WG14 N1212

Doc. No.: WG14/N1212

Date: 2007-03-26
Project: TR 24732
Authors: Rich Peterson, JJm Thomas

Reply to: Rich Peterson <Rich.Peterson@hp.com>

Subj ect: Miscellaneous edits to N1201 decimal TR

Thi s paper proposes 15 miscellaneous small-scale edits to W5L4/N1201 (TR 24732
draft of 2006/11/10). It does not propose new features, although sone changes
are nore than editorial (e.g. explicit application of 754R semantics to library
functions).

The edits are generally independent of each other, and each is nunbered and
given a title to facilitate di scussion.

1. More accurate representation of current practice.

Page 1, section 1.1, paragraph 5, |ast sentence, change
"The arithmetic used, nowadays,"
to
"The arithmetic used in business applications, nowadays,"

2. Renove specul ative clainms about hardware vs software performance
and market position.

Page 1/2, section 1.1: Qrit paragraph 6 (or at |east the second sentence).
Orit sentence 2 in paragraph 8.

3. | EEE standard should be final this year

Page 2, section 1.2 paragraph 1 identifies the |IEEE revision document
as | EEE- 754R. That shoul d be a pl acehol der to be updated

(here and t hroughout the docunent) to the specific standard

whi ch shoul d be approved before this TRis (i.e. |EEE 754-2007).

4. Feature test macro _ STDC DEC FP__ should all ow for revisions.

Page 5 section 3: the definition of the feature-test macro with a

val ue of 1 does not support inplenentations that track revisions

to this TR or changes that mght be nade to features in a future revision
of the standard that m ght include decimal floating point support.

Change "The integer constant 1" to "The integer constant 20061110L"
5. More self-descriptive nanes for m ni num subnormal nacros

Bottom of page 8 in section 5, the macros for "m ni num
positive subnormal decimal floating nunber” have nanmes
DECnn_SUBNORVAL. Mre sel f-descriptive, and nore

consistent with the preceding set of m ni mum positive
normal i zed deci mal floating nunber nacros, would be

DECnn_M N_SUBNCORMAL. Alternatively, these macros

m ght be renoved fromthe TR as they are not directly derived

Page1lof 5



WG14 N1212

fromthe deci mal floating-point requirenents of 754R, and are

not nentioned in the rationale docunent. These nmacros, along with
the generic floating-point versions of them provide usefu
information, but it would probably be nore appropriate to

consider themin sone possible future effort to enhance

bot h generic and deci mal fl oating-point support.

Avoi d changes not specifically related to decimal floating-point.

Bottom of page 8, top of page 9 in section 5, there are nacros
for the m ni mum subnormal generic floating nunbers. These

are not related to decinmal floating point, the subject of

the TR And even the decimal versions of these macros

are not nmentioned in the rationale docunent. It is

suggested that these be renoved.

If they remain in this TR nore self-descriptive names woul d be
[ FLT| DBL| LDBL] _M N_SUBNORNVAL.

By contrast, the [FLT| DBL|LDBL] _MAXDI GLO nmacros, while not of
decimal floating type, are related to the issue of decinal
representation, are listed in the rational e docunent, and
are not being proposed for renoval.

Refer to 754R rounding rules for conversions, as done in Annex F,
rather than duplicating a conplex re-wording of the rules.

Page 10 section 6.1 paragraph 2a, and page 11 section 6.2 paragraph
4 each mention that a result is correctly rounded, and then go on
to describe rounding rules in nore detail. The existing C99

Annex F specification handles this situation for binary floating-
point sinmply by referring directly to the 754 specification

It would be sinpler and nore reliably express the intent to do
sonet hing simlar here:

In both paragraphs, there is a sentence that ends with the words
"correctly rounded.”. And follow ng that sentence there is nore
text and then a list of rounding behaviors. That foll ow ng text
and the roundi ng behavior list should be removed, and the end of
t he precedi ng sentence changed to read "correctly rounded

wi th exceptions raised as specified in 754R "

The docunent does not mention the inportant 754R concept for
deci mal floating-point that each operation produces a result
with a preferred exponent.

Suggest that at the end of section 4, page 6, another suggested
change to C99 be added as foll ows:

Add a new paragraph to 6.5 Expressions, between paragraphs 8 and 9:
[ 8a] Expressi ons invol ving deci mal fl oating-point operands are
eval uated according to the semantics of 754R, i ncl udi ng

production of results with the preferred exponent as specified
in 754R

Page2 of 5



WG14 N1212

9. "All extra precision and/or range are renoved"???

Top of page 11, section 6.2 paragraph 3 |ast sentence reads:

"Al'l extra precision and/or range (for the converted type) are
renoved."” What does this nmean? Can it just be renoved?

It might intend to say that the value is unchanged and the
exponent of the result is the sane as the exponent of the source,
but that would be covered by the change suggested to C99 6.5 in
edit 8, above.

10. Conversion between decimal and conplex is fully covered by C99.

Page 11, section 6.3 paragraph 1 describes conversion from

decimal to conplex (but not vice-versa), and then it is stated

that "This is covered by C99 6.3.1.7". In fact because deci nal
types are real types it appears that C99 6.3.1.7 covers conversions
in both directions between decimal float and conpl ex, and there

is no need for the first paragraph at all; having it describe
conversion in only one direction adds nore confusion than

clarity. The paragraph should be renoved, |eaving only the

note that "This is covered by C99 6.3.1.7".

11. Comma fault.
M ddl e of page 12, section 6.4, first sentence of the new y-inserted
text: Insert a comm after "conplex type" in "generic floating type,
conpl ex type or imaginary type".

12. More conpl ete correspondence of Clibrary functions wth
754R deci mal support.

Page 17 section 8.2 lists a tiny handful of 754R operations

t hat support deci mal operands and notes that these operations
are inplenented as library functions in C. But there are a
much | arger nunmber of 754R operations that are inplenmented

as Clibrary functions, and it would be useful to have

a conplete list, as it is also inportant to note that

they provide the 754R semantics, including producing results
with the preferred exponent. Suggest the paragraph be repl aced
by the foll ow ng:

The headers and library supply a nunmber of functions and nacros
that inplenment support for decinmal floating point data with the
semantics specified in 754R, including producing results with
the preferred exponent where appropriate. That support is
provi ded by the foll ow ng:

From <mat h. h>, the decimal floating-point type versions of:

sqgrt, fma, fabs, fmax, fmn, ceil, floor, trunc, round, rint, |round,
Ilround, ilogb, |ogb, scalbn, scal bln, copysign, nextafter, remainder
isnan, isinf, isfinite, isnormal, signbit, fpclassify, isunordered,

i sgreater, isgreaterequal, isless, islessequal, quantize, sanmequantum

From <fenv.h>, facilities dealing with decimal context:
ferai seexcept, feclearexcept, fetestexcept, fesetexceptflag,
fegetexceptflag, fe_dec_getround, fe_dec_setround

Page 3 of 5



13.

14.

15.

WG14 N1212

From <stdi o. h>, decimal floating-point nodified format specifiers for
The printf/scanf famly of functions.

From <stdli b. h> and <wchar. h>, the decinal floating-point type versions of:
strtod, wcstod

From <wchar. h>, decimal floating-point nodified format specifiers for
The wide printf/scanf famly of functions

Accuracy of decimal functions specified by 754R

Page 19, section 9.3, first paragraph, third sentence reads:
"Wth the exception of sqrt, max, and mn, the accuracy of the
decimal floating-point results is inplenentation-defined."

This shoul d be changed to read:

"Wth the exception of the decinmal floating-point functions |listed
in 8.2, which have accuracy as specified by 754R, the accuracy of
decimal floating-point results is inplenentation-defined."”

If this change were not made, note that max and min in the
original version should be frmax and fm n.

Correct rounding fromdecimal strings to decimal types is
al ways easy enough.

Page 30 section 9.6 "Recomended practice"” and page 32 section 9.7
"Recommended practice" are identical, applying to conversions to
decimal floating-point frommultibyte string versus wi de string
representations. But unlike conversions to binary-radix
floating-point representations, it is always easy to produce

the correctly-rounded result no matter how many digits are

in the input. Suggest that both "Reconmended practice"

sections be renpbved, and a new ordinary paragraph 8 be added

foll owi ng paragraph 7:

[8] The result is correctly rounded as specified by 754R

Not e, however, that this edit would be superseded by a separate
proposal (in W3GL4/N1215) for a nore conplete specification

for strtodxx behavior that nmeets the 754R requirenent that

the internal representation (including the exponent) be
preserved when a deci mal fl oating-point nunber is

printed and then read back in.

Exanples in 9.8 are m sl eadi ng/incorrect.

Page 33, section 9.8 last paragraph EXAMPLES. The 2.f in the

first exanmple is incorrect in the sense that integer argunents

sel ect double functions, so 2. would be nore correct (e.g. what

if the integer were too large for type float?) And in the second
exanple, the DF suffix is being applied to integer constants.

It might also be clearer to present the expansions using casts
rather than suffixes, since that nore closely matches what actually
happens. Finally, since there is also a separate proposa

(in W314/N1213) to renove the _Decinmal 32 versions of <math. h>
functions, and to have a m x of integer and _Decirmal 32 argunents

Page 4 of 5



WG14 N1212

select the Decimal 64 function rather than Decinmal 32, it seens
si nmpl est to change the second exanple to avoid expansion to a
_Decimal 32 function, making this change i ndependent of the
deci si ons reached on the other proposal.

Suggest changing the two exanples to read:

pow2,3.0) // expands to the double version of pow
/1 pow (doubl e) 2, (doubl e) 3. 0)

pow(2,3.DD) // expands to the _Decinmal 64 version of pow
/1 powd64( ( _Deci mal 64) 2, (_Deci mal 64) 3. DD)

Page5of 5



