
Draft	DRs	for	TS	18661	 	 	 	 	 	 WG	14	N2094	

2016-10-06	

	
This	document	updates	N2077.	The	only	changes	are	(1)	different	type	faces,	(2)	the	
addition	of	the	change	to	the	example	in	the	suggest	technical	corrigendum	in	DDR	#9.	
	
DDR	#1	
==	

Reference	Document:	C11		

Subject:	Ambiguous	specification	for	FLT_EVAL_METHOD	

Summary	

5.2.4.2.2#9:	
	

Except	for	assignment	and	cast	(which	remove	all	extra	range	and	precision),	the	
values	yielded	by	operators	with	floating	operands	and	values	subject	to	the	usual	
arithmetic	conversions	and	of	floating	constants	are	evaluated	to	a	format	whose	
range	and	precision	may	be	greater	than	required	by	the	type.	The	use	of	evaluation	
formats	is	characterized	by	the	implementation-defined	value	
of	FLT_EVAL_METHOD:	
	
-1	indeterminable;		
	
0	evaluate	all	operations	and	constants	just	to	the	range	and	precision	of	the	type;		
	
1	evaluate	operations	and	constants	of	type	float	and	double	to	the	range	and	
precision	of	the	double	type,	evaluate	long double operations	and	constants	to	
the	range	and	precision	of	the	long double	type;		
	
2	evaluate	all	operations	and	constants	to	the	range	and	precision	of	the	long
double	type.		
	
All	other	negative	values	for	FLT_EVAL_METHOD characterize	implementation-
defined	behavior	
	
	

Do	the	words:	

the	values	yielded	by	operators	with	floating	operands	and	values	subject	to	the	
usual	arithmetic	conversions	

in	the	first	sentence	mean	the	same	as:		

Interpretation	1:	the	values	yielded	by	operators	with:	(a)	floating	operands	and	(b)	
values	subject	to	the	usual	arithmetic	conversions	

or:	

Interpretation	2:	(a)	the	values	yielded	by	operators	with	floating	operands	and	(b)	
the	values	subject	to	the	usual	arithmetic	conversions?	

Interpretation	2	is	problematic	because	the	evaluation	methods	pertain	only	to	operators	
that	return	a	value	of	floating	type,	not	to,	for	example,	the	relational	operators	with	floating	
operands.	Nor	do	they	apply	to	all	values	subject	to	the	usual	arithmetic	conversions,	and	so	
(b)	doesn’t	add	anything.	Thus,	reasonableness	suggests	Interpretation	1.	However,	the	
mention	of	assignment	and	cast	(which	are	not	subject	to	the	usual	arithmetic	conversions)	
suggests	Interpretation	2.	
	
Interpretation	2,	unlike	Interpretation	1,	implies	that	values	yielded	by	unary	operators	are	
widened	to	the	evaluation	format.	In	some	cases	whether	a	unary	operator	is	widened	
matters.	Widening	a	signaling	NaN	operand	raises	the	“invalid”	floating-point	exception.	
Widening	an	operand	with	a	non-canonical	encoding	canonicalizes	the	encoding.	

The	IEC	60559	copy	and	negate	operations	are	bit	manipulation	operations	that	affect	at	
most	the	sign.	C	operations	bound	to	these	IEC	60559	operations	are	expected	to	behave	
accordingly,	but	won’t	if	they	entail	widening.	

Widening	unary	operators	would	introduce	conversions	that	might	affect	performance	but	
which	have	no	benefit.	

According	to	personal	notes,	this	issue	came	up	at	the	WG14	meeting	in	Chicago	in	2013,	
but	was	not	resolved	and	did	not	result	in	an	action	item.		

Recently,	this	issue	came	up	again	as	underlying	the	issue	raised	by	Joseph	Myers	in	email	
SC22WG14.14278:	

Suppose	that	with	an	implementation	of	C11	+	TS	18661-1,	that	defines		
FLT_EVAL_METHOD	to	2,	you	have:	
	

static volatile double x = SNAN;
(void) x;

	
Suppose	also	that	the	implementation	defines	the	"(void) x;"	statement	to		
constitute	an	access	to	volatile-qualified	x.	
	
May	the	implementation	define	that	access	to	convert	x	from	the	format	of		
double	to	the	format	of	long double,	with	greater	range	and	precision,		
that	format	being	used	to	represent	double	operands	in	accordance	with	the		
setting	of	FLT_EVAL_METHOD,	and	thereby	to	raise	the	"invalid"	exception?	
	
That	is,	may	a	convertFormat	operation	be	applied	as	part	of		

lvalue-to-rvalue	conversion	where	FLT_EVAL_METHOD	implies	that	a	wider		
evaluation	format	is	in	use?	
	
Even	without	signaling	NaNs,	the	issue	can	apply	to	the	case	of	exact		
underflow,	which	can	be	detected	using	pragmas	from	TS	18661-5,	if	the		
wider	format	has	extra	precision	but	not	extra	range	and	so	exact	underflow	occurs	
on	converting	a	subnormal	value	to	the	wider	format.	

The	following	suggested	Technical	Corrigendum	is	intended	to	clarify	the	wording	in	favor	
of	Interpretation	1,	which	excludes	widening	unary	operators	to	the	evaluation	format.		

Suggested	Technical	Corrigendum	

In	5.2.4.2.2#9,	replace:	
	

Except	for	assignment	and	cast	(which	remove	all	extra	range	and	precision),	the	
values	yielded	by	operators	with	floating	operands	and	values	subject	to	the	usual	
arithmetic	conversions	and	of	floating	constants	are	evaluated	to	a	format	whose	
range	and	precision	may	be	greater	than	required	by	the	type.	
	

with:	
	
The	values	of	floating	type	yielded	by	operators	subject	to	the	usual	
arithmetic	conversions	and	the	values	of	floating	constants	are	evaluated	to	a	format	
whose	range	and	precision	may	be	greater	than	required	by	the	type.	In	all	cases,	
assignment	and	cast	remove	all	extra	range	and	precision.	

	
	
DDR	#2	
==	

Reference	Document:	C11		

Subject:	Can	DECIMAL_DIG	be	larger	than	necessary?	

Summary	

This	is	about	the	issue	raised	by	Joseph	Myers	in	email	SC22WG14.14285:	
	

C11	defines	DECIMAL_DIG	as	"number	of	decimal	digits,	n,	such	that	any	floating-
point	number	in	the	widest	supported	floating	type	with	pmax	radix	b	digits	can	be	
rounded	to	a	floating-point	number	with	n	decimal	digits	and	back	again	without	
change	to	the	value,"	and	then	gives	a	formula.	
	
Is	it	OK	for	the	value	of	DECIMAL_DIG	to	be	larger	than	given	by	the	formula?		Such	
a	value	would	still	seem	to	meet	the	textual	description,	though	being	suboptimal.	
	
This	is	an	issue	for	implementing	TS	18661-3	when	that	involves	types	wider	than	
long double.		In	C11,	"real	floating	type"	means	float,	double	or	long

double (6.2.5#10)	(and	then	those	types	plus	the	three	complex	types	are	defined	
to	be	the	floating	types).		TS	18661-3	is	supposed	to	be	compatible	with	C11,	so	that	
an	implementation	can	conform	to	both	simultaneously.		The	definition	of	
DECIMAL_DIG	in	TS	18661-3	covers	all	supported	floating	types	and	non-
arithmetic	encodings.		And	that's	not	conditional	on	
__STDC_WANT_IEC_60559_TYPES_EXT__.		So	in	an	implementation	of	TS	
18661-3	that	supports	_Float128,	DECIMAL_DIG	must	be	big	enough	for	
_Float128,	even	if	__STDC_WANT_IEC_60559_TYPES_EXT__	is	not	defined	
when	<float.h>	is	included.		And	that's	only	compatible	with	C11	(if	long
double	is	narrower	than	_Float128)	if	C11	allows	DECIMAL_DIG	to	be	larger	
than	given	by	the	formula.	

	
Agreed.	The	current	specification	for	DECIMAL_DIG	in	TS	18661-3	is	incompatible	with	
C11,	as	explained.	
	
The	suggested	Technical	Corrigendum	below	allows	DECIMAL_DIG	to	be	larger	than	the	
value	of	the	given	formula.	Thus	an	implementation	that	supports	a	floating	type	wider	than	
long double,	for	example	a	wide	type	in	TS	18661-3,	could	define	DECIMAL_DIG	to	be	
large	enough	for	its	widest	type	and	still	conform	as	a	C	implementation	without	extensions.		
	
Where	DECIMAL_DIG	is	used	to	determine	a	sufficient	number	of	digits,	this	change	might	
lead	to	conversions	with	more	digits	than	needed	and	with	more	digits	than	would	have	
been	used	without	the	change.	However,	programs	wishing	the	minimal	sufficient	number	
of	digit	are	better	served	by	the	type-specific	macros	FLT_DECIMAL_DIG,	etc.	
	
We	considered	the	alternative	of	changing	TS	198661-3	to	make	DECIMAL_DIG	dependent	
on	__STDC_WANT_IEC_60559_TYPES_EXT__.		But	this	could	lead	to	errors	resulting	
from	separately	compiled	parts	of	a	program	using	inconsistent	values	of	DECIMAL_DIG.	

Suggested	Technical	Corrigendum	

In	5.2.4.2.2#11,	change	the	bullet	defining	DECIMAL_DIG	from:	
	

—	 number	of	decimal	digits,	n,	such	that	any	floating-point	number	in	the	widest	
supported	floating	type	with	pmax	radix	b	digits	can	be	rounded	to	a	floating-
point	number	with	n	decimal	digits	and	back	again	without	change	to	the	value,	

	
<	…	formula	…	>	

to:	
	

—	 number	of	decimal	digits,	n,	such	that	any	floating-point	number	in	the	widest	
supported	floating	type	with	pmax	radix	b	digits	can	be	rounded	to	a	floating-
point	number	with	n	decimal	digits	and	back	again	without	change	to	the	value,	
at	least	

	
<	…	formula	…	>	

	

DDR	#3	
==	

Reference	Document:	Floating	Point	Extensions,	Part	1		

Subject:	Is	return	of	same	type	convertFormat	or	copy?	

Summary	

This	is	about	the	issue	raised	by	Joseph	Myers	in	email	SC22WG14.14280:	
	

TS	18661-1	says	"Whether	C	assignment	(6.5.16)	(and	conversion	as	if	by	
assignment)	to	the	same	format	is	an	IEC	60559	convertFormat	or	copy	operation	is	
implementation-defined,	even	if	<fenv.h>	defines	the	macro		
FE_SNANS_ALWAYS_SIGNAL	(F.2.1).".	
	
Does	this	apply	to	function	return,	where	the	return	type	of	the	function	is	the	same	
as	the	type	of	the	expression	passed	to	the	return	statement	and	no	wider	
evaluation	format	is	in	use	-	that	is,	may	this	act	as	either	convertFormat	or	
copy?		C11	F.6	clearly	envisages	that	such	a	return	statement	may	do	a	conversion	to	
the	same	type	in	the	case	of	wider	evaluation	formats.		But	6.8.6.4#3	only	refers	to	
conversions	"If	the	expression	has	a	type	different	from	the	return	type	of	the	
function	in	which	it	appears".	

	
The	specification,	from	F.3#3,	quoted	above	is	incomplete	in	that	it	doesn’t	cover	function	
returns,	which	are	not	assignments	or	conversions	as	if	by	assignment.	As	currently	written,	
C11	+	TS18661-1	might	be	read	to	exclude	the	possibility	of	using	convertFormat	in	this	
case.	A	statement	should	be	added	to	say	that	the	implementation	has	the	option	to	apply	
convertFormat	to	the	return	value.	The	change	does	not	break	existing	implementations.		
	
The	effect	of	convertFormat	would	be	that	signaling	NaNs	would	signal	and	noncanonical	
representations	would	be	canonicalized.	It	is	extremely	unlikely	that	a	program	would	
depend	on	convertFormat	not	being	used.	
		
Suggested	Technical	Corrigendum	

In	Clause	8,	to	the	text	for	C	F.3#3:	
	

[3]	Whether	C	assignment	(6.5.16)	(and	conversion	as	if	by	assignment)	to	
the	same	format	is	an	IEC	60559	convertFormat	or	copy	operation	is	
implementation-defined,	even	if	<fenv.h>	defines	the	macro	
FE_SNANS_ALWAYS_SIGNAL	(F.2.1).	

	
append	the	sentence:	
	

If	the	return	expression	of	a	return	statement	is	evaluated	to	the	floating-
point	format	of	the	return	type,	it	is	implementation-defined	whether	a	
convertFormat	operation	is	applied	to	the	result	of	the	return	expression.”	

	

At	the	end	of	Clause	8,	add:	
	

In	F.3#3,	attach	a	footnote	to	the	wording:	
	

Whether	C	assignment	(6.5.16)	(and	conversion	as	if	by	assignment)	to	the	
same	format	is	an	IEC	60559	convertFormat	or	copy	operation	

	
where	the	footnote	is:	

	
*)	Where	the	source	and	destination	formats	are	the	same,	convertFormat	
operations	differ	from	copy	operations	in	that	convertFormat	operations	
raise	the	“invalid”	floating-point	exception	on	signaling	NaN	inputs	and	do	
not	propagate	non-canonical	encodings.	

	

DDR	#4	
==	

Reference	Document:	Floating	Point	Extensions,	Part	1		

Subject:	fetestexceptflag	and	exceptions	passed	to	fegetexceptflag	

Summary	

This	is	about	the	issue	raised	by	Joseph	Myers	in	email	SC22WG14.14328:	
	

TS	18661-1	says,	for	fetestexceptflag,	"The	value	of	*flagp	shall	have	been	
set	by	a	previous	call	to	fegetexceptflag.".	
	
This	contrasts	with	the	C11	wording	for	fesetexceptflag,	"The	value	of	
*flagp	shall	have	been	set	by	a	previous	call	to	fegetexceptflag	whose	
second	argument	represented	at	least	those	floating-point	exceptions	represented	
by	the	argument	excepts.".		So	what	happens	if	more	exceptions	are	specified	in	
the	call	to	fetestexceptflag	than	were	specified	in	the	call	to	
fegetexceptflag?		Then	fegetexceptflag	may	or	may	not	have	stored	any	
meaningful	representation	of	the	state	of	the	extra	exceptions	being	tested.	
	
I	think	fetestexceptflag	should	have	the	same	wording	for	this	issue	as	
fesetexceptflag:	"whose	second	argument	represented	at	least	those	floating-
point	exceptions	represented	by	the	argument	excepts".	

	
fesetexceptflag	sets	global	state,	typically	a	hardware	register,	whereas	
fetestexceptflag	just	reads	a	variable.	It	seems	more	important	to	avoid	spurious	data	
in	the	former.		
	
Still,	there’s	no	utility	in	testing	spurious	flag	settings,	and	placing	the	same	restrictions	on	
fetestexceptflag	as	on	fesetexceptflag	might	be	less	error	prone.		
	

Suggested	Technical	Corrigendum	

In	15.2,	in	the	new	text	for	C	7.6.2.4a#2,	change:	
	

The	value	of	*flagp	shall	have	been	set	by	a	previous	call	to	
fegetexceptflag.	

	
to:	
	

The	value	of	*flagp	shall	have	been	set	by	a	previous	call	to	
fegetexceptflag	whose	second	argument	represented	at	least	those	
floating-point	exceptions	represented	by	the	argument	excepts.	

	

DDR	#5	
==	

Reference	Document:	Floating	Point	Extensions,	Part	1		

Subject:	Editorial	changes	

Summary	

In	CFP	email,	Fred	Tydeman	noted:	
	

Searching	for	"infinite	precision"	in	part	1,	most	of	them	have	"(as	if)	to"	before	it.	
Except,	ffma,	ffmal,	dfmal	which	is	missing	the	"(as	if)".		

	
Right.	In	particular,	all	the	functions	that	round	result	to	narrower	type	have	“(as	if)”,	except	
for	the	fma	family.		
	
Suggested	Technical	Corrigendum	

In	14.5,	in	the	new	text	for	C	7.12.13a.5#2,	insert	“(as	if)”	before	“to	infinite	precision”.	
	

DDR	#6	
==	

Reference	Document:	Floating	Point	Extensions,	Part	2		

Subject:	Editorial	clarification	about	number	digits	in	the	coefficient	

Summary	

In	12.5,	n	is	defined	to	be	“the	number	of	digits	in	the	coefficient	c”,	where	the	decimal	
floating-point	argument	is	represented	by	the	triple	(s,	c,	q).	The	intention	is	that	n	is	the	
number	of	digits	in	the	coefficient	of	the	particular	argument,	i.e.,	the	number	of	significant	
digits,	not	the	maximum	number	of	digits	in	the	coefficient	for	the	type.	This	might	be	

misread,	particularly	since	5.2.4.2.2a	says	

⎯ number	of	digits	in	the	coefficient	
	
DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

This	part	of	5.2.4.2.2a	is	in	the	context	of	characterizing	the	type,	so	clearly	refers	to	the	
type	and	not	any	particular	representation.	

Suggested	Technical	Corrigendum	

In	12.5,	change:	
	

where	n	is	the	number	of	digits	in	the	coefficient	c		
	
to:	
	

	 where	n	is	the	number	of	significant	digits	in	the	coefficient	c	
	
	
DDR	#7	
==	

Reference	Document:	Floating	Point	Extensions,	Part	3		

Subject:	Missing	specification	for	usual	arithmetic	conversions,	tgmath	

Summary	

This	is	about	the	issue	raised	by	Joseph	Myers	in	email	SC22WG14.14282:	
	

C11	specifies	that	the	usual	arithmetic	conversions	on	the	pair	of	types	(long
double,	double)	produces	a	result	of	type	long double.	
	
Suppose	long double	and	double	have	the	same	set	of	values.		TS	18661-3	
rewrites	the	rules	for	usual	arithmetic	conversions	so	that	the	case	"if	both	
operands	are	floating	types	and	the	sets	of	values	of	their	corresponding	real	types	
are	equivalent"	prefers	interchange	types	to	standard	types	to	extended	types.		But	
this	leaves	the	case	of	(long double,	double)	unspecified	as	to	which	type	is	
chosen,	unlike	in	C11,	as	those	are	both	standard	types.	
	
I	think	this	is	a	defect	in	TS	18661-3,	and	it	should	say	that	if	both	are	standard	
types	with	the	same	set	of	values	then	long double	is	preferred	to	double	which	
is	preferred	to	float,	as	in	C11.	
	
A	similar	issue	could	arise	if	two	of	the	extended	types	have	equivalent	sets	of	
values.		I'm	not	aware	of	anything	to	prohibit	that,	although	it	seems	less	likely	in	

practice.		I	think	the	natural	fix	would	be	to	say	that	_Float128x	is	preferred	to	
_Float64x	which	is	preferred	to	_Float32x.	
	
I	think	such	an	issue	would	also	arise	for	<tgmath.h>	(if	_Float64x	and	
_Float128x	have	the	same	set	of	values,	the	choice	doesn't	seem	to	be	
specified).		It	also	seems	possible	for	the	<tgmath.h>	rules	for	purely	floating-
point	arguments	to	produce	a	different	result	from	the	usual	arithmetic	conversions	
(consider	the	case	where	_Float32x	is	wider	than	long double,	and	
<tgmath.h>	chooses	long double),	and	since	rules	that	are	the	same	in	most	
cases	but	subtly	different	in	obscure	cases	tend	to	be	confusing,	I	wonder	if	it	might	
be	better	to	specify	much	simpler	rules	for	<tgmath.h>:	take	the	type	resulting	
from	the	usual	arithmetic	conversions[*],	where	integer	arguments	are	replaced	by	
_Decimal64	if	there	are	any	decimal	arguments	and	double	otherwise.		(That's	
different	from	the	present	rules	for	e.g.	(_Float32x,	int),	but	it's	a	lot	simpler,	
and	seems	unlikely	in	practice	to	choose	a	type	with	a	different	set	of	values	from	
the	present	choice.)	
	
[*]	Meaningful	for	more	than	two	arguments	as	long	as	the	usual	arithmetic	
conversions	are	commutative	and	associative	as	an	operation	on	pairs	of	types.	

	
Though	substantive,	the	suggested	change	to	the	usual	arithmetic	conversions	is	consistent	
with	the	intention	in	TS	18661-3	to	specify	all	the	cases	(except	where	neither	format	is	a	
subset	of	the	other	and	the	formats	are	not	the	same).	The	missing	cases	were	an	oversight.	
The	suggested	preferences	of	long double	over	double	over	float	and	_Float128x	
over	_Float64x	over	_Float32x	are	the	obvious	choices.	
	
Joseph	Myers	notes	that	the	<tgmath.h>	specification	is	incomplete	in	the	same	way	as	
the	usual	arithmetic	conversions.	He	argues	for	simplifying	the	specification	by	referring	to	
the	usual	arithmetic	conversions	specification,	rather	than	mostly	repeating	it,	as	the	
current	specification	does.	The	suggested	Technical	Corrigendum	below	follows	this	new	
approach.	Though	a	substantive	change	to	TS	18661-3,	the	effects	on	implementations	and	
users	are	expected	to	be	minimal	–	worth	the	simplification.	
	
The	suggested	Technical	Corrigendum	below	also	restores	footnote	number	62,	which	is	
lost	in	the	current	TS	18661-3.	
	
Suggested	Technical	Corrigendum	

In	clause	8,	change	the	replacement	text	for	6.3.1.8#1:	
	

If	one	operand	has	decimal	floating	type,	the	other	operand	shall	not	have	
standard	floating	type,	binary	floating	type,	complex	type,	or	imaginary	type.	
	
If	both	operands	have	floating	types	and	neither	of	the	sets	of	values	of	their	
corresponding	real	types	is	a	subset	of	(or	equivalent	to)	the	other,	the	
behavior	is	undefined.	
	

Otherwise,	if	both	operands	are	floating	types	and	the	sets	of	values	of	their	
corresponding	real	types	are	equivalent,	then	the	following	rules	are	
applied:	
	

If	both	operands	have	the	same	corresponding	real	type,	no	further	
conversion	is	needed.	
	
Otherwise,	if	the	corresponding	real	type	of	either	operand	is	an	
interchange	floating	type,	the	other	operand	is	converted,	without	
change	of	type	domain,	to	a	type	whose	corresponding	real	type	
is	that	same	interchange	floating	type.	
	
Otherwise,	if	the	corresponding	real	type	of	either	operand	is	a	
standard	floating	type,	the	other	operand	is	converted,	without	
change	of	type	domain,	to	a	type	whose	corresponding	real	type	
is	that	same	standard	floating	type.	

	
Otherwise,	if	both	operands	have	floating	types,	the	operand,	whose	set	of	
values	of	its	corresponding	real	type	is	a	(proper)	subset	of	the	set	of	values	
of	the	corresponding	real	type	of	the	other	operand,	is	converted,	without	
change	of	type	domain,	to	a	type	with	the	corresponding	real	type	of	that	
other	operand.	
	
Otherwise,	if	one	operand	has	a	floating	type,	the	other	operand	is	converted	
to	the	corresponding	real	type	of	the	operand	of	floating	type.	
	
Otherwise,	the	integer	promotions	are	performed	on	both	operands.	Then	
the	following	rules	are	applied	to	the	promoted	operands:	

.	.	.	
	

	
to:	
	

If	one	operand	has	decimal	floating	type,	the	other	operand	shall	not	have	
standard	floating	type,	binary	floating	type,	complex	type,	or	imaginary	type.	
	
If	both	operands	have	floating	types	and	neither	of	the	sets	of	values	of	their	
corresponding	real	types	is	a	subset	of	(or	equivalent	to)	the	other,	the	
behavior	is	undefined.	
	
If	both	operands	have	the	same	corresponding	real	type,	no	further	
conversion	is	needed.		
	
Otherwise,	if	both	operands	are	floating	types	and	the	sets	of	values	of	their	
corresponding	real	types	are	equivalent,	then	the	following	rules	are	
applied:		
	

If	the	corresponding	real	type	of	either	operand	is	an	interchange	
floating	type,	the	other	operand	is	converted,	without	change	of	type	

domain,	to	a	type	whose	corresponding	real	type	is	that	same	
interchange	floating	type.	

	
Otherwise,	if	the	corresponding	real	type	of	either	operand	is	
long double,	the	other	operand	is	converted,	without	change	of	
type	domain,	to	a	type	whose	corresponding	real	type	
is	long double.	

	
Otherwise,	if	the	corresponding	real	type	of	either	operand	
is	double,	the	other	operand	is	converted,	without	change	of	
type	domain,	to	a	type	whose	corresponding	real	type	is	double.	

	
(All	cases	where	float might	have	the	same	format	as	another	
type	are	covered	above.)	

	
Otherwise,	if	the	corresponding	real	type	of	either	operand	
is	_Float128x	or	_Decimal128x,	the	other	operand	is	converted,	
without	change	of	type	domain,	to	a	type	whose	corresponding	real	
type	is	_Float128x	or	_Decimal128x,	respectively.	

	
Otherwise,	if	the	corresponding	real	type	of	either	operand	
is	_Float64x	or	_Decimal64x,	the	other	operand	is	converted,	
without	change	of	type	domain,	to	a	type	whose	corresponding	real	
type	is	_Float64x	or	_Decimal64x,	respectively.	
	

Otherwise,	if	both	operands	have	floating	types,	the	operand,	whose	set	of	
values	of	its	corresponding	real	type	is	a	(proper)	subset	of	the	set	of	values	
of	the	corresponding	real	type	of	the	other	operand,	is	converted,	without	
change	of	type	domain62),	to	a	type	with	the	corresponding	real	type	of	that	
other	operand.	
	
Otherwise,	if	one	operand	has	a	floating	type,	the	other	operand	is	converted	
to	the	corresponding	real	type	of	the	operand	of	floating	type.	
	
Otherwise,	the	integer	promotions	are	performed	on	both	operands.	Then	
the	following	rules	are	applied	to	the	promoted	operands:	

.	.	.	
	
In	clause	15,	replace:	
	

In	7.25#3c,	replace	the	bullets:	
	

…	bullets	…	
	
with:	

—		If	two	arguments	have	floating	types	and	neither	of	the	sets	of	values	of	
their	corresponding	real	types	is	a	subset	of	(or	equivalent	to)	the	other,	
the	behavior	is	undefined.	

—		If	any	arguments	for	generic	parameters	have	type	_DecimalM	where	
M	≥	64	or	_DecimalNx	where	N	≥	32,	the	type	determined	is	the	widest	
of	the	types	of	these	arguments.	If	_DecimalM	and	_DecimalNx	are	
both	widest	types	(with	equivalent	sets	of	values)	of	these	arguments,	
the	type	determined	is	_DecimalM.	

—		Otherwise,	if	any	argument	for	generic	parameters	is	of	integer	type	and	
another	argument	for	generic	parameters	has	type	_Decimal32,	the	
type	determined	is	_Decimal64.	

—		Otherwise,	if	any	argument	for	generic	parameters	has	type	
_Decimal32,	the	type	determined	is	_Decimal32.	

—		Otherwise,	if	the	corresponding	real	type	of	any	argument	for	generic	
parameters	has	type	long double,	_FloatM	where	M	≥	128,	or	
_FloatNx	where	N	≥	64,	the	type	determined	is	the	widest	of	the	
corresponding	real	types	of	these	arguments.	If	_FloatM	and	either	
long double	or	_FloatNx	are	both	widest	corresponding	real	types	
(with	equivalent	sets	of	values)	of	these	arguments,	the	type	determined	
is	_FloatM.	Otherwise,	if	long double	and	_FloatNx	are	both	
widest	corresponding	real	types	(with	equivalent	sets	of	values)	of	these	
arguments,	the	type	determined	is	long double.	

—		Otherwise,	if	the	corresponding	real	type	of	any	argument	for	generic	
parameters	has	type	double,	_Float64,	or	_Float32x,	the	type	
determined	is	the	widest	of	the	corresponding	real	types	of	these	
arguments.	If	_Float64	and	either	double	or _Float32x	are	both	
widest	corresponding	real	types	(with	equivalent	sets	of	values)	of	these	
arguments,	the	type	determined	is	_Float64.	Otherwise,	if	double	
and	_Float32x	are	both	widest	corresponding	real	types	(with	
equivalent	sets	of	values)	of	these	arguments,	the	type	determined	is	
double.	

—		Otherwise,	if	any	argument	for	generic	parameters	is	of	integer	type,	the	
type	determined	is	double.	

—		Otherwise,	if	the	corresponding	real	type	of	any	argument	for	generic	
parameters	has	type	_Float32,	the	type	determined	is	_Float32.	

—		Otherwise,	the	type	determined	is	float.	

In	the	second	bullet	7.25#3c,	attach	a	footnote	to	the	wording:	

the	type	determined	is	the	widest	

where	the	footnote	is:	

*)	The	term	widest	here	refers	to	a	type	whose	set	of	values	is	a	superset	of	
(or	equivalent	to)	the	sets	of	values	of	the	other	types.	

with:		
	

In	7.25#3c,	replace	the	first	sentence	and	bullets:	
	

[3c]	Except	for	the	macros	for	functions	that	round	result	to	a	narrower	type	
(7.12.13a),	use	of	a	type-generic	macro	invokes	a	function	whose	generic	
parameters	have	the	corresponding	real	type	determined	by	the	
corresponding	real	types	of	the	arguments	as	follows:	

—	 First,	if	any	argument	for	generic	parameters	has	type	_Decimal128,	
the	type	determined	is	_Decimal128.	

—	 Otherwise,	if	any	argument	for	generic	parameters	has	type	
_Decimal64,	or	if	any	argument	for	generic	parameters	is	of	integer	
type	and	another	argument	for	generic	parameters	has	type	
_Decimal32,	the	type	determined	is	_Decimal64.	

—	 Otherwise,	if	any	argument	for	generic	parameters	has	type	
_Decimal32,	the	type	determined	is	_Decimal32.	

—	 Otherwise,	if	the	corresponding	real	type	of	any	argument	for	generic	
parameters	is	long double,	the	type	determined	is	long double.	

—	 Otherwise,	if	the	corresponding	real	type	of	any	argument	for	generic	
parameters	is	double	or	is	of	integer	type,	the	type	determined	is	
double.	

—	 Otherwise,	if	any	argument	for	generic	parameters	is	of	integer	type,	the	
type	determined	is	double.	

—	 Otherwise,	the	type	determined	is	float.	

with:	
	

[3c]	Except	for	the	macros	for	functions	that	round	result	to	a	narrower	type	
(7.12.13a),	use	of	a	type-generic	macro	invokes	a	function	whose	generic	
parameters	have	the	corresponding	real	type	determined	by	the	types	of	the	
arguments	for	the	generic	parameters	as	follows:	
	
—	Arguments	of	integer	type	are	regarded	as	having	type	_Decimal64	if	
any	argument	has	decimal	floating	type,	and	as	having	type	double	
otherwise.	

	
—	If	the	function	has	exactly	one	generic	parameter,	the	type	determined	is	
the	corresponding	real	type	of	the	argument	for	the	generic	parameter.	

	
—	If	the	function	has	exactly	two	generic	parameters,	the	type	determined	is	
the	corresponding	real	type	determined	by	the	usual	arithmetic	
conversions	(6.3.1.8)	applied	to	the	arguments	for	the	
generic	parameters.	

	
—	If	the	function	has	more	than	two	generic	parameters,	the	type	
determined	is	the	corresponding	real	type	determined	by	repeatedly	
applying	the	usual	arithmetic	conversions,	first	to	the	first	two	
arguments	for	generic	parameters,	then	to	that	result	type	and	the	next	
argument	for	a	generic	parameter,	and	so	forth	until	the	usual	arithmetic	
conversions	have	been	applied	to	the	last	argument	for	a	generic	
parameter.	

	
	
DDR	#8	
==	

Reference	Document:	Floating	Point	Extensions,	Part	1		

Subject:	wrong	type	for	fesetmode	parameter	

Summary	

This	is	about	the	issue	raised	by	Joseph	Myers	in	email	SC22WG14.14358:	
	

TS	18661-1	gives	the	declaration	of	fesetmode	as:	
	
int fesetmode(const fenv_t *modep);
	
The	argument	should	be	of	type	const femode_t *,	not	const fenv_t *.	
	
--		

	
This	was	an	editorial	cut-and-past	error.	The	Description	says	the	argument	modep	shall	
point	to	an	objet	set	by	a	call	to	fegetmode,	which	sets	objects	of	type	femode_t.	It’s	
unlikely	the	function	would	be	implemented	with	the	erroneous	type.	
	
Suggested	Technical	Corrigendum	

In	15.3,	in	the	new	text	for	C	7.6.3.1a#1,	change:	
	
 int fesetmode(const fenv_t *modep);
	
to:	
	
 int fesetmode(const femode_t *modep);
	

DDR	#9	
==	

Reference	Document:	Floating	Point	Extensions,	Part	2		

Subject:	a-style	formatting	not	IEC	60559	conformant	

Summary	

The	a-style	formatting	specified	in	subclause	12.5	of	TS	18661-2	is	not	an	IEC	60559	
conversion	for	cases	where	the	formatting	precision	is	less	than	the	length	of	the	coefficient	
of	the	input.	The	specification	entails	an	intermediate	rounding	to	the	floating	type	of	the	
input,	which	might	overflow	resulting	in	a	character	sequence	representation	of	infinity.	IEC	
60559	conversions	to	character	sequences	do	not	overflow,	unless	the	language	over-
restricts	the	exponent	range	for	character	sequence	output,	which	C	does	not.		
	
Another	undesirable	aspect	of	the	current	specification	is	that	in	certain	cases	it	produces	
results	with	more	precision	than	given	by	a	width	modifier.	
	
Here	are	some	examples,	showing	the	result	of	the	intermediate	conversion,	with	different	
behaviors	for	the	current	spec	(“old”)	and	the	spec	in	the	suggested	Technical	Corrigendum	
below	(“new”):	
	
For	_Decimal32	input	x	with	representation	(1,	9512345,	90)	and	specifier	...	
	
%.3Ha
old:	 	 x	 ->	 (1,	9510000,	90)	 ->	 9.510000e96	
new:	 	 x	 ->	 (1,	951,	94)	 	 ->	 9.51e96	
	
%.2Ha
old:	 	 x	 ->	 (1,	9500000,	90)	 ->	 9.500000e96	
new:	 	 x	 ->	 (1,	95,	95)	 	 ->	 9.5e96	
	
%.1Ha
old:		 	 x	 ->	 Inf		 	 	 ->	 inf	
new:		 	 x	 ->	 (1,	1,	97)	 	 ->	 1e97	
	
Here’s	another	example:	
	
For	_Decimal32	input	x	with	representation	(1,	9512345,	86)	and	specifier	...	
	
%.2Ha
old:	 	 x	 ->	 (1,	950,	90)	 	 ->	 9.50e92	
new:	 	 x	 ->	 (1,	95,	91)	 	 ->	 9.5e92	
	
The	examples	use	a	to-nearest	rounding.	
		
As	the	examples	illustrate,	the	problematic	cases	for	the	current	“old”	spec	occur	because	of	
the	exponent	range	limitation	of	the	format	used	for	the	intermediate	conversion.	

	
The	suggested	Technical	Corrigendum	below	specifies	formatting	that	is	IEC	60559	
conformant	and	which	honors	a	width	modifier.	It	does	not	change	the	numerical	value	of	
the	result,	except	in	overflow	cases.	
	
Suggested	Technical	Corrigendum	

In	12.5,	in	the	addition	to	7.21.6.1#8	and	7.29.2.1#8,	under	a,A	conversion	specifiers,	
change:	
	

If	the	precision	is	present	(in	the	conversion	specification)	and	is	zero	or	at	least	as	
large	as	the	precision	p	(5.2.4.2.2)	of	the	decimal	floating	type,	the	conversion	is	as	if	
the	precision	were	missing.	If	the	precision	is	present	(and	nonzero)	and	less	than	
the	precision	p	of	the	decimal	floating	type,	the	conversion	first	obtains	an	
intermediate	result	by	rounding	the	input	in	the	type,	according	to	the	current	
rounding	direction	for	decimal	floating-point	operations,	to	the	number	of	digits	
specified	by	the	precision,	then	converts	the	intermediate	result	as	if	the	precision	
were	missing.	The	length	of	the	coefficient	of	the	intermediate	result	is	the	smallest	
number,	at	least	as	large	as	the	formatting	precision,	for	which	the	quantum	
exponent	is	within	the	quantum	exponent	range	of	the	type	(see	5.2.4.2.2a).	The	
intermediate	rounding	may	overflow.	

	
to:	

If	the	precision	P	is	present	(in	the	conversion	specification)	and	is	zero	or	at	least	
as	large	as	the	precision	p	(5.2.4.2.2)	of	the	decimal	floating	type,	the	conversion	is	
as	if	the	precision	were	missing.	If	the	precision	P	is	present	(and	nonzero)	and	less	
than	the	precision	p	of	the	decimal	floating	type,	the	conversion	first	obtains	an	
intermediate	result	as	follows,	where	n	is	the	number	of	significant	digits	in	the	
coefficient:	
	

If	n	<=	P,	set	the	intermediate	result	to	the	input.	
	
If	n	>	P,	round	the	input	value,	according	to	the	current	rounding	direction	
for	decimal	floating-point	operations,	to	P	decimal	digits,	with	unbounded	
exponent	range,	representing	the	result	with	a	P-digit	integer	coefficient	
when	in	the	form	(s,	c,	q).	

	
Convert	the	intermediate	result	in	the	manner	described	above	for	the	case	where	
the	precision	is	missing.	

	
In	12.5,	in	the	addition	to	7.21.6.1#8	and	7.29.2.1#8,	in	EXAMPLE	3,	change	the	results:	
	

9.54321e+93
9.5432e+93
9.543e+93
9.540e+93
9.500e+93
1.0000e+94
inf

	

to:	
	

9.54321e+93
9.5432e+93
9.543e+93
9.54e+93
9.5e+93
1e+94
1e+97

	
	
	
	 	 	
	

