, cpp, say, there is no
easy way to know from within that preprocessor program to which type a __LINE__ macro
expands in later compilation phases. So the preprocessing phase cannot easily be made
aware of the discrepancy and we can’t expect a diagnostic in that phase.

2. RECOMMENDABLE PRACTICE
Candidates for replacement of __LINE__
To avoid this problem, projects could prohibit the use of __LINE__ other than in the fol-
lowing forms. All of them produce integer constant expressions (ICE) such that they should
not incur runtime overhead. Two of them abort compilation if the value is too large.

// incompatible with existing usage of __LINE__
#define __LINE0__ (__LINE__ +0LL)
// incompatible with existing usage of __LINE__
#define __LINE1__ INT32_C(__LINE__)
// incompatible with existing usage of __LINE__
#define __LINE2__ INTMAX_C(__LINE__)
// large number aborts compilation , not valid in #if, type?
#define __LINE3__ _Generic ((char (*)[( __LINE__ <= INT32_MAX)+1])0, \

char (*) [2]: __LINE__)
// large number → print something ugly , needs prior knowledge
#define __LINE4__ ((int)(__LINE__ <= __MAGIC__ ? __LINE__ : -1))
// large number → print something ugly , implementation defined
#define __LINE5__ ((int)(__LINE__ <= INT32_MAX ? __LINE__ : -1))
// large number aborts compilation , not valid in #if
#define __LINE6__ _Generic(__LINE__ , int: __LINE3__)
// large number → print something ugly , not valid in #if
#define __LINE7__ _Generic(__LINE__ , int: __LINE5__ , default: -1)

Advantages and disadvantages
Other than current usage might expect, __LINE0__ to __LINE3__ have the disadvantage
that the resulting type is generally different from int. Therefore using one of these may
require code changes in many places, namely in places where __LINE__ is used as argument
to printf or similar functions. Among these four, __LINE1__ or __LINE3__ are preferable,
because they reflect the value restriction of the standard to 231 − 1. Other advantages are
that INT32_C(.) is a no-op on many modern platforms (for __LINE1__) or that they abort
compilation in case of larger value (for __LINE3__).

The remaining macros force their type to be int. Therefore they could be used in most
places that previously used __LINE__, with the exception for __LINE6__ and __LINE7__
that are not compatible with preprocessor #if. __LINE4__ and __LINE5__ need prior knowl-
edge about the platform: __LINE3__ needs a magic number to take the right decision and
__LINE4__ leads to an implementation defined conversion from long to int if int has less
than 32 bit.

1As we can see from the printout of that code, LATEX’ listings package is vulnerable to the same line
number overflow.



Deprecate __LINE__ N2129:3

In summary:

None of these is a full replacement for all practical uses of the __LINE__ macro.

Personally, I have a slight preference for __LINE6__, because this aborts compilation when
an unsuitable value is encountered.

3. FUTURE DIRECTIONS
This is not a defect report against C11. I was not able to come up with a consistent idea of
how definitions of __LINE__ “could have been meant” that would avoid this problem. Also,
I think this discussion should be included in the larger discussion about line numbers and
the preprocessing phase, as they were started by some defect reports against C11.

Therefore I propose the following changes for C2x:

(1) Numbers of physical lines are of type uintmax_t, so they wrap around on overflow.
(2) Add a constant __LINENO_MAX__ of value at least 231 − 1 to <limits.h>.
(3) Add a specification that determines the line numbers of physical and logical source lines

uniquely.
(4) Constrain any line number that is subject to a usage of __LINE__ (or equivalent) to be

less than or equal to __LINENO_MAX__.
(5) Deprecate the use of __LINE__.
(6) Provide macros with similar functionality that avoid the vulnerability.

Replacements for __LINE__
Possible replacements could work conceptually as if they were defined as

// similar to __func__
#define STRINGIFI(X) #X
#define STRINGIFY(X) STRINGIFI(X)
#define __line__ STRINGIFY(__LINE__)
// incompatible with existing usage of __LINE__
#define __LINENO__ UINTMAX_C(__LINE__)

The most important would be __line__, the stringified expansion of __LINE__, because
probably the most important usage of __LINE__ in applications is to output the line num-
ber for debugging purposes. The use of __line__ avoids any runtime overhead of number
conversion. Since the result is a string literal, it can even become integral part of a printf
format string, without passing through a "%s" conversion.
__LINENO__ could be used in cases where the number is needed for arithmetic or where

it is to be concatenated with another token to compose a specialized identifier. The forced
type of [u]intmax_t could help such that the use is consistent with in #if directives.

Uniqueness
If bounds checking for printing line numbers is made a constraint, we should guaran-
tee that such a constraint is triggered portable between platforms that use the same
__LINENO_MAX__. Therefore we should establish a rule that determines the line number
that is returned by __LINE__ (or __line__ and __LINENO__) uniquely. Currently there are
borderline cases for invocations that appear in the same logical source line.

A logical source line L can be the concatenation of a set of physical source lines P0, . . . , Pr.
As soon as the preprocessing phase starts the processing of line L, and even before it knows
the full extent of L, it knows the starting line of the sequence P0. Thus, the simplest and
less restrictive rule is to impose that the line number that is attributed to L is P0.


	Problem discussion
	Recommendable practice
	Future directions

