
Version 1.3 Page 1 of 31 9:24 AM 2/28/2006 

Editors Notes 

There have been substantial revisions to this document since the Mt. Tremblant meeting.  
The most significant of these changes are: 
 

1. Support for “literal” functions that will operate on a C-style or wide character 
literal string instead of requiring a managed string to be created.  These functions 
have been added for usability of the API. 

2. The managed string library now provides equivalent support for wide character 
strings and multibyte character strings (for each function that accepts a char * 
there is a corresponding function that accepts wchar_t *).  The internal 
representation of the string is not specified.  Extracting a string in a different 
format from the one from which the string was created implies an implicit 
conversion. 

3. Modified support for valid characters subsets to be on a per string basis.   
4. Added for system defined and per string maximum length support.  Exceeding 

these length restrictions now results in a runtime-constraint violation. 
5. Additional functions have been added to provide managed versions of a larger 

subset of C99 string functions. 



Version 1.3 Page 2 of 31 9:24 AM 2/28/2006 

ISO/IEC JTC1 SC22 WG14 N1158 

Date: 2005-08-19 

Reference number of document: ISO/IEC WDTR N1158 

Committee identification: ISO/IEC JTC1 SC22 WG14 

SC22 Secretariat: ANSI 

 

Information Technology — 

Programming languages, their environments and system software 

interfaces — 

Specification for Managed Strings — 

Dr. Fred Long 
Department of Computer Science 

University of Wales, Aberystwyth 
 
 

Robert C. Seacord 
CERT/CC 

Carnegie Mellon University 
 

Hal Burch 
CERT/CC 

Carnegie Mellon University 



Version 1.3 Page 3 of 31 9:24 AM 2/28/2006 

Table of Contents 
 
Introduction......................................................................................................................... 4 
1 Scope................................................................................................................................ 5 
2 Normative references ....................................................................................................... 5 
3 Terms, definitions, and symbols ...................................................................................... 6 

3.1 Runtime-constraint.................................................................................................... 6 
4 Conformance.................................................................................................................... 7 
5 Predefined macro names .................................................................................................. 7 
6 Library.............................................................................................................................. 7 

6.1 Use of errno............................................................................................................... 7 
6.2 Runtime-Constraint Violations ................................................................................. 7 
6.3 Errors <errno.h> .................................................................................................. 8 
6.4 Managed String Type <string_m.h> .................................................................. 8 

7 Library functions.............................................................................................................. 8 
7.1 Utility functions ........................................................................................................ 8 
7.2 Copying functions................................................................................................... 12 
7.3 Concatenation functions.......................................................................................... 13 
7.4 Comparison functions ............................................................................................. 16 
7.5 Search functions...................................................................................................... 19 
7.6 Configuration functions .......................................................................................... 22 
7.7 printf-derived functions ................................................................................... 22 
7.8 scanf-derived functions...................................................................................... 26 
7.9 String slices............................................................................................................. 29 



Version 1.3 Page 4 of 31 9:24 AM 2/28/2006 

Introduction 

String manipulation errors 
Many vulnerabilities in C programs arise through the use of the standard C string 
manipulating functions.  String manipulation errors include buffer overflow through 
string copying, truncation errors, termination errors and improper data sanitization. 

Buffer overflow can easily occur when copying strings if the fixed-length destination of 
the copy is not large enough to accommodate the source of the string.  This is a particular 
problem when the source is user input, which is potentially unbounded.  The usual 
programming practice is to allocate a character array that is generally large enough.  The 
problem is that this can easily be exploited by malicious users who can supply a carefully 
crafted string that overflows the fixed length array in such a way that the security of the 
system is compromised.  This is still the most common exploit in fielded C code today. 

In attempting to overcome the buffer overflow problem, some programmers try to limit 
the number of characters that are copied.  This can result in strings being improperly 
truncated.  This, in turn, results in a loss of data which may lead to a different type of 
software vulnerability. 

A special case of truncation error is a termination error.  Many of the standard C string 
functions rely on strings being null terminated.  However, the length of a string does not 
include the null character.  If just the non-null characters of a string are copied then the 
resulting string may become improperly terminated.  A subsequent access may run off the 
end of the string and corrupt data that should not have been touched. 

Finally, inadequate data sanitization can also lead to vulnerabilities.  Many applications 
require data to be constrained not to contain certain characters.  Very often, malicious 
users can be prevented from exploiting an application by ensuring that the illegal 
characters are not copied into the strings destined for the application. 

Proposed solution 
A secure string library should provide facilities to guard against the problems described 
above.  Furthermore, it should satisfy the following requirements: 

1. Operations should succeed or fail unequivocally.  

2. The facilities should be familiar to C programmers so that they can easily be 
adopted and existing code easily converted. 

3. There should be no surprises in using the facilities.  The new facilities should 
have similar semantics to the standard C string manipulating functions.  Again, 
this will help with the conversion of legacy code. 

Of course, some compromise is needed in order to meet these requirements.  For 
example, it is not possible to completely preserve the existing semantics and provide 
protection against the problems described above. 

Libraries that provide string manipulation functions can be categorized as static or 
dynamic.  Static libraries rely on fixed-length arrays.  A static approach cannot easily 



Version 1.3 Page 5 of 31 9:24 AM 2/28/2006 

overcome the problems described.  With a dynamic approach, strings are resized as 
necessary.  This approach can more easily solve the problems, but a consequence is that 
memory can be exhausted if input is not limited.  To mitigate against this issue, the 
managed string library supports an implementation defined maximum string length.  
Additionally, the string creation function allows for the specification of a per string 
maximum length. 

The managed string library 
This managed string library was developed in response to the need for a string library that 
can improve the quality and security of newly developed C language programs while 
eliminating obstacles to widespread adoption and possible standardization. 

The managed string library is based on a dynamic approach in that memory is allocated 
and reallocated as required.  This approach eliminates the possibility of unbounded 
copies, null-termination errors, and truncation by ensuring there is always adequate space 
available for the resulting string (including the terminating null character).  The one 
exception is if memory is exhausted, which is treated as a runtime-constraint violation.  
In this way, the managed string library accomplishes the goal of succeeding or failing 
loudly. 

The managed string library also provides a built in mechanism for dealing with data 
sanitization by (optionally) ensuring that all characters in a string belong to a predefined 
set of “safe” characters. 

1 Scope 
This Technical Report specifies a series of extensions of the programming language C, 
specified by International Standard ISO/IEC 9899:1999. 

International Standard ISO/IEC 9899:1999 provides important context and specification 
for this Technical Report. Clauses 3 and 4 of this Technical Report should be read as if 
they were merged into Clauses 3 and 4 of ISO/IEC 9899:1999. Clause 5 of this Technical 
Report should be read as if it were merged into Subclause 6.10.8 of ISO/IEC 9899:1999. 
Clause 6 of this Technical Report should be read as if it were merged into the parallel 
structure of named Subclauses of Clause 7 of ISO/IEC 9899:1999. Statements made in 
ISO/IEC 9899:1999, whether about the language or library, apply to this technical report 
unless a corresponding section of this technical report states otherwise. In particular, 
Subclause 7.1.4 ("Use of library functions") of ISO/IEC 9899:1999 applies to this 
technical report. 

2 Normative references 
The following normative documents contain provisions which, through reference in this 
text, constitute provisions of this Technical Report. For dated references, subsequent 
amendments to, or revisions of, any of these publications do not apply. However, parties 
to agreements based on this Technical Report are encouraged to investigate the 
possibility of applying the most recent editions of the normative documents indicated 



Version 1.3 Page 6 of 31 9:24 AM 2/28/2006 

below. For undated references, the latest edition of the normative document referred to 
applies. 

Members of ISO and IEC maintain registers of currently valid International Standards.  

ISO/IEC 9899:1999, Information technology — Programming languages, their 
environments and system software interfaces — Programming Language C. 

ISO/IEC 9899:1999/Cor 1:2001, Information technology — Programming languages, 
their environments and system software interfaces — Programming Language C — 
Technical Corrigendum 1 . 

ISO/IEC 9899:1999/Cor 2:2004, Information technology — Programming languages, 
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 2 . 

ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for 
use in the physical sciences and technology. 

ISO/IEC 646, Information technology — ISO 7-bit coded character set for information 
interchange. 

ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental 
terms. 

ISO 4217, Codes for the representation of currencies and funds. 

ISO 8601, Data elements and interchange formats — Information interchange — 
Representation of dates and times. 

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded 
Character Set (UCS). 

1IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems 
(previously designated IEC 559:1989). 

3 Terms, definitions, and symbols 
For the purposes of this Technical Report, the following definitions apply.  Other terms 
are defined where they appear in italic type.  Terms explicitly defined in this Technical 
Reports are not to be presumed to refer implicitly to similar terms defined elsewhere.  
Terms not defined in this Technical Report are to be interpreted according to ISO/IEC 
9899:1999 and ISO/IEC 2382−1.  Mathematical symbols not defined in this Technical 
Report are to be interpreted according to ISO 31−11. 

3.1 Runtime-constraint 

requirement on a program when calling a library function 

NOTE 1 Despite the similar terms, a runtime-constraint is not a kind of constraint. 

NOTE 2 Implementations shall verify that the runtime-constraints for a library function 
are not violated by the program. 



Version 1.3 Page 7 of 31 9:24 AM 2/28/2006 

4 Conformance 
If a ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint or runtime 
constraint is violated, the behavior is undefined. 

5 Predefined macro names 
The following macro name is conditionally defined by the implementation: 

__STDC_LIB_EXT2__ The integer constant 200603L, intended to indicate 
conformance to this technical report.1 

6 Library 

6.1 Use of errno 
An implementation may set errno for the functions defined in this technical report, but 
is not required to. 

6.2 Runtime-Constraint Violations 
Most functions in this technical report include as part of their specification a list of 
runtime-constraints.  These runtime-constraints are requirements on the program using 
the library. 

Implementations shall check that the runtime-constraints specified for a function are met 
by the program. If a runtime-constraint is violated, the implementation shall call the 
currently registered constraint handler (see set_constraint_handler in 
<stdlib.h>). Multiple runtime-constraint violations in the same call to a library 
function result in only one call to the constraint handler. It is unspecified which one of 
the multiple runtime-constraint violations cause the handler to be called. 

Sometimes, the runtime-constraints section for a function states an action to be performed 
if a runtime-constraint violation occurs. Such actions are performed before calling the 
runtime-constraint handler. Sometimes, the runtime-constraints section lists actions that 
are prohibited if a runtime-constraint violation occurs. Such actions are prohibited to the 
function both before calling the handler and after the handler returns. 

The runtime-constraint handler might not return. If the handler does return, the library 
function whose runtime-constraint was violated shall return some indication of failure as 
given by the returns section in the function’s specification. 

Although runtime-constraints replace many cases of undefined behavior from 
International Standard ISO/IEC 9899:1999, undefined behavior still exists in this 
technical report. Implementations are free to detect any case of undefined behavior and 
treat it as a runtime-constraint violation by calling the runtime-constraint handler. This 
license comes directly from the definition of undefined behavior.  

                                                 
1 The intention is that this will remain an integer constant of type long int that is increased with 
each revision of this technical report. 



Version 1.3 Page 8 of 31 9:24 AM 2/28/2006 

6.3 Errors <errno.h> 
The header <errno.h> defines a type. 

The type is 
errno_t 
which is type int. 

6.4 Managed String Type <string_m.h> 
The header <string_m.h> defines a type an abstract data type: 
 
 typedef void *string_m; 

The structure referenced by this type is private and implementation defined. All managed 
strings of this type have a maximum string length that is determined when the string is 
created.  Functions that have parameters of type string_m consider it a runtime-
constraint violation if the maximum length of a managed string is exceeded. 

Managed strings may also have a defined set of valid characters that can be used in the 
string.  Functions that have parameters of type string_m consider it a runtime-
constraint violation if a managed string would contain invalid characters. 

In addition, functions consider it a runtime-constraint violation if the request would 
require allocating more memory than available. 

7 Library functions 

7.1 Utility functions 

7.1.1 The isnull_m function 

Synopsis 
#include <string_m.h> 
errno_t isnull_m(const string_m s, _Bool *nullstr); 

Runtime-constraints 
s shall not be a null pointer.  s shall reference a valid managed string.  nullstr shall 
not be a null pointer. 

Description 
The isnull_m function tests whether the managed string s is null and delivers this 
result in the parameter referenced by nullstr, given the managed string s. 

Returns 
The isnull_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 



Version 1.3 Page 9 of 31 9:24 AM 2/28/2006 

7.1.2 The isempty_m function 

Synopsis 
#include <string_m.h> 
errno_t isempty_m(const string_m s,  
   _Bool *emptystr); 

Runtime-constraints 
s shall reference a valid managed string.  emptystr shall not be a null pointer. 

Description 
The isempty_m function tests whether the managed string s is empty and delivers 
this result in the parameter referenced by emptystr, given the managed string s. 

Returns 
The isempty_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.1.3 Creating a string_m 

7.1.3.1 The strcreate_m function 

Synopsis 
#include <string_m.h> 
errno_t strcreate_m(string_m *s, const char *cstr, 

const size_t maxlen, const char *charset); 

Runtime-constraints 
s shall not be a null pointer. 

Description 
The strcreate_m function creates a managed string, referenced by s, given a 
conventional string cstr (which may be null or empty).  maxlen specifies the 
maximum length of the string in characters.  If maxlen is 0 the system defined 
maximum length is used.  charset restricts the set of allowable characters to be those 
in the c-style string cstr (which may be empty).  If charset is NULL no restricted 
character set is defined. 

Returns 
The strcreate_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.1.3.2 The wstrcreate_m function 

Synopsis 
#include <string_m.h> 



Version 1.3 Page 10 of 31 9:24 AM 2/28/2006 

errno_t wstrcreate_m(string_m *s, const wchar_t 
*wcstr, 

const size_t maxlen,  
const wchar_t *charset); 

Runtime-constraints 
s shall not be a null pointer. 

Description 
The wstrcreate_m function creates a managed string, referenced by s, given a wide 
character string wcstr (which may be null or empty).  maxlen specifies the 
maximum length of the string in characters.  If maxlen is 0 the system defined 
maximum length is used.  charset restricts the set of allowable characters to be those 
in the wide character string wcstr (which may be empty).  If charset is NULL, no 
restricted character set is defined. 

Returns 
The wstrcreate_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.1.4 The strdelete_m function 

Synopsis 
#include <string_m.h> 
errno_t strdelete_m(string_m *s); 

Runtime-constraints 
s shall not be a null pointer.  *s shall reference a valid managed string. 

Description 
The strdelete_m function deletes the managed string referenced by *s (which may 
be null or empty). 

Returns 
The strdelete_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.1.5 The strlen_m function 

Synopsis 
#include <string_m.h> 
errno_t strlen_m(const string_m s, size_t *size); 

Runtime-constraints 
s shall reference a valid managed string. size shall not be a null pointer. 

Description 



Version 1.3 Page 11 of 31 9:24 AM 2/28/2006 

The strlen_m function computes the length of the managed string s and stores the 
result into the variable referenced by size. 

Returns 
The strlen_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.1.6 Extracting a conventional string 

7.1.6.1 The cgetstr_m function 

Synopsis 
#include <string_m.h> 
errno_t cgetstr_m(const string_m s, char **string); 

Runtime-constraints 
s shall reference a valid managed string.  string shall not be a null pointer.   

Description 
The cgetstr_m function delivers a conventional string into the variable referenced by 
string, given the managed string s.  The caller is responsible for freeing *string. 

Returns 
The cgetstr_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. If there is a runtime-constraint violation, 
*string is set to null. 

7.1.6.2 The wgetstr_m function 

Synopsis 
#include <string_m.h> 
errno_t getstr_m(const string_m s, wchar_t **wcstr); 

Runtime-constraints 
s shall reference a valid managed string.  wcstr shall not be a null pointer. 

Description 
The wgetstr_m function delivers a wide character string into the variable referenced 
by wcstr, given the managed string s.  The caller is responsible for freeing *wcstr. 

Returns 
The wgetstr_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned.  If there is a runtime-constraint violation 
*wcstr is set to null. 



Version 1.3 Page 12 of 31 9:24 AM 2/28/2006 

7.1.7 The strdup_m function 

Synopsis 
#include <string_m.h> 
errno_t strdup_m(string_m *s1, const string_m s2); 

Runtime-constraints 
s1 shall not be a null pointer.  s2 shall reference a valid managed string. 

Description 
The strdup_m function creates a duplicate of the managed string s2 in the managed 
string s1.  The duplicate shall have the same set of valid characters and maximum length. 

Returns 
The strdup_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.2 Copying functions 

7.2.1 Unbounded string copy 

7.2.1.1 The strcpy_m function 

Synopsis 
#include <string_m.h> 
errno_t strcpy_m(string_m s1, const string_m s2); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings. 

Description 
The strcpy_m function copies the managed string s2 into the managed string s1.  
Note that the set of valid characters and maximum length are not copied. 

Returns 
The strcpy_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.2.1.2 The cstrcpy_m function 

Synopsis 
#include <string_m.h> 
errno_t cstrcpy_m(string_m s1, const char *cstr); 

Runtime-constraints 
s1 shall reference a valid managed string. 



Version 1.3 Page 13 of 31 9:24 AM 2/28/2006 

Description 
The cstrcpy_m function copies the string cstr into the managed string s1. 

Returns 
The cstrcpy_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.2.1.3 The wstrcpy_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrcpy_m(string_m s1, 

const wchar_t *wcstr); 

Runtime-constraints 
s1 shall reference a valid managed strings. 

Description 
The wstrcpy_m function copies the string wcstr into the managed string s1. 

Returns 
The wstrcpy_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.2.2 The strncpy_m function 

Synopsis 
#include <string_m.h> 
errno_t strncpy_m (string_m s1, 

const string_m s2, 
size_t n); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings. 

Description 
The strncpy_m function copies not more than n characters from the managed string 
s2 to the managed string s1. If s2 does not contain n characters, the entire string is 
copied.  If s2 contains more than n characters, s1 is set to the string containing the first 
n characters. 

Returns 
The strncpy_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.3 Concatenation functions 



Version 1.3 Page 14 of 31 9:24 AM 2/28/2006 

7.3.1 Unbounded concatenation 

7.3.1.1 The strcat_m function 

Synopsis 
#include <string_m.h> 
errno_t strcat_m(string_m s1, const string_m s2); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings.  s2 shall not be null. 

Description 
The strcat_m function concatenates the managed string s2 onto the managed string 
s1. 

Returns 
The strcat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.3.1.2 The cstrcat_m function 

Synopsis 
#include <string_m.h> 
errno_t cstrcat_m(string_m s, const char *cstr); 

Runtime-constraints 
s shall reference a valid managed string.  cstr shall not be a null pointer. 

Description 
The cstrcat_m function concatenates the c-style string cstr onto the managed string 
s. 

Returns 
The cstrcat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.3.1.3 The wstrcat_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrcat_m(string_m s,  
            const wchar_t *wcstr); 

Runtime-constraints 
s shall reference a valid managed string. wcstr shall not be a null pointer. 
 



Version 1.3 Page 15 of 31 9:24 AM 2/28/2006 

Description 
The wstrcat_m function concatenates the wide character string wcstr onto the 
managed string s. 

Returns 
The wstrcat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.3.2 Bounded concatenation 

7.3.2.1 The strncat_m function 

Synopsis 
#include <string_m.h>  
errno_t strncat_m (string_m s1, 

const string_m s2, 
size_t n); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings.  s2 shall not be null. 

Description 
The strncat_m function appends not more than n characters from the managed 
string s2 to the end of the managed string s1.  

Returns 
The strncat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.3.2.2 The cstrncat_m function 

Synopsis 
#include <string_m.h>  
errno_t strncat_m (string_m s1, 

const char *cstr, 
size_t n); 

Runtime-constraints 
s shall reference a valid managed string.  cstr shall not be a null pointer. 

Description 
The cstrncat_m function appends not more than n characters from C-style string 
cstr to the end of the managed string s.  

Returns 
The cstrncat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 



Version 1.3 Page 16 of 31 9:24 AM 2/28/2006 

 

7.3.2.3 The wstrncat_m function 

Synopsis 
#include <string_m.h>  
errno_t wstrncat_m (string_m s1, 

const wchar_t *wcstr, 
size_t n); 

Runtime-constraints 
s shall reference a valid managed string.  wcstr shall not be a null pointer. 

Description 
The wstrncat_m function appends not more than n characters from C-style string 
wcstr to the end of the managed string s.  

Returns 
The wstrncat_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 
 

7.4 Comparison functions 
The sign of a nonzero value delivered by the comparison functions strcmp_m, and 
strncmp_m is determined by the sign of the difference between the values of the first 
pair of characters (both interpreted as unsigned char) that differ in the objects being 
compared. 

For the purpose of comparison, a null string is less than any other string. 

7.4.1 Unbounded comparison 

7.4.1.1 The strcmp_m function 

Synopsis 
#include <string_m.h> 
errno_t strcmp_m (const string_m s1, 

const string_m s2, 
int *cmp); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings. cmp shall not be null.  

Description 
The strcmp_m function compares the managed string s1 to the managed string s2 
and sets cmp to an integer value greater than, equal to, or less than zero, accordingly as 
s1 is greater than, equal to, or less than s2. 



Version 1.3 Page 17 of 31 9:24 AM 2/28/2006 

Returns 
The strcmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.4.1.2 The cstrcmp_m function 

Synopsis 
#include <string_m.h> 
errno_t cstrcmp_m (const string_m s1, 

const char *cstr,  
int *cmp); 

Runtime-constraints 
s1 shall reference valid a managed string. cmp shall not be null.  

Description 
The cstrcmp_m function compares the managed string s1 to the C-style string cstr 
and sets cmp to an integer value greater than, equal to, or less than zero, accordingly as 
s1is greater than, equal to, or less than cstr. 

Returns 
The cstrcmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.4.1.3 The wstrcmp_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrcmp_m (const string_m s1, 

const wchar_t *wstr, 
int *cmp); 

Runtime-constraints 
s1 shall reference valid a managed string. cmp shall not be null.  

Description 
The wstrcmp_m function compares the managed string s1 to the wide character 
string wstr and sets cmp to an integer value greater than, equal to, or less than zero, 
accordingly as s1 is greater than, equal to, or less than wstr. 

Returns 
The wstrcmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.4.2 The strcoll_m function 

Synopsis 



Version 1.3 Page 18 of 31 9:24 AM 2/28/2006 

#include <string_m.h> 
errno_t strcoll_m (const string_m s1, 

const string_m s2, 
int *cmp); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings. cmp shall not be null. 

Description 
The strcoll_m function compares the managed string s1 to the managed string s2, 
both interpreted as appropriate to the LC_COLLATE category of the current locale, and 
sets cmp to an integer value greater than, equal to, or less than zero, accordingly as s1 
is greater than, equal to, or less than s2 when both are interpreted as appropriate to the 
current locale. 

Returns 
The strcoll_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.4.3 Bounded string comparison 

7.4.3.1 The strncmp_m function 

Synopsis 
#include <string_m.h> 
errno_t strncmp_m (const string_m s1, 

const string_m s2,size_t n, 
int *cmp); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings. cmp shall not be null. 

Description 
The strncmp_m function compares not more than n characters from the managed 
string s1 to the managed string s2 and sets cmp to an integer value greater than, equal 
to, or less than zero, accordingly as s1is greater than, equal to, or less than s2.  

Returns 
The strncmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.4.3.2 The cstrncmp_m function 

Synopsis 
#include <string_m.h> 



Version 1.3 Page 19 of 31 9:24 AM 2/28/2006 

errno_t cstrncmp_m (const string_m s1, 
const char *cstr, size_t n, 
int *cmp); 

Runtime-constraints 
s1 shall reference valid managed strings. cmp shall not be null. 

Description 
The cstrncmp_m function compares not more than n characters (characters that 
follow a null character are not compared) from the managed string s1 to the C-style 
string cstr and sets cmp to an integer value greater than, equal to, or less than zero, 
accordingly as s1is greater than, equal to, or less than cstr.  

Returns 
The cstrncmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 
 

7.4.3.3 The wstrncmp_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrncmp_m (const string_m s1, 

const wchar_t *cstr, size_t n, 
int *cmp); 

Runtime-constraints 
s1 shall reference valid managed strings. cmp shall not be null. 

Description 
The wstrncmp_m function compares not more than n characters (characters that 
follow a null character are not compared) from managed string s1 to the wide character 
string wstr and sets cmp to an integer value greater than, equal to, or less than zero, 
accordingly as s1is greater than, equal to, or less than wstr.  

Returns 
The wstrncmp_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.5 Search functions 

7.5.1 The strtok_m function 

Synopsis 
#include <string_m.h> 
errno_t strtok_m(string_m token, string_m str, 

const string_m delim, string_m ptr); 



Version 1.3 Page 20 of 31 9:24 AM 2/28/2006 

Runtime-constraints 
token, str, delim, and ptr shall reference valid managed strings. 

Description 
The strtok_m function scans the managed string str.  The substring of str up to 
but not including the first occurrence of any of the characters contained in the managed 
string delim is returned as the managed string token.  The remainder of the managed 
string str (after but not including the first character found from delim) is returned as 
the managed string ptr.  If str does not contain any characters in delim (or if delim is 
either empty or null), token shall be set to str and ptr will be set to the null string. 

Returns 

The strtok_m function returns zero if there was no runtime-constraint violation. 
Otherwise, a non-zero value is returned. 

7.5.2 The cstrchr_m function 

Synopsis 
#include <string_m.h> 
errno_t cstrchr_m(string_m out, const string_m str, 

char c); 

Runtime-constraints 
out and str shall reference valid managed strings. 

Description 
The cstrchr_m function scans the managed string str for the first occurrence of c.  
out is set to the string containing and following the first occurrence of c.  If str does 
not contain c, out is set to the null string. 

Returns 

The cstrchr_m function returns zero if there was no runtime-constraint violation. 
Otherwise, a non-zero value is returned. 

7.5.3 The wstrchr_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrchr_m(string_m out, const string_m str, 

wchar_t wc); 

Runtime-constraints 
out and str shall reference valid managed strings. 

Description 



Version 1.3 Page 21 of 31 9:24 AM 2/28/2006 

The wstrchr_m function scans the managed string str for the first occurrence of 
wc.  out is set to the string containing and following the first occurrence of c.  If str 
does not contain wc, out is set to the null string. 

Returns 

The wstrchr_m function returns zero if there was no runtime-constraint violation. 
Otherwise, a non-zero value is returned. 

7.5.4 The strspn_m function 

Synopsis 
#include <string_m.h> 
errno_t strspn_m(string_m str, string_m accept, 

size_t *len); 

Runtime-constraints 
str and accept shall reference a valid managed string.  len shall not be a null 
pointer. 

Description 
The strspn_m function computes the number of characters in the maximum initial 
segment of the managed string str which consists entirely of characters from the 
managed string  accept.  It sets *len to this length. 

Returns 
The strspn_m function returns zero if there was no runtime-constraint violation. 
Otherwise, a non-zero value is returned. 

7.5.5 The strcspn_m function 

Synopsis 
#include <string_m.h> 
errno_t strcspn_m(string_m str, string_m reject, 

size_t *len); 

Runtime-constraints 
str and accept shall reference a valid managed string.  len shall not be a null 
pointer. 

Description 
The strcspn_m function computes the number of characters in the maximum initial 
segment of the managed string str which consists entirely of characters not from the 
managed string  reject.  It sets *len to this length. 

Returns 



Version 1.3 Page 22 of 31 9:24 AM 2/28/2006 

The strcspn_m function returns zero if there was no runtime-constraint violation. 
Otherwise, a non-zero value is returned. 

7.6 Configuration functions 

7.6.1 The setcharset_m function 

Synopsis 
#include <string_m.h> 
errno_t setcharset(string_m s,  

const string_m charset); 

Runtime-constraints 
s and charset shall reference valid managed strings. 

Description 
The setcharset function sets the subset of allowable characters to be those in the 
managed string s (which may be empty).  If mcharset is set to null, a restricted subset 
of valid characters is not enforced. 

Returns 
The setcharset function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.6.2 The setmaxlen_m function 

Synopsis 
#include <string_m.h> 
errno_t setmaxlen_m(string_m s, size_t maxlen); 

Runtime-constraints 
s shall reference a valid managed string. 

Description 
The setcharset_m function sets the maximum length of the managed string s. If 
maxlen is 0 the system defined maximum length is used. 

Returns 
The setcharset function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7 printf-derived functions 
These functions are the managed string equivalents to the printf-derived functions in C.  
Managed string format strings differ from standard C format strings primarily in that they 
are represented as managed strings.  In addition, the ‘%s’ specification refers to a 
managed string, rather than a C-style or wide character string and the `%n’ specification 
is not recognized. 



Version 1.3 Page 23 of 31 9:24 AM 2/28/2006 

7.7.1 The sprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t sprintf_m(string_m buf, const string_m fmt, 

...); 

Runtime-constraints 
buf and fmt shall reference valid managed strings.  The managed string fmt shall be a 
valid format compatible with the arguments after fmt. 

Description 
The sprintf_m function formats its parameters after the second parameter into a 
string according to the format contained in the managed string fmt and stores the result 
in the managed string buf. 

Returns 
The sprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.2 The vsprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t vsprintf_m(string_m buf, 

const string_m fmt, 
va_list args); 

Runtime-constraints 
buf and fmt shall reference a valid managed string.  fmt shall not be null.  The 
managed string fmt shall be a valid format compatible with the arguments args. 

Description 
The vsprintf_m function formats its parameters args into a string according to the 
format contained in the managed string fmt and stores the result in the managed string 
buf. 

Returns 
The vsprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.3 The snprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t sprintf_m(string_m buf, int max, 

const string_m fmt, ...); 



Version 1.3 Page 24 of 31 9:24 AM 2/28/2006 

Runtime-constraints 
buf and fmt shall reference a valid managed string.  fmt shall not be null.  The 
managed string fmt shall by a valid format compatible with the arguments after fmt. 

Description 
The sprintf_m function formats its parameters after the second parameter into a 
string according to the format contained in the managed string fmt and stores the result 
in the managed string buf.  If the resulting string contains more than max characters, it 
is truncated. 

Returns 
The sprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.4 The vsnprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t vsnprintf_m(string_m buf, int max, 

const string_m fmt, 
va_list args); 

Runtime-constraints 
buf and fmt shall reference a valid managed string.  fmt shall not be null.  The 
managed string fmt shall by a valid format compatible with the arguments args.. 

Description 
The vsprintf_m function formats its parameters args into a string according to the 
format contained in the managed string fmt and stores the result in the managed string 
buf.   If the resulting string contains more than max characters, it is truncated. 

Returns 
The vsprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.5 The printf_m function 

Synopsis 
#include <string_m.h> 
errno_t printf_m(const string_m fmt, ...); 

Runtime-constraints 
fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments after fmt. 

Description 



Version 1.3 Page 25 of 31 9:24 AM 2/28/2006 

The printf_m function formats its parameters after the second parameter into a string 
according to the format contained in the managed string fmt and outputs the result to 
standard output. 

Returns 

The printf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.6 The vprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t vprintf_m(const string_m fmt, 

va_list args); 

Runtime-constraints 
fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments args. 
 
Description 
The vprintf_m function formats its parameters args into a string according to the 
format contained in the managed string fmt and outputs the result to standard output 

Returns 
The vprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.7 The fprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t fprintf_m(FILE *file, const string_m fmt, 

...); 

Runtime-constraints 
fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments after fmt. file shall not be 
a null pointer. 

Description 

The fprintf_m function formats its parameters after the second parameter into a 
string according to the format contained in the managed string fmt and outputs the result 
to file. 

Returns 



Version 1.3 Page 26 of 31 9:24 AM 2/28/2006 

The fprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.7.8 The vfprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t vfprintf_m(FILE *file, const string_m fmt, 

va_list args); 

Runtime-constraints 
fmt shall reference a valid managed string.   fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments args.  file shall not be a 
null pointer. 

Description 
The vfprintf_m function formats its parameters args into a string according to the 
format contained in the managed string fmt and outputs the result to file. 

Returns 
The vfprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.8 scanf-derived functions 
These functions are the managed string equivalents to the scanf-derived functions in C.  
Managed string format strings differ from standard C format strings primarily in that they 
are represented as managed strings and the ‘%s’ specification refers to a managed string, 
rather than a C-style or wide character string. 

7.8.1 The sscanf_m function 

Synopsis 
#include <string_m.h> 
errno_t sscanf_m(string_m buf, const string_m fmt, 

...); 

Runtime-constraints 
buf and fmt shall reference a valid managed string.  fmt shall not be null.  The 
managed string fmt shall be a valid format compatible with the arguments after fmt.   

Description 
The sscanf_m function process the managed string buf according to format contained 
in the managed string fmt and stores the results using the arguments after fmt. 

Returns 
The sscanf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 



Version 1.3 Page 27 of 31 9:24 AM 2/28/2006 

7.8.2 The vsscanf_m function 

Synopsis 
#include <string_m.h> 
errno_t vsscanf_m(string_m buf, 

const string_m fmt, 
va_list args); 

Runtime-constraints 
buf and fmt shall reference a valid managed string.  fmt shall not be null.  The 
managed string fmt shall be a valid format compatible with the arguments args.  

Description 
The vsscanf_m function process the managed string buf according to format 
contained in the managed string fmt and stores the results using the arguments in  args. 

Returns 
The vsscanf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.8.3 The scanf_m function 

Synopsis 
#include <string_m.h> 
errno_t scanf_m(const string_m fmt, ...); 

Runtime-constraints 
fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments after fmt. 

Description 
The scanf_m function process input from standard input according to the format 
contained in the managed string fmt and stores the results using the arguments after 
fmt. 

Returns 
The scanf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.8.4 The vscanf_m function 

Synopsis 
#include <string_m.h> 
errno_t vscanf_m(const string_m fmt, 

va_list args); 

Runtime-constraints 



Version 1.3 Page 28 of 31 9:24 AM 2/28/2006 

fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments args. 
 
Description 
The vscanf_m function process input from standard input according to the format 
contained in the managed string fmt and stores the results using the arguments in  args. 

Returns 
The vscanf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.8.5 The fscanf_m function 

Synopsis 
#include <string_m.h> 
errno_t fscanf_m(FILE *file, const string_m fmt, ...); 

Runtime-constraints 
fmt shall reference a valid managed string.  fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments after fmt.  file shall not be 
a null pointer. 

Description 
The fscanf_m function process input from file according to the format contained in 
the managed string fmt and stores the results using the arguments after fmt. 

Returns 
The fscanf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.8.6 The vfprintf_m function 

Synopsis 
#include <string_m.h> 
errno_t vfscanf_m(FILE *file, const string_m fmt, 

va_list args); 

Runtime-constraints 
fmt shall reference a valid managed string.   fmt shall not be null.  The managed string 
fmt shall by a valid format compatible with the arguments args.  file shall not be a 
null pointer. 

Description 
The vfprintf_m function process input from file according to the format contained 
in the managed string fmt and stores the results using the arguments in  args. 

Returns 



Version 1.3 Page 29 of 31 9:24 AM 2/28/2006 

The vfprintf_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.9 String slices 

7.9.1 The strslice_m function 

Synopsis 
#include <string_m.h> 
errno_t strslice_m(string_m s1, 

const string_m s2, 
size_t offset, size_t len); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings.  There shall be sufficient memory to 
store the result. 

Description 
The strslice_m function takes up to len characters from s2, starting at the 
offset character in the string and stores the result in s1.  If there are insufficient 
characters to copy len characters, all available characters are copied.  If offset is 
greater than the number of characters in s2, s1 is set to the null string.  If offset is 
equal to the number of characters in s2 or len is 0, s1 is set to the empty string. 

Returns 
The strslice_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.9.2 The strleft_m function 

Synopsis 
#include <string_m.h> 
errno_t strleft_m(string_m s1, 

const string_m s2, 
size_t len); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings.  There shall be sufficient memory to 
store the result. 

Description 
The strleft_m function copies up to len characters from the start of the managed 
string s2 to the managed string s1.  If s2 does not have len characters, the entire string 
is copied.  If s2 is null, s1 is set to the null string. 

Returns 



Version 1.3 Page 30 of 31 9:24 AM 2/28/2006 

The strleft_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.9.3 The strright_m function 

Synopsis 
#include <string_m.h> 
errno_t strleft_m(string_m s1, 

const string_m s2, 
size_t len); 

Runtime-constraints 
s1 and s2 shall reference valid managed strings.  There shall be sufficient memory to 
store the result. 

Description 
The strright_m function copies up to the last len characters from the managed 
string s2 to the managed string s1.  If s2 does not have len characters, the entire string 
is copied.  If s2 is null, s1 is set to the null string. 

Returns 
The strright_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 

7.9.4 The strchar_m function 

Synopsis 
#include <string_m.h> 
errno_t strchar_m(const string_m s, 

size_t offset, 
char *c); 

Runtime-constraints 
s1 shall reference a valid managed string.  c shall not be null.  offset shall be less 
than the length of the managed string s1.  The character to be returned in c shall be 
representable as a char. 

Description 
The strchar_m function sets c to the offset character (the first character having an 
offset of 0) in the managed string s. 

Returns 
The strchar_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 



Version 1.3 Page 31 of 31 9:24 AM 2/28/2006 

7.9.5 The wstrchar_m function 

Synopsis 
#include <string_m.h> 
errno_t wstrchar_m(const string_m s, 

size_t offset, 
wchar_t *wc); 

Runtime-constraints 
s1 shall reference a valid managed string.  wc shall not be null.  offset shall be less 
than the length of the managed string s1. 

Description 
The wstrchar_m function sets wc to the offset character (the first character having 
an offset of 0) in the managed string s. 

Returns 
The wstrchar_m function returns zero if no runtime-constraints were violated. 
Otherwise, a non-zero value is returned. 
 
 


