
ISO/IEC JTC1 SC22 WG14 N1093

Date: 2004-12-09

Reference number of document: ISO/IEC WDTR 24731

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Techno logy —

Programming languages , their env ironments and s ystem software interfaces —

 Specification for Secure C Library Functions —

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical Report. It is
distributed for review and comment. It is subject to change without notice and shall not be referred to as an
International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (2) Working Draft
Document language: E

ISO/IEC TR 24731

ii © ISO 2004 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

©ISO/IEC WG14 N1093

Contents
Foreword .. iv

Introduction .. v

1. Scope ... 1

2. Normative references .. 1

3. Terms, definitions, and symbols .. 2

4. Predefined macro names ... 3

5. Library ... 4
5.1 Introduction .. 4

5.1.1 Standard headers .. 4
5.1.2 Reserved identifiers .. 5
5.1.3 Use of errno .. 5

5.2 Errors <errno.h> ... 6
5.3 Integer types <stdint.h> .. 7
5.4 Input/output <stdio.h> ... 8

5.4.1 Operations on files ... 8
5.4.2 File access functions .. 10
5.4.3 Formatted input/output functions ... 12
5.4.4 Character input/output functions .. 16

5.5 General utilities <stdlib.h> ... 17
5.5.1 Communication with the environment ... 17
5.5.2 Searching and sorting utilities .. 18
5.5.3 Multibyte/wide character conversion functions 21

5.6 String handling <string.h> .. 23
5.6.1 Copying functions .. 23
5.6.2 Concatenation functions ... 27
5.6.3 Search functions ... 29
5.6.4 Miscellaneous functions ... 31

5.7 Date and time <time.h> ... 33
5.7.1 Components of time ... 33
5.7.2 Time conversion functions ... 33

5.8 Extended multibyte and wide character utilities <wchar.h> 37
5.8.1 Formatted wide character input/output functions 37
5.8.2 General wide string utilities ... 41

Index ... 49

Contents iii

WG14 N1093 ©ISO/IEC

Foreword
1 ISO (the International Organization for Standardization) and IEC (the International

Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective org anization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

2 Technical Reports are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft Technical Reports adopted by the joint
technical committee are circulated to national bodies for voting. Publication as a
Technical Report requires approval by at least 75% of the member bodies casting a vote.

3 The main task of technical committees is to prepare International Standards, but in
exceptional circumstances a technical committee may propose the publication of a
Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an
International Standard, despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other
reason there is the future but not immediate possibility of an agreement on an
International Standard;

— type 3, when a technical committee has collected data of a different kind from that
which is normally published as an International Standard ("state of the art", for
example).

4 Technical Reports of types 1 and 2 are subject to review within three years of publication,
to decide whether they can be transformed into International Standards. Technical
Reports of type 3 do not necessarily have to be reviewed until the data they provide are
considered to be no longer valid or useful.

5 ISO/IEC TR 24731, which is a Technical Report of type 2, was prepared by Joint
Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming languages, their environments and system software interfaces.

iv Foreword

©ISO/IEC WG14 N1093

Introduction
1 Traditionally, the C Library has contained many functions that trust the programmer to

provide output character arrays big enough to hold the result being produced. Not only
do these functions not check that the arrays are big enough, they frequently lack the
information needed to perform such checks. While it is possible to write safe, robust, and
error-free code using the existing library, the library tends to promote programming styles
that lead to mysterious failures if a result is too big for the provided array.

2 Perhaps the most common programming style is to declare character arrays large enough
to handle most practical cases. However, if the program encounters strings too large for it
to process, data is written past the end of arrays overwriting other variables in the
program. The program never gets any indication that a problem exists, and so never has a
chance to recover or to fail gracefully.

3 Worse, this style of programming has compromised the security of computers and
networks. Daemons are given carefully prepared data that overflows buffers and tricks
the daemons into granting access that should be denied.

4 If the programmer writes runtime checks to verify lengths before calling library
functions, then those runtime checks frequently duplicate work done inside the library
functions, which discover string lengths as a side effect of doing their job.

5 This technical report provides alternative functions for the C library that promote safer,
more secure programming. The functions verify that output buffers are large enough for
the intended result and return a failure indicator if they are not. Data is never written past
the end of an array. All string results are null terminated.

6 This technical report also addresses another problem that complicates writing robust
code: functions that are not reentrant because they return pointers to static objects owned
by the function. Such functions can be troublesome since a previously returned result can
change if the function is called again, perhaps by another thread. ∗

Introduction v

©ISO/IEC WG14 N1093

1. Scope
1 This Technical Report specifies a series of extensions of the programming language C,

specified by International Standard ISO/IEC 9899:1999.

2 International Standard ISO/IEC 9899:1999 provides important context and specification
for this Technical Report. Clause 4 of this Technical Report should be read as if it were
merged into Subclause 6.10.8 of ISO/IEC 9899:1999. Clause 5 of this Technical Report
should be read as if it were merged into the parallel structure of named Subclauses of
Clause 7 of ISO/IEC 9899:1999.

2. Normative references
1 The following normative documents contain provisions which, through reference in this

text, constitute provisions of this Technical Report. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. Howev er, parties
to agreements based on this Technical Report are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid International Standards.

2 ISO/IEC 9899:1999, Information technology — Programming languages, their
environments and system software interfaces — Programming Language C.

3 ISO/IEC 9899:1999/Cor 1:2001, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 1 .

4 ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

5 ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange.

6 ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

7 ISO 4217, Codes for the representation of currencies and funds.

8 ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

9 ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

10 IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

§2 General 1

WG14 N1093 ©ISO/IEC

3. Terms, definitions, and symbols
1 For the purposes of this Technical Report, the following definitions apply. Other terms

are defined where they appear in italic type. Terms explicitly defined in this Technical
Report are not to be presumed to refer implicitly to similar terms defined elsewhere.
Terms not defined in this Technical Report are to be interpreted according to
ISO/IEC 9899:1999 and ISO/IEC 2382−1. Mathematical symbols not defined in this
Technical Report are to be interpreted according to ISO 31−11.

3.1
1 diagnosed undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
that an implementation shall diagnose by, in effect, calling an implementation-defined
function1) (including for this purpose, the abort macro). The called function shall not
have any undefined behavior.2)

2 This Technical Report explicitly states the conditions that constitute diagnosed undefined
behavior.3) Typically, these conditions are invalid values as arguments to a library
function upon entry to that function. This technical report then states how the function
should behave in the presence of the diagnosed undefined behavior.

3 Should the implementation-defined called function return, the function containing the
diagnosed undefined behavior will then behave as explicitly specified for the case of
diagnosed undefined behavior.4)

4 If an invocation of a library function contains multiple instances of diagnosed undefined
behavior, only the first such instance encountered need be diagnosed by the
implementation, although the implementation is permitted to diagnose others. An
implementation shall prevent undefined behavior by diagnosing any diagnosed undefined
behavior leading to that undefined behavior.

1) For example, the implementation-defined called function might do nothing, print a message, exit the

program, call a user-written handler, or raise a signal.

2) If the implementation-defined called function invokes a user-written function (either by calling it or as

a signal handler), there is always the possibility that the user-written function might contain undefined

behavior. That is permitted since it is not undefined behavior in the called function itself.

3) Thus, an implementation is only required to diagnose "diagnosed undefined behavior." Of course, an

implementation could choose to treat "plain" undefined behavior as diagnosed undefined behavior

since there are no requirements on what an implementation does with "plain" undefined behavior.

4) Typically, the library function will return some sort of error indicator immediately after detecting the

diagnosed undefined behavior.

2 General §3.1

©ISO/IEC WG14 N1093

5 EXAMPLE The call strcpy_s(NULL, 10, NULL) contains two instances of diagnosed undefined
behavior. At least one of them will be diagnosed by the implementation. The call will not indirect through
either null pointer to load or store a value. If the call to strcpy_s returns, it returns a non-zero value to
indicate failure.

4. Predefined macro names
1 The following macro name is conditionally defined by the implementation:

__STDC_SECURE_LIB_ _ The integer constant 200411L, intended to indicate
conformance to this technical report.5)

5) The intention is that this will remain an integer constant of type long int that is increased with

each revision of this technical report.

§4 General 3

WG14 N1093 ©ISO/IEC

5. Library

5.1 Introduction

5.1.1 Standard headers

1 The functions, macros, and types defined in Clause 5 and its subclauses are not defined
by their respective headers if __STDC_WANT_SECURE_LIB_ _ is defined as a macro
which expands to the integer constant 0 at the point in the source file where the
appropriate header is included.

2 The functions, macros, and types defined in Clause 5 and its subclauses are defined by
their respective headers if __STDC_WANT_SECURE_LIB_ _ is defined as a macro
which expands to the integer constant 1 at the point in the source file where the
appropriate header is included.6)

3 It is implementation-defined whether the functions, macros, and types defined in Clause 5
and its subclauses are defined by their respective headers if
__STDC_WANT_SECURE_LIB_ _ is not defined as a macro at the point in the source
file where the appropriate header is included.7)

4 Within a preprocessing translation unit, __STDC_WANT_SECURE_LIB_ _ shall be
defined identically for all inclusions of any headers from Clause 5. If
__STDC_WANT_SECURE_LIB_ _ is defined differently for any such inclusion, the
implementation shall issue a diagnostic as if a preprocessor error directive was used.

6) Future revisions of this technical report may define meanings for other values of

__STDC_WANT_SECURE_LIB_ _.

7) Subclause 7.1.3 of ISO/IEC 9899:1999 reserves certain names and patterns of names that an

implementation may use in headers. All other names are not reserved, and a conforming

implementation may not use them. While some of the names defined in Clause 5 and its subclauses

are reserved, others are not. If an unreserved name is defined in a header when

__STDC_WANT_SECURE_LIB_ _ is not defined, then the implementation is not conforming.

4 Library §5.1.1

©ISO/IEC WG14 N1093

5.1.2 Reserved identifiers

1 Each macro name in any of the following subclauses is reserved for use as specified if it
is defined by any of its associated headers when included; unless explicitly stated
otherwise (see ISO/IEC 9899:1999 Subclause 7.1.4).

2 All identifiers with external linkage in any of the following subclauses are reserved for
use as identifiers with external linkage if any of them are used by the program. None of
them are reserved if none of them are used.

3 Each identifier with file scope listed in any of the following subclauses is reserved for use
as a macro name and as an identifier with file scope in the same name space if it is
defined by any of its associated headers when included.

5.1.3 Use of errno

1 An implementation may set errno for the functions defined in this technical report, but
is not required to.

§5.1.3 Library 5

WG14 N1093 ©ISO/IEC

5.2 Errors <errno.h>

1 The header <errno.h> defines a type.

2 The type is

errno_t

which is type int.8)

8) As a matter of programming style, errno_t may be used as the type of something that deals only

with the values that might be found in errno. For example, a function which returns the value of

errno might be declared as having the return type errno_t.

6 Library §5.2

©ISO/IEC WG14 N1093

5.3 Integer types <stdint.h>

1 The header <stdint.h> defines a macro.

2 The macro is

RSIZE_MAX

which expands to a value9) of type size_t. Functions that have parameters of type
rsize_t consider it diagnosable undefined behavior if the values of those parameters
are greater than RSIZE_MAX.

Recommended practice

3 Extremely large object sizes are frequently a sign that an object’s size was calculated
incorrectly. For example, negative numbers appear as very large positive numbers when
converted to an unsigned type like size_t. Also, some implementations do not support
objects as large as the maximum value that can be represented by type size_t.

4 For those reasons, it is sometimes beneficial to restrict the range of object sizes in order
to detect bugs. For implementations targeting machines with large address spaces, it is
recommended that RSIZE_MAX be defined as the smaller of the size of the largest object
supported or (SIZE_MAX >> 1), even if this limit is smaller than the size of some
legitimate, but very large, objects. Implementations targeting machines with small
address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that no
object sizes are considered diagnosable undefined behavior.

9) The macro RSIZE_MAX need not expand to a constant expression.

§5.3 Library 7

WG14 N1093 ©ISO/IEC

5.4 Input/output <stdio.h>

1 The header <stdio.h> defines several macros and two types.

2 The macros are

L_tmpnam_s

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the tmpnam_s
function;

TMP_MAX_S

which expands to an integer constant expression that is the maximum number of unique
file names that can be generated by the tmpnam_s function.

3 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

5.4.1 Operations on files

5.4.1.1 The tmpfile_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
errno_t tmpfile_s(FILE **stream);

Description

2 If stream is null, then there is diagnosed undefined behavior, and tmpfile_s does
not attempt to create a file or to indirect through stream.

3 The tmpfile_s function creates a temporary binary file that is different from any other
existing file and that will automatically be removed when it is closed or at program
termination. If the program terminates abnormally, whether an open temporary file is
removed is implementation-defined. The file is opened for update with "wb+" mode.

4 If the file was created successfully, then the pointer to FILE pointed to by stream will
be set to the pointer to the object controlling the opened file. Otherwise, the pointer to
FILE pointed to by stream will be set to a null pointer.

8 Library §5.4.1.1

©ISO/IEC WG14 N1093

Recommended practice

It should be possible to open at least TMP_MAX_S temporary files during the lifetime of
the program (this limit may be shared with tmpnam_s) and there should be no limit on
the number simultaneously open other than this limit and any limit on the number of open
files (FOPEN_MAX).

Returns

5 The tmpfile_s function returns zero if it created the file. If it did not create the file or
there was diagnosed undefined behavior, tmpfile_s returns a non-zero value.

5.4.1.2 The tmpnam_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
errno_t tmpnam_s(char *s, rsize_t maxsize);

Description

2 If s is a null pointer or maxsize> RSIZE_MAX or maxsize is not greater than the
length of the generated file name string then there is diagnosed undefined behavior.

3 The tmpnam_s function generates a string that is a valid file name and that is not the
same as the name of an existing file.10) The function is potentially capable of generating
TMP_MAX_S different strings, but any or all of them may already be in use by existing
files and thus not be suitable return values. The lengths of these strings shall be less than
the value of the L_tmpnam_s macro.

4 The tmpnam_s function generates a different string each time it is called.

5 The implementation shall behave as if no library function except tmpnam calls the
tmpnam_s function.11)

10) Files created using strings generated by the tmpnam_s function are temporary only in the sense that

their names should not collide with those generated by conventional naming rules for the

implementation. It is still necessary to use the remove function to remove such files when their use

is ended, and before program termination. Implementations should take care in choosing the patterns

used for names returned by tmpnam_s. For example, making a thread id part of the names avoids the

race condition and possible conflict when multiple programs run simultaneously by the same user

generate the same temporary file names.

11) An implementation may have tmpnam call tmpnam_s (perhaps so there is only one naming

convention for temporary files), but this is not required.

§5.4.1.2 Library 9

WG14 N1093 ©ISO/IEC

Returns

6 If no suitable string can be generated, or if there is diagnosed undefined behavior, the
tmpnam_s function writes a null character to s[0] (only if s is not null and maxsize
is greater than zero) and returns a non-zero value.

7 Otherwise, the tmpnam_s function writes the string in the array pointed to by s and
returns zero.

Environmental limits

8 The value of the macro TMP_MAX_S shall be at least 25.

5.4.2 File access functions

5.4.2.1 The fopen_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
errno_t fopen_s(FILE * restrict * restrict stream,

const char * restrict filename,
const char * restrict mode);

Description

2 There is diagnosed undefined behavior if stream, filename, or mode is a null
pointer. In this case, fopen_s does not attempt to open a file or to indirect through
stream.

3 The fopen_s function opens the file whose name is the string pointed to by
filename, and associates a stream with it. The mode argument is used just as in the
fopen function.

4 If the file was opened successfully, then the pointer to FILE pointed to by stream will
be set to the pointer to the object controlling the opened file. Otherwise, the pointer to
FILE pointed to by stream will be set to a null pointer.

Returns

5 The fopen_s function returns zero if it opened the file. If it did not open the file or
there was diagnosed undefined behavior, fopen_s returns a non-zero value.

10 Library §5.4.2.1

©ISO/IEC WG14 N1093

5.4.2.2 The freopen_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
errno_t freopen_s(FILE * restrict * restrict newstream,

const char * restrict filename,
const char * restrict mode,
FILE * restrict stream);

Description

2 There is diagnosed undefined behavior if newstream, mode, or stream is a null
pointer. If there is diagnosed undefined behavior, freopen_s does not attempt to open
a file or to indirect through newstream.

3 The freopen_s function opens the file whose name is the string pointed to by
filename and associates the stream pointed to by stream with it. The mode
argument is used just as in the fopen function.

4 If filename is a null pointer, the freopen_s function attempts to change the mode of
the stream to that specified by mode, as if the name of the file currently associated with
the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

5 The freopen_s function first attempts to close any file that is associated with stream.
Failure to close the file is ignored. The error and end-of-file indicators for the stream are
cleared.

6 If the file was opened successfully, then the pointer to FILE pointed to by newstream
will be set to the value of stream. Otherwise, the pointer to FILE pointed to by
newstream will be set to a null pointer.

Returns

7 The freopen_s function returns zero if it opened the file. If it did not open the file or
there was diagnosed undefined behavior, freopen_s returns a non-zero value.

§5.4.2.2 Library 11

WG14 N1093 ©ISO/IEC

5.4.3 Formatted input/output functions

5.4.3.1 The fscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
int fscanf_s(FILE * restrict stream,

const char * restrict format, ...);

Description

2 If either stream or format is a null pointer, there is diagnosed undefined behavior, and
the fscanf_s function does not attempt to perform input.

3 The fscanf_s function is equivalent to fscanf except that the c, s, and [conversion
specifiers apply to a pair of arguments (unless assignment suppression is indicated by a
*). The first of these arguments is the same as for fscanf. That argument is
immediately followed in the argument list by the second argument, which has type
rsize_t and gives the number of elements in the array pointed to by the first argument
of the pair. If the first argument points to a scalar object, it is considered to be an array of
one element.12)

4 A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

Returns

5 The fscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
fscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

12) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of a type compatible with rsize_t. A limited amount of checking may be done if even if

the format is not known at translation time. For example, an implementation may issue a diagnostic

for each argument after format that has of type pointer to one of char, signed char,

unsigned char, or void that is not followed by an argument of a type compatible with

rsize_t. The diagnostic could warn that unless the pointer is being used with a conversion specifier

using the hh length modifier, a length argument must follow the pointer argument. Another useful

diagnostic could flag any non-pointer argument following format that did not have a type

compatible with rsize_t.

12 Library §5.4.3.1

©ISO/IEC WG14 N1093

6 EXAMPLE 1 The call:

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf_s(stdin, "%d%f%s", &i, &x, name, (rsize_t) 50);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence
thompson\0.

7 EXAMPLE 2 The call:

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
/* ... */
int n; char s[5];
n = fscanf_s(stdin, "%s", s, sizeof s);

with the input line:

hello

will assign to n the value 0 since a matching failure occurred because the sequence hello\0 requires an
array of six characters to store it. No assignment to s occurs.

5.4.3.2 The scanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
int scanf_s(const char * restrict format, ...);

Description

2 If format is a null pointer, there is diagnosed undefined behavior, and the scanf_s
function does not attempt to perform input.

3 The scanf_s function is equivalent to fscanf_s with the argument stdin
interposed before the arguments to scanf_s.

Returns

4 The scanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
scanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

§5.4.3.2 Library 13

WG14 N1093 ©ISO/IEC

5.4.3.3 The sscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
int sscanf_s(const char * restrict s,

const char * restrict format, ...);

Description

2 If either s or format is a null pointer, there is diagnosed undefined behavior, and the
sscanf_s function does not attempt to perform input.

3 The sscanf_s function is equivalent to fscanf_s, except that input is obtained from
a string (specified by the argument s) rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for the fscanf_s function. If copying
takes place between objects that overlap, the objects take on unspecified values.

Returns

4 The sscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
sscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

5.4.3.4 The vfscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description

2 If either stream or format is a null pointer, there is diagnosed undefined behavior, and
the vfscanf_s function does not attempt to perform input.

3 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfscanf_s function does not invoke the
va_end macro.13)

14 Library §5.4.3.4

©ISO/IEC WG14 N1093

Returns

4 The vfscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vfscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

5.4.3.5 The vscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format,

va_list arg);

Description

2 If format is a null pointer, there is diagnosed undefined behavior, and the vscanf_s
function does not attempt to perform input.

3 The vscanf_s function is equivalent to scanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vscanf_s function does not invoke the
va_end macro.13)

Returns

4 The vscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

5.4.3.6 The vsscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vsscanf_s(const char * restrict s,

const char * restrict format,
va_list arg);

13) As the functions vfscanf_s, vscanf_s, and vsscanf_s invoke the va_arg macro, the value

of arg after the return is indeterminate.§5.4.3.6 Library 15

WG14 N1093 ©ISO/IEC

Description

2 If either s or format is a null pointer, there is diagnosed undefined behavior, and the
fscanf_s function does not attempt to perform input.

3 The vsscanf_s function is equivalent to sscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vsscanf_s function does not invoke the
va_end macro.13)

Returns

4 The vsscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

5.4.4 Character input/output functions

5.4.4.1 The gets_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
char *gets_s(char *s, rsize_t n);

Description

2 If n is equal to zero or s is a null pointer or n > RSIZE_MAX, then there is diagnosed
undefined behavior, and no input is performed and the array pointed to by s (if any) is not
modified.

3 Otherwise, the gets_s function reads at most one less than the number of characters
specified by n from the stream pointed to by stdin, into the array pointed to by s. No
additional characters are read after a new-line character (which is discarded) or after end-
of-file. Although a new-line character counts towards number of characters read, it is not
stored in the array. A null character is written immediately after the last character read
into the array.

4 If end-of-file is encountered and no characters have been read into the array, or if a read
error occurs during the operation, then s[0] is set to the null character.

Returns

5 The gets_s function returns s if successful. If there was diagnosed undefined behavior,
or if end-of-file is encountered and no characters have been read into the array, or if a
read error occurs during the operation, then a null pointer is returned.

16 Library §5.4.4.1

©ISO/IEC WG14 N1093

5.5 General utilities <stdlib.h>

1 The header <stdlib.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

5.5.1 Communication with the environment

5.5.1.1 The getenv_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdlib.h>
errno_t getenv_s(size_t * restrict needed,

char * restrict value, rsize_t maxsize,
const char * restrict name);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— name == NULL

— maxsize > RSIZE_MAX

— maxsize > 0 && value == NULL
If there is diagnosed undefined behavior, the integer pointed to by needed is set to 0 (if
needed is not null), and the function returns.

3 The getenv_s function searches an environment list, provided by the host environment,
for a string that matches the string pointed to by name.

4 If that name is found then getenv_s performs the following actions. If needed is not
a null pointer, one plus the length of the string associated with the matched list member is
stored in the integer pointed to by needed. If the length of the associated string is less
than maxsize, then the associated string is copied to the array pointed to by value.

5 If that name is not found then getenv_s performs the following actions. If needed is
not a null pointer, zero is stored in the integer pointed to by needed. If maxsize is
greater than zero, then value[0] is set to the null character.

6 The set of environment names and the method for altering the environment list are
implementation-defined.

§5.5.1.1 Library 17

WG14 N1093 ©ISO/IEC

Returns

7 The getenv_s function returns zero if the specified name is found and the associated
string was successfully stored in value. Otherwise, a non-zero value is returned.

5.5.2 Searching and sorting utilities

1 These utilities make use of a comparison function to search or sort arrays of unspecified
type. Where an argument declared as size_t nmemb specifies the length of the array
for a function, nmemb can have the value zero on a call to that function; the comparison
function is not called, a search finds no matching element, sorting performs no
rearrangement, and the pointer to the array may be null.

2 The implementation shall ensure that the second argument of the comparison function
(when called from bsearch_s), or both arguments (when called from qsort_s), are
pointers to elements of the array.14) The first argument when called from bsearch_s
shall equal key.

3 The comparison function shall not alter the contents of either the array or search key. The
implementation may reorder elements of the array between calls to the comparison
function, but shall not otherwise alter the contents of any individual element.

4 When the same objects (consisting of size bytes, irrespective of their current positions
in the array) are passed more than once to the comparison function, the results shall be
consistent with one another. That is, for qsort_s they shall define a total ordering on
the array, and for bsearch_s the same object shall always compare the same way with
the key.

5 A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

14) That is, if the value passed is p, then the following expressions are always valid and nonzero:

((char *)p - (char *)base) % size == 0

(char *)p >= (char *)base

(char *)p < (char *)base + nmemb * size

18 Library §5.5.2

©ISO/IEC WG14 N1093

5.5.2.1 The bsearch_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdlib.h>
void *bsearch_s(const void *key, const void *base,

rsize_t nmemb, rsize_t size,
int (*compar)(const void *k, const void *y,

void *context),
void *context);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— nmemb > RSIZE_MAX

— size > RSIZE_MAX

— nmemb!=0 && (key==NULL || base==NULL || compar==NULL ||
compar==NULL)

In which case, the bsearch_s function does not search the array.

3 The bsearch_s function searches an array of nmemb objects, the initial element of
which is pointed to by base, for an element that matches the object pointed to by key.
The size of each element of the array is specified by size.

4 The comparison function pointed to by compar is called with three arguments. The first
two point to the key object and to an array element, in that order. The function shall
return an integer less than, equal to, or greater than zero if the key object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater than the key object, in that order.15)

The third argument to the comparison function is the context argument passed to
bsearch_s. The sole use of context by bsearch_s is to pass it to the comparison
function.16)

Returns

5 The bsearch_s function returns a pointer to a matching element of the array, or a null
pointer if no match is found or there is diagnosable undefined behavior. If two elements

15) In practice, the entire array has been sorted according to the comparison function.

16) The context argument is for the use of the comparison function in performing its duties. For

example, it might specify a collating sequence used by the comparison function.

§5.5.2.1 Library 19

WG14 N1093 ©ISO/IEC

compare as equal, which element is matched is unspecified.

5.5.2.2 The qsort_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdlib.h>
void qsort_s(void *base, rsize_t nmemb, rsize_t size,

int (*compar)(const void *x, const void *y,
void *context),

void *context);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— nmemb > RSIZE_MAX

— size > RSIZE_MAX

— nmemb != 0 && (base == NULL || compar == NULL)
In which case, the qsort_s function does not sort the array.

3 The qsort_s function sorts an array of nmemb objects, the initial element of which is
pointed to by base. The size of each object is specified by size.

4 The contents of the array are sorted into ascending order according to a comparison
function pointed to by compar, which is called with three arguments. The first two
point to the objects being compared. The function shall return an integer less than, equal
to, or greater than zero if the first argument is considered to be respectively less than,
equal to, or greater than the second. The third argument to the comparison function is the
context argument passed to qsort_s. The sole use of context by qsort_s is to
pass it to the comparison function.16)

5 If two elements compare as equal, their relative order in the resulting sorted array is
unspecified.

Returns

6 The qsort_s function returns no value. ∗

20 Library §5.5.2.2

©ISO/IEC WG14 N1093

5.5.3 Multibyte/wide character conversion functions

1 The behavior of the multibyte character functions is affected by the LC_CTYPE category
of the current locale. For a state-dependent encoding, each function is placed into its
initial conversion state by a call for which its character pointer argument, s, is a null
pointer. Subsequent calls with s as other than a null pointer cause the internal conversion
state of the function to be altered as necessary. A call with s as a null pointer causes
these functions to set the int pointed to by their status argument to a nonzero value if
encodings have state dependency, and zero otherwise.17) Changing the LC_CTYPE
category causes the conversion state of these functions to be indeterminate.

5.5.3.1 The wctomb_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdlib.h>
errno_t wctomb_s(int * restrict status,

char * restrict s,
rsize_t smax,
wchar_t wc);

Description

2 Let n denote the number of bytes needed to represent the multibyte character
corresponding to the wide character given by wc (including any shift sequences).

3 There is diagnosed undefined behavior if any of the following conditions are true:

— (s == NULL && smax != 0)

— (smax > RSIZE_MAX)

— (s != NULL && n >= smax)
If there is diagnosed undefined behavior, wctomb_s does not modify the int pointed to
by status, and if s is not null, no more than smax elements in the array pointed to by
s will be accessed.

4 The wctomb_s function determines n and stores the multibyte character representation
of wc in the array whose first element is pointed to by s (if s is not a null pointer). The
number of characters stored never exceeds MB_CUR_MAX or smax. If wc is a null wide
character, a null byte is stored, preceded by any shift sequence needed to restore the
initial shift state, and the function is left in the initial conversion state.

17) If the locale employs special bytes to change the shift state, these bytes do not produce separate wide

character codes, but are grouped with an adjacent multibyte character.

§5.5.3.1 Library 21

WG14 N1093 ©ISO/IEC

5 The implementation shall behave as if no library function calls the wctomb_s function.

6 If s is a null pointer, the wctomb_s function stores into the int pointed to by status a
nonzero or zero value, if multibyte character encodings, respectively, do or do not have
state-dependent encodings.

7 If s is not a null pointer, the wctomb_s function stores into the int pointed to by
status either n or −1 if wc, respectively, does or does not correspond to a valid
multibyte character.

8 In no case will the int pointed to by status be set to a value greater than the
MB_CUR_MAX macro.

Returns

9 The wctomb_s function returns zero if successful, and a non-zero value if there was
diagnosed undefined behavior or wc did not correspond to a valid multibyte character.

22 Library §5.5.3.1

©ISO/IEC WG14 N1093

5.6 String handling <string.h>

1 The header <string.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

5.6.1 Copying functions

5.6.1.1 The memcpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t memcpy_s(void * restrict s1, rsize_t s1max,

const void * restrict s2, rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX

— n > s1max
If there is diagnosed undefined behavior, the memcpy_s function stores zeros in the first
s1max characters of the object pointed to by s1 if s1 != NULL && s1max <=
RSIZE_MAX

3 Otherwise, the memcpy_s function copies n characters from the object pointed to by s2
into the object pointed to by s1. ∗

4 If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

5 The memcpy_s function returns zero if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

§5.6.1.1 Library 23

WG14 N1093 ©ISO/IEC

5.6.1.2 The memmove_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t memmove_s(void *s1, rsize_t s1max,

const void *s2, rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX

— n > s1max
If there is diagnosed undefined behavior, the memmove_s function stores zeros in the
first s1max characters of the object pointed to by s1 if s1 != NULL && s1max <=
RSIZE_MAX

3 Otherwise, the memmove_s function copies n characters from the object pointed to by
s2 into the object pointed to by s1. This copying takes place as if the n characters from
the object pointed to by s2 are first copied into a temporary array of n characters that
does not overlap the objects pointed to by s1 or s2, and then the n characters from the
temporary array are copied into the object pointed to by s1. ∗

Returns

4 The memmove_s function returns zero if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

5.6.1.3 The strcpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t strcpy_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

24 Library §5.6.1.3

©ISO/IEC WG14 N1093

— s1max > RSIZE_MAX

— s1max == 0

— s1max <= strnlen_s(s2, s1max)
If there is diagnosed undefined behavior, then s1[0] is set to the null character if s1
!= NULL && s1max > 0 && s1max <= RSIZE_MAX.

3 Otherwise, the characters pointed to by s2 up to and including the null character are
copied to the array pointed to by s1.

4 All elements following the terminating null character (if any) written by strcpy_s in ∗
the array of s1max characters pointed to by s1 take unspecified values when
strcpy_s returns.18)

5 If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

6 The strcpy_s function returns zero19) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

5.6.1.4 The strncpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t strncpy_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2,
rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

18) This allows an implementation to copy characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

19) A zero return value implies that all of the requested characters from the string pointed to by s2 fit

within the array pointed to by s1 and that the result in s1 is null terminated.

§5.6.1.4 Library 25

WG14 N1093 ©ISO/IEC

— s1max > RSIZE_MAX || n > RSIZE_MAX,

— s1max == 0

— n >= s1max && s1max <= strnlen_s(s2, s1max)
If there is diagnosed undefined behavior, then s1[0] is set to the null character if s1
!= NULL && s1max > 0 && s1max <= RSIZE_MAX.

3 Otherwise, the strncpy_s function copies not more than n successive characters
(characters that follow a null character are not copied) from the array pointed to by s2 to
the array pointed to by s1. If no null character was copied from s2, then s1[n] is set to
a null character.

4 All elements following the terminating null character (if any) written by strncpy_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncpy_s returns.20)

5 If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

6 The strncpy_s function returns zero21) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

7 EXAMPLE 1 The strncpy_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
/* ... */
char src1[100] = "hello";
char src2[7] = {’g’, ’o’, ’o’, ’d’, ’b’, ’y’, ’e’};
char dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = strncpy_s(dst1, 6, src1, 100);
r2 = strncpy_s(dst2, 5, src2, 7);
r3 = strncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence hello\0.
The second call will assign to r2 a non-zero value and to dst2 the sequence \0.
The third call will assign to r3 the value zero and to dst3 the sequence good\0.

20) This allows an implementation to copy characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

21) A zero return value implies that all of the requested characters from the string pointed to by s2 fit

within the array pointed to by s1 and that the result in s1 is null terminated.

26 Library §5.6.1.4

©ISO/IEC WG14 N1093

5.6.2 Concatenation functions

5.6.2.1 The strcat_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t strcat_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2);

Description

2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to
strcat_s.

3 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX

— s1max == 0

— m == 022)

— m <= strnlen(s2, m),
If there is diagnosed undefined behavior, then s1[0] is set to the null character if s1
!= NULL && s1max > 0 && s1max <= RSIZE_MAX.

4 Otherwise, the characters pointed to by s2 up to and including the null character are
appended to the end of the string pointed to by s1. The initial character from s2
overwrites the null character at the end of s1.

5 All elements following the terminating null character (if any) written by strcat_s in ∗
the array of s1max characters pointed to by s1 take unspecified values when
strcat_s returns.23)

6 If copying takes place between objects that overlap, the objects take on unspecified
values.

22) This means that s1 was not null terminated upon entry to strcat_s.

23) This allows an implementation to append characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

§5.6.2.1 Library 27

WG14 N1093 ©ISO/IEC

Returns

7 The strcat_s function returns zero24) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

5.6.2.2 The strncat_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t strncat_s(char * restrict s1,

rsize_t s1max,
const char * restrict s2,
rsize_t n);

Description

2 Let m denote the value s1max - strnlen_s(s1, s1max) upon entry to
strncat_s.

3 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX,

— s1max == 0

— m == 025)

— n >= m && m <= strnlen_s(s2, m),
If there is diagnosed undefined behavior, then s1[0] is set to the null character if s1
!= NULL && s1max > 0 && s1max <= RSIZE_MAX.

4 Otherwise, the strncat_s function appends not more than n successive characters
(characters that follow a null character are not copied) from the array pointed to by s2 to
the end of the string pointed to by s1. The initial character from s2 overwrites the null
character at the end of s1. If no null character was copied from s2, then s1[s1max-
m+n] is set to a null character.

5 All elements following the terminating null character (if any) written by strncat_s in
the array of s1max characters pointed to by s1 take unspecified values when
strncat_s returns.26)

24) A zero return value implies that all of the requested characters from the string pointed to by s2 were

appended to the string pointed to by s1 and that the result in s1 is null terminated.

25) This means that s1 was not null terminated upon entry to strncat_s.

28 Library §5.6.2.2

©ISO/IEC WG14 N1093

6 If copying takes place between objects that overlap, the objects take on unspecified
values.

Returns

7 The strncat_s function returns zero27) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

8 EXAMPLE 1 The strncat_s function can be used to copy a string without the danger that the result
will not be null terminated or that characters will be written past the end of the destination array.

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
/* ... */
char s1[100] = "good";
char s2[6] = "hello";
char s3[6] = "hello";
char s4[7] = "abc";
char s5[1000] = "bye";
int r1, r2, r3, r4;
r1 = strncat_s(s1, 100, s5, 1000);
r2 = strncat_s(s2, 6, "", 1);
r3 = strncat_s(s3, 6, "X", 2);
r4 = strncat_s(s4, 7, "defghijklmn", 3);

After the first call r1 will have the value zero and s1 will contain the sequence goodbye\0.
After the second call r2 will have the value zero and s2 will contain the sequence hello\0.
After the third call r3 will have a non-zero value and s3 will contain the sequence \0.
After the fourth call r4 will have the value zero and s4 will contain the sequence abcdef\0.

5.6.3 Search functions

5.6.3.1 The strtok_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
char *strtok_s(char * restrict s1,

const char * restrict s2,
char ** restrict ptr);

26) This allows an implementation to append characters from s2 to s1 while simultaneously checking if

any of those characters are null. Such an approach might write a character to every element of s1

before discovering that the first element should be set to the null character.

27) A zero return value implies that all of the requested characters from the string pointed to by s2 were

appended to the string pointed to by s1 and that the result in s1 is null terminated.

§5.6.3.1 Library 29

WG14 N1093 ©ISO/IEC

Description

2 If s2 == NULL || ptr == NULL || (*ptr == null && s1 == NULL),
there is diagnosed undefined behavior, and the strtok_s returns.

3 A sequence of calls to the strtok_s function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The third argument points to a caller-provided char pointer into which the
strtok_s function stores information necessary for it to continue scanning the same
string.

4 The first call in a sequence has a non-null first argument and stores an initial value in the
object pointed to by ptr. Subsequent calls in the sequence have a null first argument and
the object pointed to by ptr is required to have the value stored by the previous call in
the sequence, which is then updated. The separator string pointed to by s2 may be
different from call to call.

5 The first call in the sequence searches the string pointed to by s1 for the first character
that is not contained in the current separator string pointed to by s2. If no such character
is found, then there are no tokens in the string pointed to by s1 and the strtok_s
function returns a null pointer. If such a character is found, it is the start of the first token.

6 The strtok_s function then searches from there for the first character in s1 that is
contained in the current separator string. If no such character is found, the current token
extends to the end of the string pointed to by s1, and subsequent searches in the same
string for a token return a null pointer. If such a character is found, it is overwritten by a
null character, which terminates the current token.

7 In all cases, the strtok_s function stores sufficient information in the pointer pointed
to by ptr so that subsequent calls, with a null pointer for s1 and the unmodified pointer
value for ptr, shall start searching just past the element overwritten by a null character
(if any).

Returns

8 The strtok_s function returns a pointer to the first character of a token, or a null
pointer if there is no token or there is diagnosed undefined behavior.

9 EXAMPLE

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
static char str1[] = "?a???b,,,#c";
static char str2[] = "\t \t";
char *t, *ptr1, *ptr2;

30 Library §5.6.3.1

©ISO/IEC WG14 N1093

t = strtok_s(str1, "?", &ptr1); // t points to the token "a"
t = strtok_s(NULL, ",", &ptr1); // t points to the token "??b"
t = strtok_s(str2, " \t", &ptr2); // t is a null pointer
t = strtok_s(NULL, "#,", &ptr1); // t points to the token "c"
t = strtok_s(NULL, "?", &ptr1); // t is a null pointer

5.6.4 Miscellaneous functions

5.6.4.1 The strerror_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
errno_t strerror_s(char *s, rsize_t maxsize,

errno_t errnum);

Description

2 If s is a null pointer or maxsize > RSIZE_MAX or maxsize equals 0, then there is
diagnosed undefined behavior, and the array (if any) pointed to by s is not modified.

3 The strerror_s function maps the number in errnum to a locale-specific message
string. Typically, the values for errnum come from errno, but strerror_s shall
map any value of type int to a message.

4 If the length of the desired string is less than maxsize, then the string is copied to the
array pointed to by s.

5 Otherwise, if maxsize is greater than zero, then maxsize-1 characters are copied
from the string to the array pointed to by s and then s[maxsize-1] is set to the null
character. Then, if maxsize is greater than 3, then s[maxsize-2],
s[maxsize-3], and s[maxsize-4] are set to the character period (.).

Returns

6 The strerror_s function returns zero if the length of the desired string was less than
maxsize and there was no diagnosed undefined behavior. Otherwise, the
strerror_s function returns a non-zero value.

5.6.4.2 The strnlen_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <string.h>
size_t strnlen_s(const char *s, size_t maxsize);

§5.6.4.2 Library 31

WG14 N1093 ©ISO/IEC

Description

2 The strnlen_s function computes the length of the string pointed to by s.

Returns

3 If s is a null pointer, then the strnlen_s function returns zero.

4 Otherwise, the strnlen_s function returns the number of characters that precede the
terminating null character. If there is no null character in the first maxsize characters of
s then strnlen_s returns maxsize. At most the first maxsize characters of s shall be
accessed by strnlen_s.

32 Library §5.6.4.2

©ISO/IEC WG14 N1093

5.7 Date and time <time.h>

1 The header <time.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t.

5.7.1 Components of time

1 A broken-down time is normalized if the values of the members of the tm structure are in
their normal rages.

5.7.2 Time conversion functions

1 Like the strftime function, the asctime_s and ctime_s functions do not return a
pointer to a static object, and other library functions are permitted to call them.

5.7.2.1 The asctime_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <time.h>
errno_t asctime_s(char *s, rsize_t maxsize,

const struct tm *timeptr);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s or timer is a null pointer.

— maxsize < 26 || maxsize > RSIZE_MAX

— The broken-down time pointed to by timeptr is not normalized.

— The calendar year represented by the broken-down time pointed to by timeptr is
less than year 0 or more than year 9999.

If there is diagnosed undefined behavior, there is no attempt to convert the time, and
s[0] is set to a null character if s != NULL && maxsize > 0 && maxsize
<= RSIZE_MAX.

3 The asctime_s function converts the normalized broken-down time in the structure
pointed to by timeptr into a 26 character (including the null character) string in the

§5.7.2.1 Library 33

WG14 N1093 ©ISO/IEC

form

Sun Sep 16 01:03:52 1973\n\0

The fields making up this string are (in order):

1. The name of the day of the week represented by timeptr->tm_wday using the
following three character weekday names: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

2. The character space.

3. The name of the month represented by timeptr->tm_mon using the following
three character month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, and Dec.

4. The character space.

5. The value of timeptr->tm_mday as if printed using the fprintf format
"%2d".

6. The character space.

7. The value of timeptr->tm_hour as if printed using the fprintf format
"%.2d".

8. The character colon.

9. The value of timeptr->tm_min as if printed using the fprintf format
"%.2d".

10. The character colon.

11. The value of timeptr->tm_sec as if printed using the fprintf format
"%.2d".

12. The character space.

13. The value of timeptr->tm_year + 1900 as if printed using the fprintf
format "%4d".

14. The character new line.

15. The null character.

Returns

4 The asctime_s function returns zero if the time was successfully converted and stored
into the array pointed to by s. Otherwise, it returns a non-zero value.

34 Library §5.7.2.1

©ISO/IEC WG14 N1093

5.7.2.2 The ctime_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <time.h>
errno_t ctime_s(char *s, rsize_t maxsize,

const time_t *timer);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s or timer is a null pointer.

— maxsize < 26 || maxsize > RSIZE_MAX
If there is diagnosed undefined behavior, s[0] is set to a null character if s != NULL
&& maxsize > 0 && maxsize <= RSIZE_MAX.

3 The ctime_s function converts the calendar time pointed to by timer to local time in
the form of a string. It is equivalent to

asctime_s(s, maxsize, localtime(timer))

Returns

4 The ctime_s function returns zero if the time was successfully converted and stored
into the array pointed to by s. Otherwise, it returns a non-zero value.

5.7.2.3 The gmtime_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <time.h>
struct tm *gmtime_s(const time_t * restrict timer,

struct tm * restrict result);

Description

2 There is diagnosed undefined behavior if timer or result is a null pointer. If there is
diagnosed undefined behavior, there is no attempt to convert the time.

3 The gmtime_s function converts the calendar time pointed to by timer into a broken-
down time, expressed as UTC. The broken-down time is stored in the structure pointed
to by result.

§5.7.2.3 Library 35

WG14 N1093 ©ISO/IEC

Returns

4 The gmtime_s function returns result, or a null pointer if the specified time cannot
be converted to UTC or there is diagnosed undefined behavior.

5.7.2.4 The localtime_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <time.h>
struct tm *localtime_s(const time_t * restrict timer,

struct tm * restrict result);

Description

2 There is diagnosed undefined behavior if timer or result is a null pointer. If there is
diagnosed undefined behavior, there is no attempt to convert the time.

3 The localtime_s function converts the calendar time pointed to by timer into a
broken-down time, expressed as local time. The broken-down time is stored in the
structure pointed to by result.

Returns

4 The localtime_s function returns result, or a null pointer if the specified time
cannot be converted to local time or there is diagnosed undefined behavior.

36 Library §5.7.2.4

©ISO/IEC WG14 N1093

5.8 Extended multibyte and wide character utilities <wchar.h>

1 The header <wchar.h> defines two types.

2 The types are

errno_t

which is type int; and

rsize_t

which is the type size_t. ∗

3 Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the objects take on
unspecified values.

5.8.1 Formatted wide character input/output functions

5.8.1.1 The fwscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdio.h>
#include <wchar.h>
int fwscanf_s(FILE * restrict stream,

const wchar_t * restrict format, ...);

Description

2 If either stream or format is a null pointer, there is diagnosed undefined behavior, and
the fwscanf_s function does not attempt to perform input.

3 The fwscanf_s function is equivalent to fwscanf except that the c, s, and [
conversion specifiers apply to a pair of arguments (unless assignment suppression is
indicated by a *). The first of these arguments is the same as for fwscanf. That
argument is immediately followed in the argument list by the second argument, which has
type size_t and gives the number of elements in the array pointed to by the first
argument of the pair. If the first argument points to a scalar object, it is considered to be
an array of one element.28)

4 A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

Returns

5 The fwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the

§5.8.1.1 Library 37

WG14 N1093 ©ISO/IEC

fwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

5.8.1.2 The swscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
int swscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format, ...);

Description

2 If either s or format is a null pointer, there is diagnosed undefined behavior, and the
swscanf_s function does not attempt to perform input.

3 The swscanf_s function is equivalent to fwscanf_s, except that the argument s
specifies a wide string from which the input is to be obtained, rather than from a stream.
Reaching the end of the wide string is equivalent to encountering end-of-file for the
fwscanf_s function.

Returns

4 The swscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
swscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

28) If the format is known at translation time, an implementation may issue a diagnostic for any argument

used to store the result from a c, s, or [conversion specifier if that argument is not followed by an

argument of a type compatible with rsize_t. A limited amount of checking may be done if even if

the format is not known at translation time. For example, an implementation may issue a diagnostic

for each argument after format that has of type pointer to one of char, signed char,

unsigned char, or void that is not followed by an argument of a type compatible with

rsize_t. The diagnostic could warn that unless the pointer is being used with a conversion specifier

using the hh length modifier, a length argument must follow the pointer argument. Another useful

diagnostic could flag any non-pointer argument following format that did not have a type

compatible with rsize_t.38 Library §5.8.1.2

©ISO/IEC WG14 N1093

5.8.1.3 The vfwscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description

2 If either stream or format is a null pointer, there is diagnosed undefined behavior, and
the vfwscanf_s function does not attempt to perform input.

3 The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfwscanf_s function does not invoke the
va_end macro.29)

Returns

4 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vfwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

5.8.1.4 The vswscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format,
va_list arg);

Description

2 If either s or format is a null pointer, there is diagnosed undefined behavior, and the
fscanf_s function does not attempt to perform input.

29) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the

value of arg after the return is indeterminate.

§5.8.1.4 Library 39

WG14 N1093 ©ISO/IEC

3 The vswscanf_s function is equivalent to swscanf_s, with the variable argument
list replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vswscanf_s function does not invoke the
va_end macro.29)

Returns

4 The vswscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vswscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

5.8.1.5 The vwscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s(const wchar_t * restrict format,

va_list arg);

Description

2 If format is a null pointer, there is diagnosed undefined behavior, and the vwscanf_s
function does not attempt to perform input.

3 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vwscanf_s function does not invoke the
va_end macro.29)

Returns

4 The vwscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
vwscanf_s function returns the number of input items assigned, which can be fewer
than provided for, or even zero, in the event of an early matching failure.

5.8.1.6 The wscanf_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
int wscanf_s(const wchar_t * restrict format, ...);

40 Library §5.8.1.6

©ISO/IEC WG14 N1093

Description

2 If format is a null pointer, there is diagnosed undefined behavior, and the wscanf_s
function does not attempt to perform input.

3 The wscanf_s function is equivalent to fwscanf_s with the argument stdin
interposed before the arguments to wscanf_s.

Returns

4 The wscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion or if there is diagnosed undefined behavior. Otherwise, the
wscanf_s function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.

5.8.2 General wide string utilities

5.8.2.1 Wide string copying functions

5.8.2.1.1 The wcscpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wcscpy_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX

— s1max == 0

— s1max <= wcsnlen_s(s2, s1max)
If there is diagnosed undefined behavior, then s1[0] is set to the null wide character if
s1 != NULL && s1max > 0 && s1max <= RSIZE_MAX.

3 Otherwise, the wide characters pointed to by s2 up to and including the null wide
character are copied to the array pointed to by s1.

4 All elements following the terminating null wide character (if any) written by ∗
wcscpy_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcscpy_s returns.30)

§5.8.2.1.1 Library 41

WG14 N1093 ©ISO/IEC

Returns

5 The wcscpy_s function returns zero31) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

5.8.2.1.2 The wcsncpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wcsncpy_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2,
rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX,

— s1max == 0

— n >= s1max && s1max <= wcsnlen_s(s2, s1max)
If there is diagnosed undefined behavior, then s1[0] is set to the null wide character if
s1 != NULL && s1max > 0 && s1max <= RSIZE_MAX.

3 Otherwise, the wcsncpy_s function copies not more than n successive wide characters
(wide characters that follow a null wide character are not copied) from the array pointed
to by s2 to the array pointed to by s1. If no null wide character was copied from s2,
then s1[n] is set to a null wide character.

4 All elements following the terminating null wide character (if any) written by
wcsncpy_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcsncpy_s returns.32)

30) This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking

if any of those wide characters are null. Such an approach might write a wide character to every

element of s1 before discovering that the first element should be set to the null wide character.

31) A zero return value implies that all of the requested wide characters from the string pointed to by s2

fit within the array pointed to by s1 and that the result in s1 is null terminated.

32) This allows an implementation to copy wide characters from s2 to s1 while simultaneously checking

if any of those wide characters are null. Such an approach might write a wide character to every

element of s1 before discovering that the first element should be set to the null wide character.

42 Library §5.8.2.1.2

©ISO/IEC WG14 N1093

Returns

5 The wcsncpy_s function returns zero33) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

6 EXAMPLE 1 The wcsncpy_s function can be used to copy a wide string without the danger that the
result will not be null terminated or that wide characters will be written past the end of the destination
array.

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
/* ... */
wchar_t src1[100] = L"hello";
wchar_t src2[7] = {L’g’, L’o’, L’o’, L’d’, L’b’, L’y’, L’e’};
wchar_t dst1[6], dst2[5], dst3[5];
int r1, r2, r3;
r1 = wcsncpy_s(dst1, 6, src1, 100);
r2 = wcsncpy_s(dst2, 5, src2, 7);
r3 = wcsncpy_s(dst3, 5, src2, 4);

The first call will assign to r1 the value zero and to dst1 the sequence of wide characters hello\0.
The second call will assign to r2 a non-zero value and to dst2 the sequence of wide characters \0.
The third call will assign to r3 the value zero and to dst3 the sequence of wide characters good\0.

5.8.2.1.3 The wmemcpy_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wmemcpy_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2,
rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX

— n > s1max
If there is diagnosed undefined behavior, the memcpy_s function stores zeros in the first
s1max wide characters of the object pointed to by s1 if s1 != NULL && s1max
<= RSIZE_MAX

33) A zero return value implies that all of the requested wide characters from the string pointed to by s2

fit within the array pointed to by s1 and that the result in s1 is null terminated.

§5.8.2.1.3 Library 43

WG14 N1093 ©ISO/IEC

3 Otherwise, the wmemcpy_s function copies n successive wide characters from the
object pointed to by s2 into the object pointed to by s1. ∗

Returns

4 The wmemcpy_s function returns zero if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

5.8.2.1.4 The wmemmove_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wmemmove_s(wchar_t *s1, rsize_t s1max,

const wchar_t *s2, rsize_t n);

Description

2 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX

— n > s1max
If there is diagnosed undefined behavior, the memmove_s function stores zeros in the
first s1max wide characters of the object pointed to by s1 if s1 != NULL &&
s1max <= RSIZE_MAX

3 Otherwise, the wmemmove_s function copies n successive wide characters from the
object pointed to by s2 into the object pointed to by s1. This copying takes place as if
the n wide characters from the object pointed to by s2 are first copied into a temporary
array of n wide characters that does not overlap the objects pointed to by s1 or s2, and
then the n wide characters from the temporary array are copied into the object pointed to
by s1. ∗

Returns

4 The wmemmove_s function returns zero if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

44 Library §5.8.2.1.4

©ISO/IEC WG14 N1093

5.8.2.2 Wide string concatenation functions

5.8.2.2.1 The wcscat_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wcscat_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2);

Description

2 Let, m have the value s1max - wcsnlen_s(s1, s1max) upon entry to
wcscat_s.

3 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX

— s1max == 0

— m == 034)

— m <= wcsnlen(s2, m),
If there is diagnosed undefined behavior, then s1[0] is set to the null wide character if
s1 != NULL && s1max > 0 && s1max <= RSIZE_MAX.

4 Otherwise, the wide characters pointed to by s2 up to and including the null wide
character are appended to the end of the wide string pointed to by s1. The initial wide
character from s2 overwrites the null wide character at the end of s1.

5 All elements following the terminating null wide character (if any) written by ∗
wcscat_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcscat_s returns.35)

Returns

6 The wcscat_s function returns zero36) if there was no diagnosed undefined behavior.

34) This means that s1 was not null terminated upon entry to wcscat_s.

35) This allows an implementation to append wide characters from s2 to s1 while simultaneously

checking if any of those wide characters are null. Such an approach might write a wide character to

ev ery element of s1 before discovering that the first element should be set to the null wide character.

36) A zero return value implies that all of the requested wide characters from the wide string pointed to by

s2 were appended to the wide string pointed to by s1 and that the result in s1 is null terminated.

§5.8.2.2.1 Library 45

WG14 N1093 ©ISO/IEC

Otherwise, a non-zero value is returned.

5.8.2.2.2 The wcsncat_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
errno_t wcsncat_s(wchar_t * restrict s1,

rsize_t s1max,
const wchar_t * restrict s2,
rsize_t n);

Description

2 Let, m have the value s1max - wcsnlen_s(s1, s1max) upon entry to
wcsncat_s.

3 There is diagnosed undefined behavior if any of the following conditions are true:

— s1 == NULL || s2 == NULL

— s1max > RSIZE_MAX || n > RSIZE_MAX,

— s1max == 0

— m == 037)

— n >= m && m <= strnlen_s(s2, m),
If there is diagnosed undefined behavior, then s1[0] is set to the null wide character if
s1 != NULL && s1max > 0 && s1max <= RSIZE_MAX.

4 Otherwise, the wcsncat_s function appends not more than n successive wide
characters (wide characters that follow a null wide character are not copied) from the
array pointed to by s2 to the end of the wide string pointed to by s1. The initial wide
character from s2 overwrites the null wide character at the end of s1. If no null wide
character was copied from s2, then s1[s1max-m+n] is set to a null wide character.

5 All elements following the terminating null wide character (if any) written by
wcsncat_s in the array of s1max wide characters pointed to by s1 take unspecified
values when wcsncat_s returns.38)

37) This means that s1 was not null terminated upon entry to wcsncat_s.

38) This allows an implementation to append wide characters from s2 to s1 while simultaneously

checking if any of those wide characters are null. Such an approach might write a wide character to

ev ery element of s1 before discovering that the first element should be set to the null wide character.

46 Library §5.8.2.2.2

©ISO/IEC WG14 N1093

Returns

6 The wcsncat_s function returns zero39) if there was no diagnosed undefined behavior.
Otherwise, a non-zero value is returned.

7 EXAMPLE 1 The wcsncat_s function can be used to copy a wide string without the danger that the
result will not be null terminated or that wide characters will be written past the end of the destination
array.

#define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
/* ... */
wchar_t s1[100] = L"good";
wchar_t s2[6] = L"hello";
wchar_t s3[6] = L"hello";
wchar_t s4[7] = L"abc";
wchar_t s5[1000] = L"bye";
int r1, r2, r3, r4;
r1 = wcsncat_s(s1, 100, s5, 1000);
r2 = wcsncat_s(s2, 6, L"", 1);
r3 = wcsncat_s(s3, 6, L"X", 2);
r4 = wcsncat_s(s4, 7, L"defghijklmn", 3);

After the first call r1 will have the value zero and s1 will be the wide character sequence goodbye\0.
After the second call r2 will have the value zero and s2 will be the wide character sequence hello\0.
After the third call r3 will have a non-zero value and s3 will be the wide character sequence \0.
After the fourth call r4 will have the value zero and s4 will be the wide character sequence abcdef\0.

5.8.2.3 Miscellaneous functions

5.8.2.3.1 The wcsnlen_s function

Synopsis

1 #define __STDC_WANT_SECURE_LIB_ _ 1
#include <wchar.h>
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);

Description

2 The wcsnlen_s function computes the length of the wide string pointed to by s.

Returns

3 If s is a null pointer, then the wcsnlen_s function returns zero.

4 Otherwise, the wcsnlen_s function returns the number of wide characters that precede
the terminating null wide character. If there is no null wide character in the first
maxsize wide characters of s then wcsnlen_s returns maxsize. At most the first

39) A zero return value implies that all of the requested wide characters from the wide string pointed to by

s2 were appended to the wide string pointed to by s1 and that the result in s1 is null terminated.

§5.8.2.3.1 Library 47

WG14 N1093 ©ISO/IEC

maxsize wide characters of s shall be accessed by wcsnlen_s.

48 Library §5.8.2.3.1

©ISO/IEC WG14 N1093

Index
<errno.h> header, 5.2
<stdint.h> header, 5.3
<stdio.h> header, 5.4
<stdlib.h> header, 5.5
<string.h> header, 5.6
<time.h> header, 5.7
<wchar.h> header, 5.8
__STDC_SECURE_LIB_ _ macro, 4
__STDC_WANT_SECURE_LIB_ _ macro, 5.1.1

asctime_s function, 5.7.2, 5.7.2.1

broken-down time, 5.7.2.1, 5.7.2.3, 5.7.2.4
bsearch_s function, 5.5.2, 5.5.2.1

calendar time, 5.7.2.2, 5.7.2.3, 5.7.2.4
char type, 5.4.3.1, 5.8.1.1
character input/output functions, 5.4.4
comparison functions, 5.5.2, 5.5.2.1, 5.5.2.2
components of time, 5.7.1
concatenation functions

string, 5.6.2
wide string, 5.8.2.2

conversion functions
multibyte/wide character, 5.5.3
time, 5.7.2

conversion state, 5.5.3
copying functions

string, 5.6.1
wide string, 5.8.2.1

ctime_s function, 5.7.2, 5.7.2.2

date and time header, 5.7
diagnosed undefined behavior, 3.1

end-of-file macro, see EOF macro
environment functions, 5.5.1
environment list, 5.5.1.1
environmental limits, 5.4.1.2
EOF macro, 5.4.3.3, 5.4.3.4, 5.4.3.5, 5.4.3.6,

5.8.1.1, 5.8.1.2, 5.8.1.3, 5.8.1.4, 5.8.1.5,
5.8.1.6

errno macro, 5.1.3, 5.6.4.1
errno.h header, 5.2
errno_t type, 5.2, 5.4, 5.5, 5.6, 5.7, 5.8
error-handling functions, 5.6.4.1

file
access functions, 5.4.2
operations, 5.4.1

fopen function, 5.4.2.1, 5.4.2.2

FOPEN_MAX macro, 5.4.1.1
fopen_s function, 5.4.2.1
formatted input/output functions, 5.4.3

wide character, 5.8.1
freopen_s function, 5.4.2.2
fscanf function, 5.4.3.1
fscanf_s function, 5.4.3.1, 5.4.3.2, 5.4.3.3,

5.4.3.4
fwscanf function, 5.8.1.1
fwscanf_s function, 5.8.1.1, 5.8.1.2, 5.8.1.3,

5.8.1.6

general utilities, 5.5
wide string, 5.8.2

general wide string utilities, 5.8.2
getenv_s function, 5.5.1.1
gets_s function, 5.4.4.1
gmtime_s function, 5.7.2.3

header, see also standard headers

identifier
reserved, 5.1.2

IEC 60559, 2
input failure, 5.4.3.1, 5.4.3.2, 5.4.3.3, 5.4.3.4,

5.4.3.5, 5.4.3.6, 5.8.1.1, 5.8.1.2, 5.8.1.3,
5.8.1.4, 5.8.1.5, 5.8.1.6

input/output functions
character, 5.4.4
formatted, 5.4.3

wide character, 5.8.1
wide character

formatted, 5.8.1
input/output header, 5.4
ISO 31−11, 2, 3
ISO 4217, 2
ISO 8601, 2
ISO/IEC 10646, 2
ISO/IEC 2382−1, 2, 3
ISO/IEC 646, 2
italic type convention, 3

L_tmpnam_s macro, 5.4, 5.4.1.2
LC_CTYPE macro, 5.5.3
length function, 5.6.4.2, 5.8.2.3.1
library, 5
localtime_s function, 5.7.2.4

macro name
predefined, 4

matching failure, 5.8.1.3, 5.8.1.4, 5.8.1.5

Index 49

WG14 N1093 ©ISO/IEC

MB_CUR_MAX macro, 5.5.3.1
memcpy_s function, 5.6.1.1
memmove_s function, 5.6.1.2
miscellaneous functions

string, 5.6.4
wide string, 5.8.2.3

multibyte conversion functions
wide character, 5.5.3

multibyte/wide character conversion functions,
5.5.3

normalized broken-down time, 5.7.1, 5.7.2.1

operations on files, 5.4.1

predefined macro names, 4

qsort_s function, 5.5.2, 5.5.2.2

remove function, 5.4.1.2
reserved identifiers, 5.1.2
RSIZE_MAX macro, 5.3, 5.4.1.2, 5.4.4.1, 5.5.1.1,

5.5.2.1, 5.5.2.2, 5.5.3.1, 5.6.1.1, 5.6.1.2,
5.6.1.3, 5.6.1.4, 5.6.2.1, 5.6.2.2, 5.6.4.1,
5.7.2.1, 5.7.2.2, 5.8.2.1.1, 5.8.2.1.2,
5.8.2.1.3, 5.8.2.1.4, 5.8.2.2.1, 5.8.2.2.2

rsize_t type, 5.3, 5.4, 5.4.3.1, 5.5, 5.6, 5.7,
5.8, 5.8.1.1

scanf_s function, 5.4.3.2, 5.4.3.5
search functions

string, 5.6.3
utility, 5.5.2

sequence points, 5.5.2
signed char type, 5.4.3.1, 5.8.1.1
size_t type, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.8.1.1
sorting utility functions, 5.5.2
sscanf_s function, 5.4.3.3, 5.4.3.6
standard headers
<errno.h>, 5.2
<stdint.h>, 5.3
<stdio.h>, 5.4
<stdlib.h>, 5.5
<string.h>, 5.6
<time.h>, 5.7
<wchar.h>, 5.8

state-dependent encoding, 5.5.3
stdin macro, 5.4.3.2, 5.4.4.1, 5.8.1.6
stdint.h header, 5.3
stdio.h header, 5.4
stdlib.h header, 5.5
strcat_s function, 5.6.2.1
strcpy_s function, 3.1, 5.6.1.3

strerror_s function, 5.6.4.1
strftime function, 5.7.2
string

concatenation functions, 5.6.2
copying functions, 5.6.1
miscellaneous functions, 5.6.4
search functions, 5.6.3

string handling header, 5.6
string.h header, 5.6
strncat_s function, 5.6.2.2
strncpy_s function, 5.6.1.4
strnlen_s function, 5.6.4.2
strtok_s function, 5.6.3.1
swscanf_s function, 5.8.1.2, 5.8.1.4
symbols, 3

terms, 3
time

broken down, 5.7.2.1, 5.7.2.3, 5.7.2.4
calendar, 5.7.2.2, 5.7.2.3, 5.7.2.4
components, 5.7.1
conversion functions, 5.7.2
normalized broken down, 5.7.1, 5.7.2.1

time.h header, 5.7
tm structure type, 5.7.1
TMP_MAX_S macro, 5.4, 5.4.1.1, 5.4.1.2
tmpfile_s function, 5.4.1.1
tmpnam function, 5.4.1.2
tmpnam_s function, 5.4, 5.4.1.1, 5.4.1.2

unsigned char type, 5.4.3.1, 5.8.1.1
utilities, general, 5.5

wide string, 5.8.2

va_arg macro, 5.4.3.4, 5.4.3.5, 5.4.3.6, 5.8.1.3,
5.8.1.4, 5.8.1.5

va_end macro, 5.4.3.4, 5.4.3.5, 5.4.3.6, 5.8.1.3,
5.8.1.4, 5.8.1.5

va_start macro, 5.4.3.4, 5.4.3.5, 5.4.3.6,
5.8.1.3, 5.8.1.4, 5.8.1.5

vfscanf_s function, 5.4.3.4, 5.4.3.4
vfwscanf_s function, 5.8.1.3
void type, 5.4.3.1, 5.8.1.1
vscanf_s function, 5.4.3.4, 5.4.3.5
vsscanf_s function, 5.4.3.4, 5.4.3.6
vswscanf_s function, 5.8.1.4
vwscanf_s function, 5.8.1.5

wchar.h header, 5.8
wcscat_s function, 5.8.2.2.1
wcscpy_s function, 5.8.2.1.1
wcsncat_s function, 5.8.2.2.2
wcsncpy_s function, 5.8.2.1.2

50 Index

©ISO/IEC WG14 N1093

wcsnlen_s function, 5.8.2.3.1
wctomb_s function, 5.5.3.1
wide character

formatted input/output functions, 5.8.1
wide string concatenation functions, 5.8.2.2
wide string copying functions, 5.8.2.1
wide string miscellaneous functions, 5.8.2.3
wmemcpy_s function, 5.8.2.1.3
wmemmove_s function, 5.8.2.1.4
wscanf_s function, 5.8.1.5, 5.8.1.6

Index 51

	Cover
	Copyright
	Contents
	Forward
	Introduction
	1. Scope
	2. Normative references
	3. Terms, definitions, and symbols
	3.1 diagnosed undefined behavior

	4. Predefined macro names
	5. Library
	5.1 Introduction
	5.1.1 Standard headers
	5.1.2 Reserved identifiers
	5.1.3 Use of errno

	5.2 <errno.h>
	5.3 <stdint.h>
	5.4 <stdio.h>
	5.4.1 Operations on files
	5.4.1.1 tmpfile_s
	5.4.1.2 tmpnam_s

	5.4.2 File access functions
	5.4.2.1 fopen_s
	5.4.2.2 freopen_s

	5.4.3 Formatted input/output functions
	5.4.3.1 fscanf_s
	5.4.3.2 scanf_s
	5.4.3.3 sscanf_s
	5.4.3.4 vfscanf_s
	5.4.3.5 vscanf_s
	5.4.3.6 vsscanf_s

	5.4.4 Character input/output functions
	5.4.4.1 gets_s

	5.5 <stdlib.h>
	5.5.1 Communication with the environment
	5.5.1.1 getenv_s

	5.5.2 Searching and sorting utilities
	5.5.2.1 bsearch_s
	5.5.2.2 qsort_s

	5.5.3 Multibyte/wide character conversion functions
	5.5.3.1 wctomb_s

	5.6 <string.h>
	5.6.1 Copying functions
	5.6.1.1 memcpy_s
	5.6.1.2 memmove_s
	5.6.1.3 strcpy_s
	5.6.1.4 strncpy_s

	5.6.2 Concatenation functions
	5.6.2.1 strcat_s
	5.6.2.2 strncat_s

	5.6.3 Search functions
	5.6.3.1 strtok_s

	5.6.4 Miscellaneous functions
	5.6.4.1 strerror_s
	5.6.4.2 strnlen_s

	5.7 <time.h>
	5.7.1 Components of time
	5.7.2 Time conversion functions
	5.7.2.1 asctime_s
	5.7.2.2 ctime_s
	5.7.2.3 gmttime_s
	5.7.2.4 localtime_s

	5.8 <wchar.h>
	5.8.1 Formatted wide character input/output functions
	5.8.1.1 fwscanf_s
	5.8.1.2 swscanf_s
	5.8.1.3 vfwscanf_s
	5.8.1.4 vswscanf_s
	5.8.1.5 vwscanf_s
	5.8.1.6 wscanf_s

	5.8.2 General wide string utilities
	5.8.2.1 Wide string copying functions
	5.8.2.1.1 wcscpy_s
	5.8.2.1.2 wcsncpy_s
	5.8.2.1.3 wmemcpy_s
	5.8.2.1.4 wmemmove_s

	5.8.2.2 Wide string concatenation functions
	5.8.2.2.1 wcscat_s
	5.8.2.2.2 wcsncat_s

	5.8.2.3 Miscellaneous functions
	5.8.2.3.1 wcsnlen_s

	Index

