
WG14 N1386

Additions to ISO/IEC TR 18037 to support named execution
space.

Walter Banks

Byte Craft Limited
Canada

April 2009

Named execution addition to IEC/ISO 18037

This paper outlines additions to N1275 ISO/IEC TR 18037 Programming languages -
C - Extensions to support embedded processors to add named execution support. The
addition of named execution space is consistent with some current embedded systems
applications. The additions would have limited impact with fundamental definitions for
named execution space to section 5, and a section of reference material in Annex B
should discuss design considerations for off-processor calls and flow control in
applications using multiple processors.

Rationale

Handling single chip processors with multiple execution units.
In the embedded systems world this is actually quite common. A single chip processor is
created with multiple execution units. These execution units are usually heterogeneous,
often with diverse architecture and instructions sets. Communication between processors
is typically through shared memory, but may take other forms instead or in addition. The
internal complexity ranges from a host processor with a programmable I/O controller to
true co-processors. Single-chip processors configured this way have been in production
for about 20 years. Some examples include the Zilog 86C94 used in disk drives. Motorola
68K/TPU were offered as automotive and industrial controllers. Freescale
68HC12X/XGATE contains a general purpose RISC processor used as a true co-
processor. 68S08/XGATE is used as a special purpose processor primarily in automotive
applications. Freescale PowerPC/eTPU and ColdFire/eTPU are used in industrial
controllers and automotive engine controllers. Texas Instruments TMS570 Dual Cortex
R4 is used in highly reliable industrial controllers.

It should be noted that processor combinations are both heterogeneous and homogenous.

All of the recent examples have parts where the execution space is in some way
connected.

These processors are easily configured to support applications that are tightly or loosely
coupled, with code that is implemented for a single application or as separate parallel
applications.

Multiple processor environments in consumer electronics

Many high volume consumer goods manufacturers have a unique development work
flow. The whole application is prototyped in a single processor. This allows them to
quickly produce many working prototypes for product evaluation and even a small
product run for marketing tests.

The production engineering phase goes though a cycle of cost reduction of the final
product. During this phase, all the usual stuff happens and, very often, this single
processor is replaced with several processors. The three main reasons that this is done
are: to reduce overall production bill of materials cost; to reduce assembly costs by
replacing wiring bundles with two or three line communication links between functional
units; and to run the processor clocks at a lower speed to enable the production product to
meet FCC and other countries’ RF radiation requirements.

The original application software is functionally separated and divided among the
multiple processors. The application software remains surprisingly intact, with the
addition of interprocessor communication functions to pass data and request
interprocessor services.

The application dividing process, distributing the single processor application code
among multiple processors, is an interesting one. Independent of whether it is automated
or hand divided, each processor becomes a geographical center of reference. Software
that is associated with the I/O devices of a processor becomes attached to that processor,
and, where possible, the next layer of calling software gets located in the same processor
that contains lower-level called functions. In a similar way, data is distributed among
processors based on where it is referenced and on available space.

Off processor data references are easily handled using IEC/ISO 18037 user defined data
spaces. Each off processor reference is handled through an application-specific set of data
access primitives. Named execution space or user defined execution space would be a
logical extension to IEC/ISO 18037 to support this type of development.

Interprocessor calls

Interprocessor calls in a multiprocessor application environment need to be handled
separately. In a single processor environment, calls and code execution are executed as a

sequential process. In a multiple processor environment, calls initiate execution in a
second processor but what happens to the first processor? It can continue on (non-
blocking) or it can wait for execution to complete in the second processor and then
continue (blocking). The behavior of the calling processor after initiating a non-local
function call is implementation defined. In some implementations it may be desirable for
this to be application defined.

There are alternative approaches to handling interprocessor calls in a multiprocessor
environment, but we treated all void functions as initiating an action in a second
processor and immediately continuing with execution (non blocking), and any function
that returns a value was implemented as a blocking call. This simple approach is not
perfect, but is easy to understand and visualize. The most common missed case with this
heuristic is that of initiating a non-blocking off processor call that is expected to return
values in the future. In our implementation this was done by returns though global
variables with a void function. The data was protected using semaphores

Additions to N1275 ISO/IEC TR 18037

The following additions to 18037 are needed to support named execution space:

5.4 Named execution space

Named execution space adds an optional execution-class function
specifier to function declarations. The purpose of the execution-class
modifier is to connect a C function implementation to a specific
execution unit.

Each of the execution-class modifiers is a unique name in the form of an
identifier associated with a processor execution unit. Execution-class
modifiers are ordinary identifiers, sharing the same name space as
variables and typedef names. Any such names follow the same rules for
scope as other ordinary identifiers.

An implementation will provide an implementation-defined set of
intrinsic processor names that are, in effect, predefined at the start of
every translation unit. The names of intrinsic processor names must be
reserved identifiers (beginning with an underscore and an uppercase
letter or with two underscores). An implementation may also optionally
support a means for new processor name to be defined within a
translation unit.

The execution-class modifier name must be initially declared as follows;
then it may be referenced as a part of a function declaration.

__Processor execution_class_name{[n]} = processor_id{,optional
arguments};

Execution class names may be either a simple name or an array
declaration associated with a single processor_id. An execution class
array defines several processors that share identical characteristic that
are individually distinguished by the array index.

Optional arguments are implementation defined. They provide
processor- or compiler-specific information with an execution class
modifier.

The C syntax for the use of execution-class modifier in a function
declaration to include execution-class names in the function declaration
may optionally appear only once for each function declaration.

5.4.1 Detailed changes to ISO/IEC 9899:1999
This clause details the modifications to ISO/IEC 9899:1999 needed to incorporate the
functionality of execution-class specifiers overviewed in Clauses 5.4 of this Technical
Report. The changes listed in this clause are limited to syntax and semantics; examples,
(forward) references and other descriptive information are omitted. The modifications are
ordered according to the clauses of ISO/IEC 9899:1999 to which they refer. If a clause of
ISO/IEC 9899:1999 is not mentioned, no changes to that clause are needed. New clauses
are indicated with (NEW CLAUSE); resulting changes in the existing numbering are not
indicated. Clauses number mm.nna of new clause indicates that this clause follows
immediately clause mm.nn at the same level.

Clause 6.7.4.1 – Function Modifier (NEW CLAUSE)

Function Specifiers This will add execution class specifiers as a function specifier.

Syntax
1 function-Modifier:

execution-class
Constraints
2 Function specifiers shall be used only in the declaration of an identifier for a

function.
Semantics
3 A function declared with an execution-class function modifier will execute

on the named execution unit. The function modifier may optionally appear
only once for each function declaration.

4 Any function with internal linkage can have a processor modifier. For a
function with external linkage, the processor modifier remains as the original
function was declared.

EXAMPLE
5 The declaration of an execution class specifier function modifier with external

linkage can result in either an external definition, or a definition available for
use only within the translation unit. A file scope declaration with extern
creates an external definition. The following example shows an execution
class function modifier.

function_modifier double fahr(double t)
{
 return (9.0 * t) / 5.0 + 32.0;
}

Additions to Annex B

B.2 Execution address space support

B.2.1 Execution address space modifiers
Execution space modifiers may have implementation defined optional arguments. The
optional arguments are available to tie the execution unit-specific information to a new
name defined by the _Processor definition statement.

__Processor newnam{[n]} = processor_id {,optional arguments};

	WG14 N1386
	Additions to ISO/IEC TR 18037 to support named execution space.
	
	Walter Banks

	Named execution addition to IEC/ISO 18037
	Rationale
	Handling single chip processors with multiple execution units.
	Multiple processor environments in consumer electronics
	Interprocessor calls
	Additions to N1275 ISO/IEC TR 18037
	5.4.1 Detailed changes to ISO/IEC 9899:1999
	Clause 6.7.4.1 – Function Modifier \(NEW CLAUSE�

	Function Specifiers This will add execution class specifiers as a function specifier.
	
	
	
	Syntax
	
	Constraints
	Semantics

	EXAMPLE

	Additions to Annex B
	B.2 Execution address space support
	B.2.1 Execution address space modifiers

